Co – extruded triple layer hollow fiber solid oxide fuel cell using methane

Solid oxide fuel cell (SOFC) is one of the most promising fuel cells and it has been developed extensively in recent years. However, carbon deposition on the anode site is the main issue of this system when methane is used as the fuel. Therefore, the objective of the research is to develop a methane...

Full description

Saved in:
Bibliographic Details
Main Author: Mohamed, Mohd. Hilmi
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://eprints.utm.my/id/eprint/86023/1/MohdHilmiMohamedPSChE2019.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.86023
record_format uketd_dc
spelling my-utm-ep.860232020-08-30T08:49:35Z Co – extruded triple layer hollow fiber solid oxide fuel cell using methane 2019 Mohamed, Mohd. Hilmi TP Chemical technology Solid oxide fuel cell (SOFC) is one of the most promising fuel cells and it has been developed extensively in recent years. However, carbon deposition on the anode site is the main issue of this system when methane is used as the fuel. Therefore, the objective of the research is to develop a methane-fueled micro tubular solid oxide fuel cell (MT-SOFC) with excellent carbon resistant property. In the first phase of this work, triple layer hollow fiber, which consisted of anode which used nickel oxide (NiO) and yttria stabilized zirconia (YSZ), anode functional layer (AFL) also made of NiO and YSZ, and electrolyte from YSZ, was fabricated via phase inversion-based coextrusion/ co-sintering technique with varied fabrication parameters (i.e. ratio NiO/YSZ in the AFL and sintering temperature) and such triple layer design that has been previously reported is able to possess several advantages such as high power output and high thermal expansion coefficient. Further, the cell was tested using methane gas as fuel. The hollow fiber with the ratio of 2:8 of NiO to YSZ of AFL suspension shows crack-free properties. After sintering between 1400 oC and 1500 °C, the hollow fiber recorded an increase from 110.1 to 130 MPa on three-point bending tests and 1.26×10-5 to 4.6×10-6 mol m-2 s-2 Pa-1 for gas tightness tests. The maximum power densities obtained at 800 °C were 0.8 W/cm2. In the second stage of the study, the prolonged operation of the SOFC was done using methane fuel to observe the carbon deposition phenomenon. The fuel cell showed significant reduction of power density from 0.8 W/cm2 at 800 °C to 0.2 W/cm2 after 90 min. In the third stage of the work, ceria gadolinium oxide (CGO) was incorporated in the anode suspension to increase the resistance towards carbon poisoning. With the addition of 3wt.% of CGO at the anode layer, the performance degradation was reduced to only 50% from the initial power density after 90 min, in comparison to the cell without CGO (the reduction of 75% after 90 min), although the initial power density of the modified one was slight lower (0.4 W/cm2) than the unmodified cell (0.8 W/cm2). It was shown that the CGO able to reduce the degradation of the cell under methane as fuel. 2019 Thesis http://eprints.utm.my/id/eprint/86023/ http://eprints.utm.my/id/eprint/86023/1/MohdHilmiMohamedPSChE2019.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:131651 phd doctoral Universiti Teknologi Malaysia, Faculty of Engineering - School of Chemical & Energy Engineering Faculty of Engineering - School of Chemical & Energy Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Mohamed, Mohd. Hilmi
Co – extruded triple layer hollow fiber solid oxide fuel cell using methane
description Solid oxide fuel cell (SOFC) is one of the most promising fuel cells and it has been developed extensively in recent years. However, carbon deposition on the anode site is the main issue of this system when methane is used as the fuel. Therefore, the objective of the research is to develop a methane-fueled micro tubular solid oxide fuel cell (MT-SOFC) with excellent carbon resistant property. In the first phase of this work, triple layer hollow fiber, which consisted of anode which used nickel oxide (NiO) and yttria stabilized zirconia (YSZ), anode functional layer (AFL) also made of NiO and YSZ, and electrolyte from YSZ, was fabricated via phase inversion-based coextrusion/ co-sintering technique with varied fabrication parameters (i.e. ratio NiO/YSZ in the AFL and sintering temperature) and such triple layer design that has been previously reported is able to possess several advantages such as high power output and high thermal expansion coefficient. Further, the cell was tested using methane gas as fuel. The hollow fiber with the ratio of 2:8 of NiO to YSZ of AFL suspension shows crack-free properties. After sintering between 1400 oC and 1500 °C, the hollow fiber recorded an increase from 110.1 to 130 MPa on three-point bending tests and 1.26×10-5 to 4.6×10-6 mol m-2 s-2 Pa-1 for gas tightness tests. The maximum power densities obtained at 800 °C were 0.8 W/cm2. In the second stage of the study, the prolonged operation of the SOFC was done using methane fuel to observe the carbon deposition phenomenon. The fuel cell showed significant reduction of power density from 0.8 W/cm2 at 800 °C to 0.2 W/cm2 after 90 min. In the third stage of the work, ceria gadolinium oxide (CGO) was incorporated in the anode suspension to increase the resistance towards carbon poisoning. With the addition of 3wt.% of CGO at the anode layer, the performance degradation was reduced to only 50% from the initial power density after 90 min, in comparison to the cell without CGO (the reduction of 75% after 90 min), although the initial power density of the modified one was slight lower (0.4 W/cm2) than the unmodified cell (0.8 W/cm2). It was shown that the CGO able to reduce the degradation of the cell under methane as fuel.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Mohamed, Mohd. Hilmi
author_facet Mohamed, Mohd. Hilmi
author_sort Mohamed, Mohd. Hilmi
title Co – extruded triple layer hollow fiber solid oxide fuel cell using methane
title_short Co – extruded triple layer hollow fiber solid oxide fuel cell using methane
title_full Co – extruded triple layer hollow fiber solid oxide fuel cell using methane
title_fullStr Co – extruded triple layer hollow fiber solid oxide fuel cell using methane
title_full_unstemmed Co – extruded triple layer hollow fiber solid oxide fuel cell using methane
title_sort co – extruded triple layer hollow fiber solid oxide fuel cell using methane
granting_institution Universiti Teknologi Malaysia, Faculty of Engineering - School of Chemical & Energy Engineering
granting_department Faculty of Engineering - School of Chemical & Energy Engineering
publishDate 2019
url http://eprints.utm.my/id/eprint/86023/1/MohdHilmiMohamedPSChE2019.pdf
_version_ 1747818481986830336