Adaptive time-frequency distribution for accurate representation of radar signals

Electronic Support is one of the key elements in electronic warfare where the main interest is to detect and classify emitted radar signals. Quadratic time-frequency distribution (TFD) is often used to represent this type of signal due to its high resolution representation in time and frequency. How...

Full description

Saved in:
Bibliographic Details
Main Author: Muhammad Hamdi, Muhammad Noor
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://eprints.utm.my/id/eprint/78865/1/MuhammadNoorMuhammadMFKE2017.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.78865
record_format uketd_dc
spelling my-utm-ep.788652018-09-17T04:21:30Z Adaptive time-frequency distribution for accurate representation of radar signals 2017-08 Muhammad Hamdi, Muhammad Noor TK Electrical engineering. Electronics Nuclear engineering Electronic Support is one of the key elements in electronic warfare where the main interest is to detect and classify emitted radar signals. Quadratic time-frequency distribution (TFD) is often used to represent this type of signal due to its high resolution representation in time and frequency. However, it is greatly affected by the cross-terms which cause inaccurate signal interpretation. The purpose of this study is to design a cross-term suppression technique for a non-cooperative environment where the exact signal characteristics are unknown. A new adaptive directional ambiguity function Wigner-Ville distribution (ADAF-WVD) is developed to adaptively estimate the kernel parameters based on the ambiguity properties of a signal. Two adaptive procedures, which are the Doppler-lag block searching and the ambiguity domain energy concentration estimation are developed to separate the auto-term from the cross-term in the ambiguity domain. ADAF-WVD measures the energy level of the signal in the ambiguity domain to distinguish between the auto-terms and cross-terms. Four radar signal types are used to verify the accuracy of the time-frequency representation (TFR): simple pulse, Costas coded, pulsed linear frequency modulation and continuous wave linear frequency modulation. Accurate TFRs are produced for most of the signal as low as at signal-to-noise ratio (SNR) of -1 dB. The performance of instantaneous frequency estimation is verified using Monte Carlo simulation. Both approaches are proven to be efficient estimators as they meet the requirements of the Cramer-Rao Lower Bound at SNR > 6 dB. The computational complexity of ADAFWVD is four times lower than the adaptive smooth window cross Wigner-Ville distribution. Thus, it has been demonstrated that the developed TFD is an efficient solution for the analysis of radar signals. 2017-08 Thesis http://eprints.utm.my/id/eprint/78865/ http://eprints.utm.my/id/eprint/78865/1/MuhammadNoorMuhammadMFKE2017.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:108404 masters Universiti Teknologi Malaysia, Faculty of Electrical Engineering Faculty of Electrical Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TK Electrical engineering
Electronics Nuclear engineering
spellingShingle TK Electrical engineering
Electronics Nuclear engineering
Muhammad Hamdi, Muhammad Noor
Adaptive time-frequency distribution for accurate representation of radar signals
description Electronic Support is one of the key elements in electronic warfare where the main interest is to detect and classify emitted radar signals. Quadratic time-frequency distribution (TFD) is often used to represent this type of signal due to its high resolution representation in time and frequency. However, it is greatly affected by the cross-terms which cause inaccurate signal interpretation. The purpose of this study is to design a cross-term suppression technique for a non-cooperative environment where the exact signal characteristics are unknown. A new adaptive directional ambiguity function Wigner-Ville distribution (ADAF-WVD) is developed to adaptively estimate the kernel parameters based on the ambiguity properties of a signal. Two adaptive procedures, which are the Doppler-lag block searching and the ambiguity domain energy concentration estimation are developed to separate the auto-term from the cross-term in the ambiguity domain. ADAF-WVD measures the energy level of the signal in the ambiguity domain to distinguish between the auto-terms and cross-terms. Four radar signal types are used to verify the accuracy of the time-frequency representation (TFR): simple pulse, Costas coded, pulsed linear frequency modulation and continuous wave linear frequency modulation. Accurate TFRs are produced for most of the signal as low as at signal-to-noise ratio (SNR) of -1 dB. The performance of instantaneous frequency estimation is verified using Monte Carlo simulation. Both approaches are proven to be efficient estimators as they meet the requirements of the Cramer-Rao Lower Bound at SNR > 6 dB. The computational complexity of ADAFWVD is four times lower than the adaptive smooth window cross Wigner-Ville distribution. Thus, it has been demonstrated that the developed TFD is an efficient solution for the analysis of radar signals.
format Thesis
qualification_level Master's degree
author Muhammad Hamdi, Muhammad Noor
author_facet Muhammad Hamdi, Muhammad Noor
author_sort Muhammad Hamdi, Muhammad Noor
title Adaptive time-frequency distribution for accurate representation of radar signals
title_short Adaptive time-frequency distribution for accurate representation of radar signals
title_full Adaptive time-frequency distribution for accurate representation of radar signals
title_fullStr Adaptive time-frequency distribution for accurate representation of radar signals
title_full_unstemmed Adaptive time-frequency distribution for accurate representation of radar signals
title_sort adaptive time-frequency distribution for accurate representation of radar signals
granting_institution Universiti Teknologi Malaysia, Faculty of Electrical Engineering
granting_department Faculty of Electrical Engineering
publishDate 2017
url http://eprints.utm.my/id/eprint/78865/1/MuhammadNoorMuhammadMFKE2017.pdf
_version_ 1747818090356277248