Improvement of Vector Autoregression (VAR) estimation using Combine White Noise (CWN) technique

Previous studies revealed that Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH) outperformed Vector Autoregression (VAR) when data exhibit heteroscedasticity. However, EGARCH estimation is not efficient when the data have leverage effect. Therefore, in this study the weakn...

Full description

Saved in:
Bibliographic Details
Main Author: Abraham, Agboluaje Ayodele
Format: Thesis
Language:eng
eng
eng
Published: 2018
Subjects:
Online Access:https://etd.uum.edu.my/6900/1/DepositPermission_s94907.pdf
https://etd.uum.edu.my/6900/2/s94907_01.pdf
https://etd.uum.edu.my/6900/3/s94907_02.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uum-etd.6900
record_format uketd_dc
institution Universiti Utara Malaysia
collection UUM ETD
language eng
eng
eng
advisor Ismail, Suzilah
Yip, Chee Yin
topic QA71-90 Instruments and machines
T Technology (General)
spellingShingle QA71-90 Instruments and machines
T Technology (General)
Abraham, Agboluaje Ayodele
Improvement of Vector Autoregression (VAR) estimation using Combine White Noise (CWN) technique
description Previous studies revealed that Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH) outperformed Vector Autoregression (VAR) when data exhibit heteroscedasticity. However, EGARCH estimation is not efficient when the data have leverage effect. Therefore, in this study the weaknesses of VAR and EGARCH were modelled using Combine White Noise (CWN). The CWN model was developed by integrating the white noise of VAR with EGARCH using Bayesian Model Averaging (BMA) for the improvement of VAR estimation. First, the standardized residuals of EGARCH errors (heteroscedastic variance) were decomposed into equal variances and defined as white noise series. Next, this series was transformed into CWN model through BMA. The CWN was validated using comparison study based on simulation and four countries real data sets of Gross Domestic Product (GDP). The data were simulated by incorporating three sample sizes with low, moderate and high values of leverages and skewness. The CWN model was compared with three existing models (VAR, EGARCH and Moving Average (MA)). Standard error, log-likelihood, information criteria and forecast error measures were used to evaluate the performance of the models. The simulation findings showed that CWN outperformed the three models when using sample size of 200 with high leverage and moderate skewness. Similar results were obtained for the real data sets where CWN outperformed the three models with high leverage and moderate skewness using France GDP. The CWN also outperformed the three models when using the other three countries GDP data sets. The CWN was the most accurate model of about 70 percent as compared with VAR, EGARCH and MA models. These simulated and real data findings indicate that CWN are more accurate and provide better alternative to model heteroscedastic data with leverage effect.
format Thesis
qualification_name Ph.D.
qualification_level Doctorate
author Abraham, Agboluaje Ayodele
author_facet Abraham, Agboluaje Ayodele
author_sort Abraham, Agboluaje Ayodele
title Improvement of Vector Autoregression (VAR) estimation using Combine White Noise (CWN) technique
title_short Improvement of Vector Autoregression (VAR) estimation using Combine White Noise (CWN) technique
title_full Improvement of Vector Autoregression (VAR) estimation using Combine White Noise (CWN) technique
title_fullStr Improvement of Vector Autoregression (VAR) estimation using Combine White Noise (CWN) technique
title_full_unstemmed Improvement of Vector Autoregression (VAR) estimation using Combine White Noise (CWN) technique
title_sort improvement of vector autoregression (var) estimation using combine white noise (cwn) technique
granting_institution Universiti Utara Malaysia
granting_department Awang Had Salleh Graduate School of Arts & Sciences
publishDate 2018
url https://etd.uum.edu.my/6900/1/DepositPermission_s94907.pdf
https://etd.uum.edu.my/6900/2/s94907_01.pdf
https://etd.uum.edu.my/6900/3/s94907_02.pdf
_version_ 1747828125466624000
