Enhanced evolutionary algorithm with cuckoo search for nurse scheduling and rescheduling problem

Nurse shortage, uncertain absenteeism and stress are the constituents of an unhealthy working environment in a hospital. These matters have impact on nurses' social lives and medication errors that threaten patients' safety, which lead to nurse turnover and low quality service. To address...

全面介紹

Saved in:
書目詳細資料
主要作者: Lim, Huai Tein
格式: Thesis
語言:eng
eng
出版: 2015
主題:
在線閱讀:https://etd.uum.edu.my/5794/1/depositpermission_s91515.pdf
https://etd.uum.edu.my/5794/2/s91515_01.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Nurse shortage, uncertain absenteeism and stress are the constituents of an unhealthy working environment in a hospital. These matters have impact on nurses' social lives and medication errors that threaten patients' safety, which lead to nurse turnover and low quality service. To address some of the issues, utilizing the existing nurses through an effective work schedule is the best alternative. However, there exists a problem of creating undesirable and non-stable nurse schedules for nurses' shift work. Thus, this research attempts to overcome these challenges by integrating components of a nurse scheduling and rescheduling problem which have normally been addressed separately in previous studies. However, when impromptu schedule changes are required and certain numbers of constraints need to be satisfied, there is a lack of flexibility element in most of scheduling and rescheduling approaches. By embedding the element, this gives a potential platform for enhancing the Evolutionary Algorithm (EA) which has been identified as the solution approach. Therefore, to minimize the constraint violations and make little but attentive changes to a postulated schedule during a disruption, an integrated model of EA with Cuckoo Search (CS) is proposed. A concept of restriction enzyme is adapted in the CS. A total of 11 EA model variants were constructed with three new parent selections, two new crossovers, and a crossover-based retrieval operator, that specifically are theoretical contributions. The proposed EA with Discovery Rate Tournament and Cuckoo Search Restriction Enzyme Point Crossover (DᵣT_CSREP) model emerges as the most effective in producing 100% feasible schedules with the minimum penalty value. Moreover, all tested disruptions were solved successfully through preretrieval and Cuckoo Search Restriction Enzyme Point Retrieval (CSREPᵣ) operators. Consequently, the EA model is able to fulfill nurses' preferences, offer fair on-call delegation, better quality of shift changes for retrieval, and comprehension on the two-way dependency between scheduling and rescheduling by examining the seriousness of disruptions.