Quantum system behaviour of Jaynes-Cummings model with Kerr-like medium

Jaynes-Cummings model is widely used to represent a quantum system as it is able to explain quantum behaviour in a more accurate and simple way. To date, the study of Jaynes-Cummings model does not involve multi-photon transitions and also three-qubit quantum entanglement, both coupled with Kerr-lik...

Full description

Saved in:
Bibliographic Details
Main Author: Chan, Yeen Chia
Format: Thesis
Language:eng
eng
Published: 2016
Subjects:
Online Access:https://etd.uum.edu.my/6016/1/s812425_02.pdf
https://etd.uum.edu.my/6016/2/s812425_02.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uum-etd.6016
record_format uketd_dc
institution Universiti Utara Malaysia
collection UUM ETD
language eng
eng
advisor Ibrahim, Haslinda

topic QA Mathematics
spellingShingle QA Mathematics
Chan, Yeen Chia
Quantum system behaviour of Jaynes-Cummings model with Kerr-like medium
description Jaynes-Cummings model is widely used to represent a quantum system as it is able to explain quantum behaviour in a more accurate and simple way. To date, the study of Jaynes-Cummings model does not involve multi-photon transitions and also three-qubit quantum entanglement, both coupled with Kerr-like medium. Thus the main objective of this study is to discover new behaviour for quantum system under these two conditions coupled with Kerr-like medium. In achieving this objective, Jaynes-Cummings model is modified to include multi-photon transition and three-qubit quantum system coupling with Kerr-like medium. Under the multi-photon transition condition, Pegg-Barnett formalism is used to measure the quantum system behaviour in the modified Jaynes-Cummings model. The result shows that as the strength of the coupling increases, the quantum system behaviour becomes more active. However, as the number of photons transition increases, the influence from Kerr-like medium towards quantum system behaviour decreases. Next, under the three-qubit quantum system with one-photon transition condition, the three-qubit state interacts with Markovian and non-Markovian environments, both represented by Lorenztian spectral density. The lower bound concurrence is used to measure quantum entanglement robustness. Result shows that when Kerr-like medium coupling strength is increased for both Markovian and non-Markovian environments, the quantum entanglement are more robust. Concurrently, the influence of quantum entanglement robustness is reduced when dipole-dipole interaction is getting stronger. As a conclusion, this study discovered new quantum system behaviour under the influence of Kerr-like medium with potential application in quantum information processing.
format Thesis
qualification_name masters
qualification_level Master's degree
author Chan, Yeen Chia
author_facet Chan, Yeen Chia
author_sort Chan, Yeen Chia
title Quantum system behaviour of Jaynes-Cummings model with Kerr-like medium
title_short Quantum system behaviour of Jaynes-Cummings model with Kerr-like medium
title_full Quantum system behaviour of Jaynes-Cummings model with Kerr-like medium
title_fullStr Quantum system behaviour of Jaynes-Cummings model with Kerr-like medium
title_full_unstemmed Quantum system behaviour of Jaynes-Cummings model with Kerr-like medium
title_sort quantum system behaviour of jaynes-cummings model with kerr-like medium
granting_institution Universiti Utara Malaysia
granting_department Awang Had Salleh Graduate School of Arts & Sciences
publishDate 2016
url https://etd.uum.edu.my/6016/1/s812425_02.pdf
https://etd.uum.edu.my/6016/2/s812425_02.pdf
_version_ 1747828007551107072