spelling my-uum-etd.69002021-08-09T02:16:20Z Improvement of Vector Autoregression (VAR) estimation using Combine White Noise (CWN) technique 2018 Abraham, Agboluaje Ayodele Ismail, Suzilah Yip, Chee Yin Awang Had Salleh Graduate School of Arts & Sciences Awang Had Salleh Graduate School of Arts and Sciences QA71-90 Instruments and machines T Technology (General) Previous studies revealed that Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH) outperformed Vector Autoregression (VAR) when data exhibit heteroscedasticity. However, EGARCH estimation is not efficient when the data have leverage effect. Therefore, in this study the weaknesses of VAR and EGARCH were modelled using Combine White Noise (CWN). The CWN model was developed by integrating the white noise of VAR with EGARCH using Bayesian Model Averaging (BMA) for the improvement of VAR estimation. First, the standardized residuals of EGARCH errors (heteroscedastic variance) were decomposed into equal variances and defined as white noise series. Next, this series was transformed into CWN model through BMA. The CWN was validated using comparison study based on simulation and four countries real data sets of Gross Domestic Product (GDP). The data were simulated by incorporating three sample sizes with low, moderate and high values of leverages and skewness. The CWN model was compared with three existing models (VAR, EGARCH and Moving Average (MA)). Standard error, log-likelihood, information criteria and forecast error measures were used to evaluate the performance of the models. The simulation findings showed that CWN outperformed the three models when using sample size of 200 with high leverage and moderate skewness. Similar results were obtained for the real data sets where CWN outperformed the three models with high leverage and moderate skewness using France GDP. The CWN also outperformed the three models when using the other three countries GDP data sets. The CWN was the most accurate model of about 70 percent as compared with VAR, EGARCH and MA models. These simulated and real data findings indicate that CWN are more accurate and provide better alternative to model heteroscedastic data with leverage effect. 2018 Thesis https://etd.uum.edu.my/6900/ https://etd.uum.edu.my/6900/1/DepositPermission_s94907.pdf text eng public https://etd.uum.edu.my/6900/2/s94907_01.pdf text eng public https://etd.uum.edu.my/6900/3/s94907_02.pdf text eng public Ph.D. doctoral Universiti Utara Malaysia Ahmed, M., Aslam, M., & Pasha, G. R. (2011). Inference under heteroscedasticity of unknown form using an adaptive estimator. Communications in Statistics-Theory and Methods, 40(24), 4431–4457. doi.org/10.1080/03610926.2010.513793 Almeida, D. D., & Hotta, L. K. (2014). The leverage effect and the asymmetry of the error distribution in GARCH-based models: the case of Brazilian market related series. Pesquisa Operacional, 34(2), 237-250. doi.org/10.1590/0101-7438.2014.034.02.0237 Altunbas, Y., Gambacorta, L., & Marques-Ibanez, D. (2010). Bank risk and monetary policy. Journal of Financial Stability, 6(3), 121-129. doi.org/10.1016/j.jfs.2009.07.001 Angeloni, I., Faia, E., & Lo Duca, M. (2010). Monetary policy and risk taking. Bruegel Working Paper 2010/00, February 2010. http://www.bruegel.org/publications/publication-de... Antoine, B., & Lavergne, P. (2014). Conditional moment models under semi-strong identification. Journal of Econometrics, 182(1), 59-69. doi.org/10.1016/j.jeconom.2014.04.008 Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. International journal of forecasting, 8(1), 69-80. doi.org/10.1016/0169-2070(92)90008-W Asatryan, Z., & Feld, L. P. (2015). Revisiting the link between growth and federalism: A Bayesian model averaging approach. Journal of Comparative Economics, 43(3), 772-781. doi.org/10.1016/j.jce.2014.04.005 Atabaev, N., & Ganiyev, J. (2013). VAR Estimation of the Monetary Transmission Mechanism in Kyrgyzstan. Eurasian Journal of Business and Economics, 6(11), 121–134. Bates, J. M., & Granger, C. W. (1969). The combination of forecasts. Journal of the Operational Research Society, 20(4), 451-468. DOI: 10.1057/jors.1969.103 Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version, 1(7). Bast, A., Wilcke, W., Graf, F., Lüscher, P., & Gärtner, H. (2015). A simplified and rapid technique to determine an aggregate stability coefficient in coarse grained soils. Catena, 127, 170-176.doi.org/10.1016/j.catena.2014. 11.017 Bernanke, B. S. (1986, November). Alternative explanations of the money-income correlation. In Carnegie-rochester conference series on public policy (Vol. 25, pp. 49-99). North-Holland. doi.org/10.1016/0167-2231(86)90037-0 Bernanke, B. S., & Blinder, A. S. (1992). The federal funds rate and the channels of monetary transmission. The American Economic Review, 901-921. http://www.jstor.org/stable/2117350 Bernanke, B. S., & Mihov, I. (1998, December). The liquidity effect and long-run neutrality. In Carnegie-Rochester conference series on public policy (Vol. 49, pp. 149-194). North-Holland. doi.org/10.1016/S0167-2231(99)00007-X Berument, H., Metin-Ozcan, K., & Neyapti, B. (2001). Modelling inflation uncertainty using EGARCH: An application to Turkey. Federal Reserve Bank of Louis Review, 66, 15-26. Blanchard, O. J. (1989). A traditional interpretation of macroeconomic fluctuations. The American Economic Review, 1146-1164. http://www.jstor.org/stable/1831442 Blanchard, O. J., & Quah, D. (1989). The dynamic effects of aggregate demand and supply disturbances. The American Economic