A Hybrid of Ant Colony Optimization Algorithm and Simulated Annealing for Classification Rules
Ant colony optimization (ACO) is a metaheuristic approach inspired from the behaviour of natural ants and can be used to solve a variety of combinatorial optimization problems. Classification rule induction is one of the problems solved by the Ant-miner algorithm, a variant of ACO, which was initiat...
Saved in:
主要作者: | Rizauddin, Saian |
---|---|
格式: | Thesis |
語言: | eng eng |
出版: |
2013
|
主題: | |
在線閱讀: | https://etd.uum.edu.my/3289/1/RIZAUDDIN_SAIAN.pdf https://etd.uum.edu.my/3289/2/RIZAUDDIN_SAIAN_13.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
An adaptive ant colony optimization algorithm for rule-based classification
由: Al-Behadili, Hayder Naser Khraibet
出版: (2020) -
Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing
由: Alobaedy, Mustafa Muwafak Theab
出版: (2015) -
Hybrid of ant colony optimization and flux variability analysis for improving metabolites production
由: Azhar, Amira Husna
出版: (2017) -
Hybrid of ant colony optimization and flux variability analysis for improving metabolities production
由: Azhar, Amira Husna
出版: (2017) -
Reactive approach for automating exploration and exploitation in ant colony optimization
由: Allwawi, Rafid Sagban Abbood
出版: (2016)