Cracked concrete surface image classification on low-dimensional image using artificial intelligence algorithms
The project aims to create a Convolutional neural network (CNN) to detect and classify building cracks. Cracks are a key factor in determining how well-built a concrete structure is since they affect its sturdiness, utility, and safety. Due to its superior image processing capabilities, CNN is rapid...
محفوظ في:
المؤلف الرئيسي: | Rashid, Rashid Taha Siham |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/99565/1/RashidTahaSihamMSKE2022.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
An Intelligent Classification System For Aggregate Based On Image Processing And Neural Network
بواسطة: Al-Batah, Mohammad Subhi Mohammad
منشور في: (2009) -
Die defect classification using image processing
بواسطة: Maniam, Darmadevaindra
منشور في: (2015) -
Industrial imaging classification and its FPGA implementation
بواسطة: Ismail, Hafizul Azizi
منشور في: (2009) -
Morphological image segmentation for detection and classification of PCB defects
بواسطة: Indera Putera, Siti Hazurah
منشور في: (2007) -
Detection of surface crack in building structures using 1d local binary pattern (LBP) algorithm and K-NN classifier
بواسطة: Siow, Shien Loong
منشور في: (2021)