Microstrip patch beamforming linear antenna array with complementary split ring resonator for fifth generation applications

The next generation cellular standard which is called fifth generation (5G) requires high gain beamforming antenna array to provide high speed and secured communication. Therefore, the proposed research work investigates the design and development of a four-element linear microstrip patch array oper...

Full description

Saved in:
Bibliographic Details
Main Author: Selvaraju, Raghuraman
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://eprints.utm.my/id/eprint/81691/1/RaghuramanSelvarajuPSKE2019.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.81691
record_format uketd_dc
spelling my-utm-ep.816912019-09-12T00:19:33Z Microstrip patch beamforming linear antenna array with complementary split ring resonator for fifth generation applications 2019 Selvaraju, Raghuraman TK Electrical engineering. Electronics Nuclear engineering The next generation cellular standard which is called fifth generation (5G) requires high gain beamforming antenna array to provide high speed and secured communication. Therefore, the proposed research work investigates the design and development of a four-element linear microstrip patch array operating at 25 GHz for 5G beamforming application. To investigate the radiation characteristics of the proposed array, five beamforming radiation patterns (main beam at 0', +15' and +20') have been considered. The mutual coupling between array elements raise the challenge of designing the antenna array system. The coupling alters the array element input impedance and distorts the overall radiation performance. Hence, a simple complementary split ring resonator (CSRR) structure has been developed to alleviate the coupling problem. The modeled configuration is numerically analyzed, verified and implemented between the array elements. The existence of the CSRR configuration in antenna array, controls the unnecessary surface current flow between the array elements, thus the mutual coupling between array elements has been significantly reduced from -23 dB to -55 dB. The effect of coupling on the array radiation patterns has been studied in the presence and absence of CSRRs. Most importantly, the effectiveness of CSRR has been studied by steering the main beam as well as the nulls in different angles. By implementing the CSRR elements in array antenna, the distorted array patterns have been recovered and are presented. The proposed CSRR implemented in antenna array have the advantage of easy and low cost fabrication and it offers excellent coupling suppression without changing the antenna profile. Moreover, to the best of the authors knowledge, it was observed for the first time that the CSRR worked effciently in reducing the effect of mutual coupling when the beam was steered off from broadside direction from -20' to +20'. The simulation tools such as MATLAB and Ansys HFSS have been used for array weights calculation and antenna design respectively. Finally, the fabricated prototype has been experimentally verified, and it shows that the analytical and computed results agree well with the measured results. 2019 Thesis http://eprints.utm.my/id/eprint/81691/ http://eprints.utm.my/id/eprint/81691/1/RaghuramanSelvarajuPSKE2019.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:126496 phd doctoral Universiti Teknologi Malaysia Electrical Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TK Electrical engineering
Electronics Nuclear engineering
spellingShingle TK Electrical engineering
Electronics Nuclear engineering
Selvaraju, Raghuraman
Microstrip patch beamforming linear antenna array with complementary split ring resonator for fifth generation applications
description The next generation cellular standard which is called fifth generation (5G) requires high gain beamforming antenna array to provide high speed and secured communication. Therefore, the proposed research work investigates the design and development of a four-element linear microstrip patch array operating at 25 GHz for 5G beamforming application. To investigate the radiation characteristics of the proposed array, five beamforming radiation patterns (main beam at 0', +15' and +20') have been considered. The mutual coupling between array elements raise the challenge of designing the antenna array system. The coupling alters the array element input impedance and distorts the overall radiation performance. Hence, a simple complementary split ring resonator (CSRR) structure has been developed to alleviate the coupling problem. The modeled configuration is numerically analyzed, verified and implemented between the array elements. The existence of the CSRR configuration in antenna array, controls the unnecessary surface current flow between the array elements, thus the mutual coupling between array elements has been significantly reduced from -23 dB to -55 dB. The effect of coupling on the array radiation patterns has been studied in the presence and absence of CSRRs. Most importantly, the effectiveness of CSRR has been studied by steering the main beam as well as the nulls in different angles. By implementing the CSRR elements in array antenna, the distorted array patterns have been recovered and are presented. The proposed CSRR implemented in antenna array have the advantage of easy and low cost fabrication and it offers excellent coupling suppression without changing the antenna profile. Moreover, to the best of the authors knowledge, it was observed for the first time that the CSRR worked effciently in reducing the effect of mutual coupling when the beam was steered off from broadside direction from -20' to +20'. The simulation tools such as MATLAB and Ansys HFSS have been used for array weights calculation and antenna design respectively. Finally, the fabricated prototype has been experimentally verified, and it shows that the analytical and computed results agree well with the measured results.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Selvaraju, Raghuraman
author_facet Selvaraju, Raghuraman
author_sort Selvaraju, Raghuraman
title Microstrip patch beamforming linear antenna array with complementary split ring resonator for fifth generation applications
title_short Microstrip patch beamforming linear antenna array with complementary split ring resonator for fifth generation applications
title_full Microstrip patch beamforming linear antenna array with complementary split ring resonator for fifth generation applications
title_fullStr Microstrip patch beamforming linear antenna array with complementary split ring resonator for fifth generation applications
title_full_unstemmed Microstrip patch beamforming linear antenna array with complementary split ring resonator for fifth generation applications
title_sort microstrip patch beamforming linear antenna array with complementary split ring resonator for fifth generation applications
granting_institution Universiti Teknologi Malaysia
granting_department Electrical Engineering
publishDate 2019
url http://eprints.utm.my/id/eprint/81691/1/RaghuramanSelvarajuPSKE2019.pdf
_version_ 1747818390460825600