Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor

The rapid growth of image editing applications has an impact on image forgery cases. Image forgery is a big challenge in authentic image identification. Images can be readily altered using post-processing effects, such as blurring shallow depth, JPEG compression, homogenous regions, and noise to for...

Full description

Saved in:
Bibliographic Details
Main Author: Abrahim, Araz Rajab
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://eprints.utm.my/id/eprint/98103/1/ArazRajabAbrahimPSC2019.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.98103
record_format uketd_dc
spelling my-utm-ep.981032022-11-14T10:02:50Z Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor 2019 Abrahim, Araz Rajab QA75 Electronic computers. Computer science The rapid growth of image editing applications has an impact on image forgery cases. Image forgery is a big challenge in authentic image identification. Images can be readily altered using post-processing effects, such as blurring shallow depth, JPEG compression, homogenous regions, and noise to forge the image. Besides, the process can be applied in the spliced image to produce a composite image. Thus, there is a need to develop a scheme of image forgery detection for image splicing. In this research, suitable features of the descriptors for the detection of spliced forgery are defined. These features will reduce the impact of blurring shallow depth, homogenous area, and noise attacks to improve the accuracy. Therefore, a technique to detect forgery at the image level of the image splicing was designed and developed. At this level, the technique involves four important steps. Firstly, convert colour image to three colour channels followed by partition of image into overlapping block and each block is partitioned into non-overlapping cells. Next, Adaptive Thresholding Mean Ternary Pattern Descriptor (ATMTP) is applied on each cell to produce six ATMTP codes and finally, the tested image is classified. In the next part of the scheme, detected forgery object in the spliced image involves five major steps. Initially, similarity among every neighbouring district is computed and the two most comparable areas are assembled together to the point that the entire picture turns into a single area. Secondly, merge similar regions according to specific state, which satisfies the condition of fewer than four pixels between similar regions that lead to obtaining the desired regions to represent objects that exist in the spliced image. Thirdly, select random blocks from the edge of the binary image based on the binary mask. Fourthly, for each block, the Gabor Filter feature is extracted to assess the edges extracted of the segmented image. Finally, the Support Vector Machine (SVM) is used to classify the images. Evaluation of the scheme was experimented using three sets of standard datasets, namely, the Institute of Automation, Chinese Academy of Sciences (CASIA) version TIDE 1.0 and 2.0, and Columbia University. The results showed that, the ATMTP achieved higher accuracy of 98.95%, 99.03% and 99.17% respectively for each set of datasets. Therefore, the findings of this research has proven the significant contribution of the scheme in improving image forgery detection. It is recommended that the scheme be further improved in the future by considering geometrical perspective. 2019 Thesis http://eprints.utm.my/id/eprint/98103/ http://eprints.utm.my/id/eprint/98103/1/ArazRajabAbrahimPSC2019.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:143762 phd doctoral Universiti Teknologi Malaysia, Faculty of Engineering - School of Computing Faculty of Engineering - School of Computing
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic QA75 Electronic computers
Computer science
spellingShingle QA75 Electronic computers
Computer science
Abrahim, Araz Rajab
Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor
description The rapid growth of image editing applications has an impact on image forgery cases. Image forgery is a big challenge in authentic image identification. Images can be readily altered using post-processing effects, such as blurring shallow depth, JPEG compression, homogenous regions, and noise to forge the image. Besides, the process can be applied in the spliced image to produce a composite image. Thus, there is a need to develop a scheme of image forgery detection for image splicing. In this research, suitable features of the descriptors for the detection of spliced forgery are defined. These features will reduce the impact of blurring shallow depth, homogenous area, and noise attacks to improve the accuracy. Therefore, a technique to detect forgery at the image level of the image splicing was designed and developed. At this level, the technique involves four important steps. Firstly, convert colour image to three colour channels followed by partition of image into overlapping block and each block is partitioned into non-overlapping cells. Next, Adaptive Thresholding Mean Ternary Pattern Descriptor (ATMTP) is applied on each cell to produce six ATMTP codes and finally, the tested image is classified. In the next part of the scheme, detected forgery object in the spliced image involves five major steps. Initially, similarity among every neighbouring district is computed and the two most comparable areas are assembled together to the point that the entire picture turns into a single area. Secondly, merge similar regions according to specific state, which satisfies the condition of fewer than four pixels between similar regions that lead to obtaining the desired regions to represent objects that exist in the spliced image. Thirdly, select random blocks from the edge of the binary image based on the binary mask. Fourthly, for each block, the Gabor Filter feature is extracted to assess the edges extracted of the segmented image. Finally, the Support Vector Machine (SVM) is used to classify the images. Evaluation of the scheme was experimented using three sets of standard datasets, namely, the Institute of Automation, Chinese Academy of Sciences (CASIA) version TIDE 1.0 and 2.0, and Columbia University. The results showed that, the ATMTP achieved higher accuracy of 98.95%, 99.03% and 99.17% respectively for each set of datasets. Therefore, the findings of this research has proven the significant contribution of the scheme in improving image forgery detection. It is recommended that the scheme be further improved in the future by considering geometrical perspective.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Abrahim, Araz Rajab
author_facet Abrahim, Araz Rajab
author_sort Abrahim, Araz Rajab
title Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor
title_short Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor
title_full Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor
title_fullStr Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor
title_full_unstemmed Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor
title_sort image splicing detection scheme using adaptive threshold mean ternary pattern descriptor
granting_institution Universiti Teknologi Malaysia, Faculty of Engineering - School of Computing
granting_department Faculty of Engineering - School of Computing
publishDate 2019
url http://eprints.utm.my/id/eprint/98103/1/ArazRajabAbrahimPSC2019.pdf
_version_ 1776100550178242560