SWGARCH : an enhanced GARCH model for time series forecasting
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is one of most popular models for time series forecasting. The GARCH model uses the long run variance as one of the weights. Historical data is used to calculate the long run variance because it is assumed that the variance of a long...
Saved in:
主要作者: | Shbier, Mohammed Z. D |
---|---|
格式: | Thesis |
语言: | eng eng |
出版: |
2017
|
主题: | |
在线阅读: | https://etd.uum.edu.my/6808/1/s91141_01.pdf https://etd.uum.edu.my/6808/2/s91141_02.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Error magnitude and directional accuracy for time series forecasting evaluation
由: Nor, Maria Elena
出版: (2014) -
Forecasting pelagic fish in Malaysia using ets state space approach
由: Bako, Hadiza Yakubu
出版: (2014) -
An enhanced Bayesian Network prediction model for football matches based on player performance
由: Razali, Muhammad Nazim
出版: (2017) -
Parametric mixture model of three components for modelling heterogeneos survival data
由: Mohammed, Yusuf Abbakar
出版: (2015) -
Pembentukan Model Stokastik Box-Jenkins dan Aplikasi dalam Industri Utiliti
由: Syariza, Abdul Rahman
出版: (2003)