Binary variable extraction using nonlinear principal component analysis in classical location model
Location model is a predictive classification model that determines the groups of objects which contain mixed categorical and continuous variables. The simplest location model is known as classical location model, which can be constructed easily using maximum likelihood estimation. This model perfor...
Saved in:
主要作者: | Long, Mei Mei |
---|---|
格式: | Thesis |
語言: | eng eng |
出版: |
2016
|
主題: | |
在線閱讀: | https://etd.uum.edu.my/6007/1/s817093_01.pdf https://etd.uum.edu.my/6007/2/s817093_02.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Principal component and multiple correspondence analysis for handling mixed variables in the smoothed location model
由: Ngu, Penny Ai Huong
出版: (2016) -
One step hybrid block methods with generalised off-step points for solving directly higher order ordinary differential equations
由: Abdelrahim, Ra'ft Abdelmajid Moh'd
出版: (2016) -
Robust multiple pairwise comparison procedure for adaptive trimmed mean via P-Method
由: Low, Joon Khim
出版: (2016) -
Multinomial logistic regression probability ratio-based feature vectors for Malay vowel recognition
由: Atanda, Abdulwahab Funsho
出版: (2021) -
Robust control charts via winsorized and trimmed estimators
由: Ayu, Abdul Rahman
出版: (2020)