An improved multiple classifier combination scheme for pattern classification
Combining multiple classifiers are considered as a new direction in the pattern recognition to improve classification performance. The main problem of multiple classifier combination is that there is no standard guideline for constructing an accurate and diverse classifier ensemble. This is due to t...
Saved in:
主要作者: | Abdullah, |
---|---|
格式: | Thesis |
語言: | eng eng |
出版: |
2015
|
主題: | |
在線閱讀: | https://etd.uum.edu.my/5323/1/s92049.pdf https://etd.uum.edu.my/5323/2/s92049_abstract.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Improved pattern extraction scheme for clustering multidimensional data
由: Musdholifah, Aina
出版: (2013) -
Classification of electroencephalography signal using statistical features and regression classifier
由: Sabri, Nurbaity
出版: (2014) -
EEG-based emotion classification using wavelet based features and support vector machine classifier
由: M. Razali, Normasliza
出版: (2015) -
Source identification of captured video using photo response non-uniformity noise pattern and svm classifiers
由: Esmaeilani, Roya
出版: (2014) -
Improved scheme of e-mail spam classification using meta-heuristics feature selection and support vector machine
由: Elssied Hamed, Nadir Omer Fadl
出版: (2015)