Multiple linear regression and neural network for electric load forecasting
Starting from conventional models, researchers have begun to develop advanced techniques. One recent technique is the hybrid model, which improves upon the time series forecast. In this study, a hybrid model combining the multiple linear regression (MLR) model and neural network (NN) model has been...
Saved in:
主要作者: | Kamisan, Nur Arina Bazilah |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2017
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/79166/1/NurArinaBazilahPFS2017.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Combined empirical mode decomposition and dynamic regression model for forecasting electricity load demand
由: Akrom, Nuramirah
出版: (2015) -
Cluster-Based Estimators For
Multiple And Multivariate Linear
Regression Models
由: Alih, Ekele
出版: (2015) -
Identifying multiple outliers in linear regression using robust fit, clustering and inter-outer fences
由: Adnan, Robiah
出版: (2001) -
Parametric and artificial intelligence based methods for forecasting short term electricity load demand
由: Mohamed, Norizan
出版: (2011) -
Linear regression for data having multicollinearity, heteroscedasticity and outliers
由: Rasheed, Bello AbdulKadiri
出版: (2017)