Metamorphic malware detection using machine learning
Commercially available antivirus software relies on a traditional malware detection technique known as signature-based malware detection which fails to counter unknown signatures of malicious software. Obfuscated malware such as polymorphic or metamorphic are capable of generating a unique signature...
Saved in:
主要作者: | Ahmed Ali, Mohammed Hasan Ali |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/93122/1/MohammedHasanAliMSKE2020.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Hardware implementation of naive bayes classifier for malware detection
由: Al Hussein, Yahya Khaled
出版: (2021) -
N-gram feature extraction and Naïve Bayes classifier for malware detection using FPGA implementation
由: Lee, Ming Yi
出版: (2022) -
Obfuscated computer malware classification based on significant opcode
由: Yu, Chii Heng
出版: (2022) -
Fake news detection on social media platforms using machine learning algorithms
由: Kee, Wee Boon
出版: (2022) -
Automated visual detection of external welding defect using embedded machine learning
由: Abdul Mutalib, Nurfariza Akmar
出版: (2022)