N-gram feature extraction and Naïve Bayes classifier for malware detection using FPGA implementation
Nowadays malicious software, or commonly known as malwares, play a very critical role in almost every network intrusion attack that attempts to harm the connected devices. Thus, installing malware detection systems to protect the network environment has become even more imperative. Naïve Bayes class...
Saved in:
主要作者: | Lee, Ming Yi |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/99512/1/LeeMingYiMSKE2022.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Hardware implementation of naive bayes classifier for malware detection
由: Al Hussein, Yahya Khaled
出版: (2021) -
FPGA implementation of naive bayes classifier for network security
由: Mohamad Zuki, Ahmad Zulzhafri
出版: (2018) -
A mobile malware detection framework based on ensemble classifier of multiple N-Gram opcode probability output
由: Anuar, Noor Azleen
出版: (2023) -
Classification of imbalanced datasets using naive bayes
由: Mohd. Sobran, Nur Maisarah
出版: (2011) -
Activity recognition using smart phone acceleroeter with naive Bayes classifier for emergency cases /
由: Siti Aisyah binti Ismail
出版: (2016)