Multiscale localized differential quadature in 2D partial differential equation for mechanics of shape memory alloys
In this research, the applicability of the Multiscale Localized Differential Quadrature (MLDQ) method in two-dimensional shape memory alloy (SMA) model was explored. The MLDQ method was governed in solving several partial differential equations. Besides, the finite difference (FD) method was used to...
محفوظ في:
المؤلف الرئيسي: | Cheong, Hui Ting |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/79264/1/CheongHuiTingPFS2017.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Multiscale localized differential quadrature in 2D partial differential equation for mechanics of shape memory alloys
بواسطة: Cheong, Hui Ting
منشور في: (2017) -
On the Solution of Certain Fractional Order Partial Differential and Integro-Differential Equations
بواسطة: Asma Ali Abolgasem Elbeleze -
Functionally Graded Niti Shape Memory Alloys By Ageing And Partial Annealing
بواسطة: Nashrudin, Muhammad Naqib
منشور في: (2018) -
Splines For Two-Dimensional Partial Differential Equations
بواسطة: Abd Hamid, Nur Nadiah
منشور في: (2016) -
Multi-Step Modified Differential Transform Methods For Hyperbolic Partial Differential Equations
بواسطة: Che Hussin, Che Haziqah
منشور في: (2020)