spelling my-uum-etd.60162021-04-05T02:07:57Z Quantum system behaviour of Jaynes-Cummings model with Kerr-like medium 2016 Chan, Yeen Chia Ibrahim, Haslinda Awang Had Salleh Graduate School of Arts & Sciences Awang Had Salleh Graduate School of Arts and Sciences QA Mathematics Jaynes-Cummings model is widely used to represent a quantum system as it is able to explain quantum behaviour in a more accurate and simple way. To date, the study of Jaynes-Cummings model does not involve multi-photon transitions and also three-qubit quantum entanglement, both coupled with Kerr-like medium. Thus the main objective of this study is to discover new behaviour for quantum system under these two conditions coupled with Kerr-like medium. In achieving this objective, Jaynes-Cummings model is modified to include multi-photon transition and three-qubit quantum system coupling with Kerr-like medium. Under the multi-photon transition condition, Pegg-Barnett formalism is used to measure the quantum system behaviour in the modified Jaynes-Cummings model. The result shows that as the strength of the coupling increases, the quantum system behaviour becomes more active. However, as the number of photons transition increases, the influence from Kerr-like medium towards quantum system behaviour decreases. Next, under the three-qubit quantum system with one-photon transition condition, the three-qubit state interacts with Markovian and non-Markovian environments, both represented by Lorenztian spectral density. The lower bound concurrence is used to measure quantum entanglement robustness. Result shows that when Kerr-like medium coupling strength is increased for both Markovian and non-Markovian environments, the quantum entanglement are more robust. Concurrently, the influence of quantum entanglement robustness is reduced when dipole-dipole interaction is getting stronger. As a conclusion, this study discovered new quantum system behaviour under the influence of Kerr-like medium with potential application in quantum information processing. 2016 Thesis https://etd.uum.edu.my/6016/ https://etd.uum.edu.my/6016/1/s812425_02.pdf text eng public https://etd.uum.edu.my/6016/2/s812425_02.pdf text eng public masters masters Universiti Utara Malaysia Abdalla, M. S., Khalil, E. M., Obada, A. F., Peřina, J., & Křepelka, J. (2015). Quantum statistical characteristics of the interaction between two two-level atoms and radiation field. The European Physical Journal Plus, 130(11), 1-19. doi: 10.1140/epjp/i2015-15227-9 Abdel-Aty, M., & Everitt, M. J. (2010). Delayed creation of entanglement in superconducting qubits interacting with a microwave field. The European Physical Journal B-Condensed Matter and Complex Systems, 74(1), 81-89. doi: 10.1140/epjb/e2010-00056-y Abdel-Aty, M., Larson, J., & Eleuch, H. (2010). Decoherent many-body dynamics of a nano-mechanical resonator coupled to charge qubits. Physic E 43, 1625-1640. doi: 10.1016/j.physe.2011.05.010 Abdel-Aty, M., Abdalla, M. S., & Sanders, B. C. (2009). Tripartite entanglement dynamics for an atom interacting with nonlinear couplers. Physics Letters A, 373(3), 315-319. doi: 10.1016/j.physleta.2008.11.036 Agrawal, P., & Pati, A. (2006). Perfect teleportation and superdense coding with W states. Physical Review A, 74(6), 062320-062328. doi : http://dx.doi.org/10.1103/PhysRevA.74.062320 An, N. B., Kim, J., & Kim, K. (2011). Entanglement dynamics of three interacting twolevel atoms within a common structured environment. Physical Review A, 84(2), 022-329. doi: http://dx.doi.org/10.1103/PhysRevA.84.022329 Atteberry, J. (n.d.). Discovery. Retrieved from 10 Real-world Applications of Quantum Mechanics:http://dsc.discovery.com/tv-shows/ curiosity/topics/10-real-worldapplications-of- quantum-mechanics.htm Baghshahi, H. R., Tavassoly, M. K., & Faghihi, M. J. (2014). Entanglement analysis of a two-atom nonlinear Jaynes–Cummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift. Laser Physics, 24(12), 125203-125215. Retrieved from http://iopscience.iop.org/article/10.1088/1054- 660X/24/12/125203/meta;jsessionid0C000089415FA94F94EE23EE3672D084.c3.iopscience.cld.iop.org Breuer, H. P., Laine, E. M., & Piilo, J. (2009). Measure for the degree of non-Markovian behaviour of quantum processes in open systems. Physical Review Letters, 103(21), 210401-210405. doi: http://dx.doi.org/10.1103/PhysRevLett.103.210401 Behrman, E. C., & Steck, J. E. (2013). A quantum neural network computes its own relative phase. In Swarm Intelligence (SIS), 2013 IEEE Symposium on (pp. 119-124). doi: 