The impact of VMAX activation function in particle swarm optimization neural network
Back propagation (BP) Network is the most common technique in Artificial Neural Network (ANN) learning. However, major disadvantages of BP are its convergence rate is relatively slow and always being trapped at the local minima. Therefore, latest optimization technique, Particle Swarm Optimization (...
Saved in:
主要作者: | Lee, Yiew Siang |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2008
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/9456/1/LeeYiewSiangFSKSM2008.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Particle swarm optimization for neural network learning enhancement
由: Abdull Hamed, Haza Nuzly
出版: (2006) -
Learning enhancement of radial basis function network with particle swarm optimization
由: Sultan Noman, Qasem Mohammed
出版: (2008) -
Parameter optimization of evolving spiking neural network with dynamic population particle swarm optimization
由: Md. Said, Nur Nadiah
出版: (2018) -
Study of particle swarm optimization fitness functions for multilayer perceptron network in classification problems
由: Jong, Chin Hua
出版: (2009) -
Hybrid particle swarm optimization-artificial neural network gender classifier for trabecular bone morphology
由: Sahadun, Nur Afiqah
出版: (2014)