An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model

Crypto-ransomware is a malware that leverages cryptography to encrypt files for extortion purposes. Even after neutralizing such attacks, the targeted files remain encrypted. This irreversible effect on the target is what distinguishes crypto-ransomware attacks from traditional malware. Thus, it is...

Full description

Saved in:
Bibliographic Details
Main Author: Al-Rimy, Bander Ali Saleh
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://eprints.utm.my/id/eprint/98097/1/BanderAliSalehPSC2019.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.98097
record_format uketd_dc
spelling my-utm-ep.980972022-11-14T09:56:43Z An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model 2019 Al-Rimy, Bander Ali Saleh QA75 Electronic computers. Computer science Crypto-ransomware is a malware that leverages cryptography to encrypt files for extortion purposes. Even after neutralizing such attacks, the targeted files remain encrypted. This irreversible effect on the target is what distinguishes crypto-ransomware attacks from traditional malware. Thus, it is imperative to detect such attacks during pre-encryption phase. However, existing crypto-ransomware early detection solutions are not effective due to inaccurate definition of the pre-encryption phase boundaries, insufficient data at that phase and the misuse-based approach that the solutions employ, which is not suitable to detect new (zero-day) attacks. Consequently, those solutions suffer from low detection accuracy and high false alarms. Therefore, this research addressed these issues and developed an Ensemble-Based Anomaly-Behavioural Pre-encryption Detection Model (EABDM) to overcome data insufficiency and improve detection accuracy of known and novel crypto-ransomware attacks. In this research, three phases were used in the development of EABDM. In the first phase, a Dynamic Pre-encryption Boundary Definition and Features Extraction (DPBD-FE) scheme was developed by incorporating Rocchio feedback and vector space model to build a pre-encryption boundary vector. Then, an improved term frequency-inverse document frequency technique was utilized to extract the features from runtime data generated during the pre-encryption phase of crypto-ransomware attacks’ lifecycle. In the second phase, a Maximum of Minimum-Based Enhanced Mutual Information Feature Selection (MM-EMIFS) technique was used to select the informative features set, and prevent overfitting caused by high dimensional data. The MM-EMIFS utilized the developed Redundancy Coefficient Gradual Upweighting (RCGU) technique to overcome data insufficiency during pre-encryption phase and improve feature’s significance estimation. In the final phase, an improved technique called incremental bagging (iBagging) built incremental data subsets for anomaly and behavioural-based detection ensembles. The enhanced semi-random subspace selection (ESRS) technique was then utilized to build noise-free and diverse subspaces for each of these incremental data subsets. Based on the subspaces, the base classifiers were trained for each ensemble. Both ensembles employed the majority voting to combine the decisions of the base classifiers. After that, the decision of the anomaly ensemble was combined into behavioural ensemble, which gave the final decision. The experimental evaluation showed that, DPBD-FE scheme reduced the ratio of crypto-ransomware samples whose pre-encryption boundaries were missed from 18% to 8% as compared to existing works. Additionally, the features selected by MM-EMIFS technique improved the detection accuracy from 89% to 96% as compared to existing techniques. Likewise, on average, the EABDM model increased detection accuracy from 85% to 97.88% and reduced the false positive alarms from 12% to 1% in comparison to existing early detection models. These results demonstrated the ability of the EABDM to improve the detection accuracy of crypto-ransomware attacks early and before the encryption takes place to protect files from being held to ransom. 2019 Thesis http://eprints.utm.my/id/eprint/98097/ http://eprints.utm.my/id/eprint/98097/1/BanderAliSalehPSC2019.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:143725 phd doctoral Universiti Teknologi Malaysia, Faculty of Engineering - School of Computing Faculty of Engineering - School of Computing
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic QA75 Electronic computers
Computer science
spellingShingle QA75 Electronic computers
Computer science
Al-Rimy, Bander Ali Saleh
An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model
description Crypto-ransomware is a malware that leverages cryptography to encrypt files for extortion purposes. Even after neutralizing such attacks, the targeted files remain encrypted. This irreversible effect on the target is what distinguishes crypto-ransomware attacks from traditional malware. Thus, it is imperative to detect such attacks during pre-encryption phase. However, existing crypto-ransomware early detection solutions are not effective due to inaccurate definition of the pre-encryption phase boundaries, insufficient data at that phase and the misuse-based approach that the solutions employ, which is not suitable to detect new (zero-day) attacks. Consequently, those solutions suffer from low detection accuracy and high false alarms. Therefore, this research addressed these issues and developed an Ensemble-Based Anomaly-Behavioural Pre-encryption Detection Model (EABDM) to overcome data insufficiency and improve detection accuracy of known and novel crypto-ransomware attacks. In this research, three phases were used in the development of EABDM. In the first phase, a Dynamic Pre-encryption Boundary Definition and Features Extraction (DPBD-FE) scheme was developed by incorporating Rocchio feedback and vector space model to build a pre-encryption boundary vector. Then, an improved term frequency-inverse document frequency technique was utilized to extract the features from runtime data generated during the pre-encryption phase of crypto-ransomware attacks’ lifecycle. In the second phase, a Maximum of Minimum-Based Enhanced Mutual Information Feature Selection (MM-EMIFS) technique was used to select the informative features set, and prevent overfitting caused by high dimensional data. The MM-EMIFS utilized the developed Redundancy Coefficient Gradual Upweighting (RCGU) technique to overcome data insufficiency during pre-encryption phase and improve feature’s significance estimation. In the final phase, an improved technique called incremental bagging (iBagging) built incremental data subsets for anomaly and behavioural-based detection ensembles. The enhanced semi-random subspace selection (ESRS) technique was then utilized to build noise-free and diverse subspaces for each of these incremental data subsets. Based on the subspaces, the base classifiers were trained for each ensemble. Both ensembles employed the majority voting to combine the decisions of the base classifiers. After that, the decision of the anomaly ensemble was combined into behavioural ensemble, which gave the final decision. The experimental evaluation showed that, DPBD-FE scheme reduced the ratio of crypto-ransomware samples whose pre-encryption boundaries were missed from 18% to 8% as compared to existing works. Additionally, the features selected by MM-EMIFS technique improved the detection accuracy from 89% to 96% as compared to existing techniques. Likewise, on average, the EABDM model increased detection accuracy from 85% to 97.88% and reduced the false positive alarms from 12% to 1% in comparison to existing early detection models. These results demonstrated the ability of the EABDM to improve the detection accuracy of crypto-ransomware attacks early and before the encryption takes place to protect files from being held to ransom.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Al-Rimy, Bander Ali Saleh
author_facet Al-Rimy, Bander Ali Saleh
author_sort Al-Rimy, Bander Ali Saleh
title An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model
title_short An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model
title_full An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model
title_fullStr An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model
title_full_unstemmed An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model
title_sort ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model
granting_institution Universiti Teknologi Malaysia, Faculty of Engineering - School of Computing
granting_department Faculty of Engineering - School of Computing
publishDate 2019
url http://eprints.utm.my/id/eprint/98097/1/BanderAliSalehPSC2019.pdf
_version_ 1776100548977623040