Semantic feature reduction and hybrid feature selection for clustering of Arabic Web pages
In the literature, high-dimensional data reduces the efficiency of clustering algorithms. Clustering the Arabic text is challenging because semantics of the text involves deep semantic processing. To overcome the problems, the feature selection and reduction methods have become essential to select a...
Saved in:
主要作者: | Alghamdi, Hanan Musafer H. |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/84043/1/HananMusaferPFC2016.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Feature selection method of web page language identification
由: Ng, Choon Ching
出版: (2010) -
Hybrid web page prediction model for predicting user's next access
由: Chimphlee, Siriporn
出版: (2011) -
Hybrid feature selection technique for classification of human activity recognition
由: Yusup, Norfadzlan
出版: (2021) -
Requirements analysis for SBS system and study review process iteration during requirements phase
由: Alghamdi, Hanan Musafer H.
出版: (2009) -
Global features extraction and clustering for writer identification of English script
由: Fadhil, Murad Saadi
出版: (2011)