Linear regression for data having multicollinearity, heteroscedasticity and outliers
Evaluation of regression model is very much influenced by the choice of accurate estimation method since it can produce different conclusions from the empirical results. Thus, it is important to use appropriate estimation method in accordance with the type of statistical data. Although reliable for...
محفوظ في:
المؤلف الرئيسي: | Rasheed, Bello AbdulKadiri |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/84005/1/BelloAbdulKadiriPFS20217.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
New approaches in estimating linear regression model parameters in the presence of multicollinearity and outliers
بواسطة: Al-Mash, Mohammad Sabry Abo
منشور في: (2017) -
Outlier Detections and Robust Estimation Methods for Nonlinear Regression Model Having Autocorrelated and Heteroscedastic Errors
بواسطة: Riazoshams, Hossein
منشور في: (2010) -
Robust techniques for linear regression with multicollinearity and outliers
بواسطة: Mohammed, Mohammed Abdulhussein
منشور في: (2016) -
Hybrid Model In Machine Learning With Robust Regression For Handling Multicollinearity Outlier In Big Data And Its Application To Agriculture
بواسطة: ., Mukhtar
منشور في: (2023) -
Robust Diagnostics and Estimation in Heteroscedastic Regression Model in the Presence of Outliers
بواسطة: Rana, Md. Sohel
منشور في: (2010)