Alzheimer’s disease classification using attention mechanism and global average pooling on a convolutional neural network
The robustness of Convolutional Neural Network (CNN) architecture as the innovative technology has led to the surge of research adoption for Alzheimer’s disease (AD) classification. CNN is replacing the conventional machine learning methods to assist and support experts in diagnosing AD. However, th...
Saved in:
主要作者: | Abd. Hamid, Nur Amirah |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/99688/1/NurAmirahAbdHamidMMJIIT2022.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Convolution and max pooling layer accelerator for convolutional neural network
由: Goh, Jinn Chyn
出版: (2020) -
Enhanced convolutional neural networks with fractional max-pooling /
由: Gambari, Zulqornain Abdulsalam
出版: (2016) -
Development of Hybrid Convolutional Neural Network and Auto-Regressive Integrated Moving Average for Skin Cancer Classification
由: KA CHIN, CHEE
出版: (2022) -
Neural network-based echocardiogram video classification by incorporating dynamic information and attention mechanism
由: Ye, Zi
出版: (2022) -
An optimized convolutional neural network for arrhythmia classification
由: Shan, Wei Chen
出版: (2022)