Stochastic computing system hardware design for convolutional neural networks optimized for accuracy area and energy efficiency
Stochastic computing (SC) is an alternative computing paradigm that can lead to designs that offer lower area and power consumption compared to that of the conventional binary-encoded (BE) deterministic computing. In SC, numbers are encoded as a bit-stream of ‘0’s and ‘1’s, where SC computation eleme...
Saved in:
主要作者: | Hamdan, Hamdan Usamah |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/98197/1/HamdanUsamahHamdanPSKE2020.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Field programmable gate array based convolution neural network hardware accelerator with optimized memory controller
由: Mohammed, Mohammed Isam Eldin Hassan
出版: (2020) -
Spectral domain convolutional neural network optimized for computational workload and memory access cost
由: Rizvi, Shahriyar Masud
出版: (2023) -
An efficient and effective convolutional neural network for visual pattern recognition
由: Liew, Shan Sung
出版: (2016) -
Convolution and max pooling layer accelerator for convolutional neural network
由: Goh, Jinn Chyn
出版: (2020) -
Multiple phase flow identification using computational simulation and convolutional neural network
由: Helmy, Mohamed Tawfik Ibrahim
出版: (2020)