Optimal tuning of controller parameters for a magnetic levitation system using radial basis based neural network metamodeling approach
The Magnetic Levitation System (MLS) is a challenging nonlinear mechatronic system in which an electromagnetic force required to suspend an object (metal sphere) in the air. The electromagnetic force is very sensitive to the noise, which can create acceleration forces on the metal sphere, causing th...
Saved in:
主要作者: | |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2021
|
主题: | |
在线阅读: | http://eprints.utm.my/id/eprint/97301/1/AbdualrhmanDawMohammadAbdalhadiMSEE2021.pdf.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
id |
my-utm-ep.97301 |
---|---|
record_format |
uketd_dc |
spelling |
my-utm-ep.973012022-09-26T03:58:36Z Optimal tuning of controller parameters for a magnetic levitation system using radial basis based neural network metamodeling approach 2021 Mohammad Abdalhadi, Abdualrhman Daw TK7885-7895 Computer engineer. Computer hardware The Magnetic Levitation System (MLS) is a challenging nonlinear mechatronic system in which an electromagnetic force required to suspend an object (metal sphere) in the air. The electromagnetic force is very sensitive to the noise, which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s benefits the industry, and the system has reduced power consumption, has increased power efficiency, and reduced maintenance cost. The typical applications for Maglev’s Power Generation, for example, wind turbine, Maglev’s trains, and Medical Device (magnetically suspended Artificial Heart Pump). This project presents a comparative assessment of controllers for the magnetic levitation system and the way of optimally tune of the PID parameter. The magnetic levitation system divided into two types, attractive and repulsive, in this project attractive type has been chosen. The analysis will be performed after finding the state space model of magnetic levitation system, and simulation will be performed using MATLAB Simulink. The optimal tuning based PID controller will offer a transient response with better overshoot and rise time than the standard optimization methods. For the trained networks, metamodel radial basis function networks perform more robustly and tolerantly than the gradient descent method even when dealing with noised input data set. The simulation output using the radial basis based metamodel approach showed an overshoot of 9.34% and rise time 9.84ms, which is better than the gradient descent and conventional PID methods. 2021 Thesis http://eprints.utm.my/id/eprint/97301/ http://eprints.utm.my/id/eprint/97301/1/AbdualrhmanDawMohammadAbdalhadiMSEE2021.pdf.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:144545 masters Universiti Teknologi Malaysia Faculty of Engineering - School of Electrical Engineering |
institution |
Universiti Teknologi Malaysia |
collection |
UTM Institutional Repository |
language |
English |
topic |
TK7885-7895 Computer engineer Computer hardware |
spellingShingle |
TK7885-7895 Computer engineer Computer hardware Mohammad Abdalhadi, Abdualrhman Daw Optimal tuning of controller parameters for a magnetic levitation system using radial basis based neural network metamodeling approach |
description |
The Magnetic Levitation System (MLS) is a challenging nonlinear mechatronic system in which an electromagnetic force required to suspend an object (metal sphere) in the air. The electromagnetic force is very sensitive to the noise, which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s benefits the industry, and the system has reduced power consumption, has increased power efficiency, and reduced maintenance cost. The typical applications for Maglev’s Power Generation, for example, wind turbine, Maglev’s trains, and Medical Device (magnetically suspended Artificial Heart Pump). This project presents a comparative assessment of controllers for the magnetic levitation system and the way of optimally tune of the PID parameter. The magnetic levitation system divided into two types, attractive and repulsive, in this project attractive type has been chosen. The analysis will be performed after finding the state space model of magnetic levitation system, and simulation will be performed using MATLAB Simulink. The optimal tuning based PID controller will offer a transient response with better overshoot and rise time than the standard optimization methods. For the trained networks, metamodel radial basis function networks perform more robustly and tolerantly than the gradient descent method even when dealing with noised input data set. The simulation output using the radial basis based metamodel approach showed an overshoot of 9.34% and rise time 9.84ms, which is better than the gradient descent and conventional PID methods. |
format |
Thesis |
qualification_level |
Master's degree |
author |
Mohammad Abdalhadi, Abdualrhman Daw |
author_facet |
Mohammad Abdalhadi, Abdualrhman Daw |
author_sort |
Mohammad Abdalhadi, Abdualrhman Daw |
title |
Optimal tuning of controller parameters for a magnetic levitation system using radial basis based neural network metamodeling approach |
title_short |
Optimal tuning of controller parameters for a magnetic levitation system using radial basis based neural network metamodeling approach |
title_full |
Optimal tuning of controller parameters for a magnetic levitation system using radial basis based neural network metamodeling approach |
title_fullStr |
Optimal tuning of controller parameters for a magnetic levitation system using radial basis based neural network metamodeling approach |
title_full_unstemmed |
Optimal tuning of controller parameters for a magnetic levitation system using radial basis based neural network metamodeling approach |
title_sort |
optimal tuning of controller parameters for a magnetic levitation system using radial basis based neural network metamodeling approach |
granting_institution |
Universiti Teknologi Malaysia |
granting_department |
Faculty of Engineering - School of Electrical Engineering |
publishDate |
2021 |
url |
http://eprints.utm.my/id/eprint/97301/1/AbdualrhmanDawMohammadAbdalhadiMSEE2021.pdf.pdf |
_version_ |
1747818696254947328 |