10.1109/SIS.2013.6615168 Buchleitner, A., Viviescas, C., & Tiersch, M. (Eds.). (2008). Entanglement and decoherence: Foundations and modern trends (Vol. 768). Place: Springer. Retrieved from http://hdl.handle.net/961944/100255 Chen, X. Y., Jiang, L. Z., Yu, P., & Tian, M. (2012). Total and genuine entanglement of three qubit GHZ diagonal states. arXiv preprint arXiv:1204.5511. Retrieve from http://arxiv.org/abs/1204.5511 Chia, C. Y., & Ibrahim, H (2014). Phase Properties of a Multi-Photon Jaynes-Cummings Model. Quant. Inf. Rev. 2, No. 2, 21-25. doi : 10.12785/qir/020201 Coffman, V., Kundu, J., & Wootters, W. K. (2000). Distributed entanglement. Physical Review A, 61(5), 052306-052318. doi : http://dx.doi.org/10.1103/PhysRevA.61.052306 Dür, W., Vidal, G., & Cirac, J. I. (2000). Three qubits can be entangled in two inequivalent ways. Physical Review A, 62(6), 062314-062325. doi: http://dx.doi.org/10.1103/PhysRevA.62.062314 Eisert, J., & Plenio, M. B. (1999). A comparison of entanglement measures. Journal of Modern Optics, 46(1), 145-154. doi: 10.1080/09500349908231260 Flores, M. M., & Galapon, E. A. (2015). Two qubit entanglement preservation through the addition of qubits. Annals of Physics, 354, 21-30. doi:10.1016/j.aop.2014.11.011 Gantsog, T., Joshi, A., & Tanas, R. (1996). Phase properties of one-and two-photon Jaynes-Cummings models with a Kerr medium. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 8(3), 445-456. Heo, J., Hong, C. H., Lim, J. I., & Yang, H. J. (2015). Simultaneous quantum transmission and teleportation of unknown photons using intra-and inter-particle entanglement controlled-not gates via cross-Kerr nonlinearity and P-homodyne measurements. International Journal of Theoretical Physics, 1-17. doi: 10.1007/s10773-014-2448-3 Ho-Chih, L. (2008). Local approach to quantum entanglement (Doctoral dissertation, University of London), 36-37. Retrieved from http://discovery.ucl.ac.uk/1446283/ Huai-Xin, L. U., & Xiao-Qin, W. (2000). Multiphoton Jaynes-Cummings model solved via supersymmetric unitary transformation. Chinese Physics, 9(8), 568-571. doi: http://dx.doi.org/10.1088/1009-1963/9/8/003 Ithier, G., Collin, E., Joyez, P., Meeson, P. J., Vion, D., Esteve, D., ... & Schön, G. (2005). Decoherence in a superconducting quantum bit circuit. Physical Review B, 72(13),134519-134584. doi:http://dx.doi.org/10.1103/PhysRevB.72.134519 Jungnitsch, B., Moroder, T., & Gühne, O. (2011). Taming multiparticle entanglement. Physical Review Letters, 106(19), 190502-190514. doi: http://dx.doi.org/10.1103/PhysRevLett.106.190502 Klimov, A. B., Romero, J. L., Delgado, J., & Sanchez-Soto, L. L. (2002). Master equations for effective Hamiltonians. Journal of Optics B: Quantum and Semiclassical Optics, 5(1), 34-43. doi : http://dx.doi.org/10.1088/1464-4266/5/1/304 Lahti, P., & Pellonpää, J. P. (2002). The Pegg-Barnett formalism and covariant phase observables. Physica Scripta, 66(1), 66-75. doi: http://dx.doi.org/10.1238/Physica.Regular.066a00066 Langer, C., Ozeri, R., Jost, J. D., Chiaverini, J., DeMarco, B., Ben-Kish, A., ... & Leibfried, D. (2005). Long-lived qubit memory using atomic ions. Physical review letters, 95(6), 060502-060506. Doi : http://dx.doi.org/10.1103/PhysRevLett.95.060502 Li, P., Gu, Y., Wang, L., & Gong, Q. (2008). Fifth-order nonlinearity and 3-qubit phase gate in a five-level tripod atomic system. JOSA B, 25(4), 504-512. doi : 10.1364/JOSAB.25.000504 Li, Y., Hang, C., Ma, L., & Huang, G. (2006). Controllable entanglement of lights in a five-level system. Physics Letters A, 354(1), 1-7. Retrieved from http://arxiv.org/pdf/quant-ph/0511027 Makhlin, Y., Schön, G., & Shnirman, A. (2001). Quantum-state engineering with Josephson-junction devices. Reviews of Modern Physics, 73(2), 357-402. doi: http://dx.doi.org/10.1103/RevModPhys.73.357 Mooij, J. E., Orlando, T. P., Levitov, L., Tian, L., Van der Wal, C. H., & Lloyd, S. (1999). Josephson persistent-current qubit. Science, 285(5430), 1036-1039. doi: 10.1126/science.285.5430.1036 Nakamura, Y., Pashkin, Y. A., Yamamoto, T., & Tsai, J. S. (2002). Charge echo in a Cooper-pair box. Physical Review Letters, 88(4), 47901-47904. doi: http://dx.doi.org/10.1103/PhysRevLett.88.047901 Negele, J. W., & Orland, H. (1988). Quantum many-particle systems (Vol. 200). New York: Addison-Wesley. Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. New York: Cambridge university press. Retrieved from http://www.idt.mdh.se/~gdc/work/ARTICLES/2014/ 3-CiEjournal/Background/QUANTUMINFO-book-nielsen- and-chuang-toc-and-chapter1-nov00-acro5.pdf Obada, A. S., Abdel-Hafez, A. M., & Abdelaty, M. (1998). Phase properties of a Jaynes-Cummings model with Stark shift and Kerr medium. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 3(3), 289-294. doi: 10.1007/s100530050176 Paz, J. P., & Zurek, W. H. (2001). Environment-induced decoherence and the transition from quantum to classical. In Coherent atomic matter waves (pp. 533-614). Springer Berlin Heidelberg. doi: 10.1007/3-540-45338-5_8 Plenio, M. B., & Virmani, S. S. (2014). An Introduction to Entanglement Theory. In Quantum Information and Coherence (pp. 173-209). Springer International Publishing. doi: 10.1007/978-3-319-04063-9_8 Qing-Hong, L., Ahmad, M. A., Yue-Yuan, W. A. N. G., & Shu-Tian, L. (2010). Properties of Linear Entropy in k-Photon Jaynes–Cummings Model with Stark Shift and Kerr-Like Medium. Communications in Theoretical Physics, 53(5), 931-935. doi : 0253-6102-53-5-27 Rui-Tong, Z., Qi, G., Liu-Yong, C., Li-Li, S., Hong-Fu, W., & Shou, Z. (2013). Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity. Chinese Physics B,22(3),030313-030320. doi: http://dx.doi.org/10.1088/1674-1056/22/3/030313 Ruiz, A. M., Frank, A., & Urrutia, L. F. (2013). Jaynes-Cummings model in a finite Kerr medium, 1-16. Retrieved from http://arxiv.org/abs/1302.0588 Spiller, T. P. (1996). Quantum information processing: cryptography, computation, and teleportation. Proceedings of the IEEE, 84(12), 1719-1746. doi: 10.1109/5.546399 Tanaś, R., & Kielich, S. (1983). Self-squeezing of light propagating through nonlinear optically isotropic media. Optics Communications, 45(5), 351-356. Retrieved from http://www.sciencedirect.com/science/article/pii/003040188390264X# Tahir, M., & MacKinnon, A. (2010). Current noise of a resonant tunnel junction coupled to a nanomechanical oscillator. arXiv preprint arXiv:1005.3713. Retrieved from http://arxiv.org/abs/1005.3713 Terhal, B. M., & Burkard, G. (2005). Fault-tolerant quantum computation for local non-Markovian noise. Physical Review A, 71(1), 012336-012355. doi: http://dx.doi.org/10.1103/PhysRevA.71.012336 Trung Dung, H., Tanaś, R., & Shumovsky, A. S. (1990). Collapses, revivals, and phase properties of the field in Jaynes-Cummings type models. Optics Communications, 79(6),462-468. doi:10.1016/0030-4018(90)90483-A Verstraete, F., Audenaert, K., Dehaene, J., & De Moor, B. (2001). A comparison of the entanglement measures negativity and concurrence. Journal of Physics A: Mathematical and General, 34(47), 10327-10331. doi: http://dx.doi.org/10.1088/0305-4470/34/47/329 Weisstein, Eric W.(2002). "Lorentzian Function." Retrieved from http://mathworld.wolfram.com/LorentzianFunction. html Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Physical Review, 40(5), 749-759. doi: http://dx.doi.org/10.1103/PhysRev.40.749 Wootters, W. K. (2001). Entanglement of formation and concurrence. Quantum Information & Computation, 1(1), 27-44. Retrieved from http://www.rintonpress.com/journals/qic-1-1/eof2. pdf Yu-Qing, Z., Lei, T., Zhong-Hua, Z., Zu-Zhou, X., & Li-Wei, L. (2010). Partial entropy change and entanglement in the mixed state for a Jaynes–Cummings model with Kerr medium. Chinese Physics B, 19(2), 024210-024218. doi: http://dx.doi.org/10.1088/1674-1056/19/2/024210 Yu, X. Y., & Li, J. H. (2013). The effect of dipole-dipole interactions on the singlephoton transmission spectrum. The European Physical Journal D, 67(8), 1-6. doi: 10.1140/epjd/e2013-40012-y Zhang, Z. M., Xu, L., Li, F. L., & Chai, J. L. (1991). Long-time behaviour of field fluctuation in the M-photon Jaynes-Cummings model. Zeitschrift für Physik B Condensed Matter, 84(2), 329-331. doi: 10.1007/BF01313556