Review, 79(4), 655-673. http://www.jstor.org/stable/1827924 Blaskowitz, O., & Herwartz, H. (2014). Testing the value of directional forecasts in the presence of serial correlation. International Journal of Forecasting, 30(1), 30–42. doi.org/10.1016/j.ijforecast.2013.06.001 Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of econometrics, 31(3), 307-327. doi.org/10.1016/0304-4076(86)90063-1 Bollerslev, T. (1987). A conditionally heteroscedastic time series model forspeculative prices and rates of return. The review of economics and statistics, 542-547. DOI: 10.2307/1925546 Boos, D. D., & Brownie, C. (2004). Comparing variances and other measures of dispersion. Statistical Science, 571-578. http://www.jstor.org/stable/4144427 Bowerman, B.C., O‟Connell, R.T., & Koehler, A.B. (2005). Forecasting, Time series, and Regression. An applied approach 4th edition. USA Thomson Brooks/Cole. Box, G. E., & Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American statistical Association, 65(332), 1509-1526. http://www.jstor.org/stable/2284333 Breese, J. S., Heckerman, D., & Kadie, C. (1998, July). Empirical estimation of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence (pp. 43-52). Morgan Kaufmann Publishers Inc.San Francisco, CA, USA. Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica: Journal of the Econometric Society, 1287-1294. DOI: 10.2307/1911963 Bulmer, M. G. (1979). Principles of Statistics. New York, NY: Dover Publications. Buch, C. M., Eickmeier, S., & Prieto, E. (2014). In search for yield? Survey-based evidence on bank risk taking. Journal of Economic Dynamics and Control, 43, 12-30. doi.org/10.1016/j.jedc.2014.01.017 Caceres, A., Hall, D. L., Zelaya, F. O., Williams, S. C., & Mehta, M. A. (2009). Measuring fMRI reliability with the intra-class correlation coefficient. Neuroimage, 45(3), 758-768. doi.org/10.1016/j.neuroimage.2008.12.035 Canova, F., & De Nicoló, G. D. (2002). Monetary disturbances matter for business fluctuations in the G-7. Journal of Monetary Economics, 49(6), 1131-1159. doi.org/10.1016/S0304-3932(02)00145-9 Canova, F., & Pappa, E. (2007). Price Differentials in Monetary Unions: The Role of Fiscal Shocks*. The Economic Journal, 117(520), 713-737. DOI: 10.1111/j.1468-0297.2007.02047.x Canova, F., & Paustian, M. (2011). Business cycle measurement with some theory. Journal of Monetary Economics, 58(4), 345-361. doi.org/10.1016/j.jmoneco.2011.07.005 Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. doi:10.5194/gmd-7-1247-2014 Chao, J. C., Hausman, J. A., Newey, W. K., Swanson, N. R., & Woutersen, T. (2014). Testing over identifying restrictions with many instruments and heteroscedasticity. Journal of Econometrics, 178, 15–21. DOI: 10.1016/j.jeconom.2013.08.003 Charemza, W.W. & Deadman, D. F. (1992). New directions in econometric practice, 1st edition. Cheltenham, UK. Edward Elger Publishing limited. Charemza, W.W. & Deadman, D. F. (1997). New directions in econometric practice, 2nd edition. Cheltenham UK. Edward Elger Publishing limited. Chaudhuri, K., Kakade, S. M., Netrapalli, P., & Sanghavi, S. (2015, December). Convergence Rates of Active Learning for Maximum Likelihood Estimation. In Advances in Neural Information Processing Systems28 (pp. 1090-1098). Montreal, Canada Christ, C. F. (1994). The Cowles Commission's Contributions to Econometrics at Chicago, 1939-1955. Economic literature, 32(1), 30-59. http://www.jstor.org/stable/2728422 Christiano, L. J., Eichenbaum, M., & Evans, C. L. (1996).Sticky price and limited participation models of money: A comparison. European Economic Review, 41(6), 1201-1249. doi.org/10.1016/S0014-2921(97)00071-8 Cooley, T. F., & LeRoy, S. F. (1985). Atheoretical macroeconometrics: a critique. Journal of Monetary Economics, 16(3), 283-308. doi.org/10.1016/0304-3932(85)90038-8 Cribari-Neto, F., & Galvão, N. M. S. (2003). A Class of Improved Heteroscedasticity-Consistent Covariance Matrix Estimators. Communications in Statistics - Theory and Methods, 32(10), 1951–1980. doi.org/10.1081/STA-120023261 Cushman, D. O., & Zha, T. (1997). Identifying monetary policy in a small open economy under flexible exchange rates. Journal of Monetary economics, 39(3), 433-448. doi.org/10.1016/S0304-3932(97)00029-9 De Nicolo, G., Dell'Ariccia, G., Laeven, L., & Valencia, F. (2010). Monetary Policy and Bank Risk Taking. doi.org/10.2139/ssrn.1654582 Dedola, L., & Neri, S. (2007b). What does a technology shock do? A VAR estimation with model-based sign restrictions. Journal of Monetary Economics, 54(2), 512–549. doi.org/10.1016/j.jmoneco.2005.06.006 Ding, F., & Chen, T. (2005). Identification of Hammerstein nonlinear ARMAX systems. Automatica, 41(9), 1479-1489. doi.org/10.1016/j.automatica.2005.03.026 Dovonon, P., & Renault, E. (2013). Testing for Common Conditionally Heteroscedastic Factors. Econometrica, 81(6), 2561-2586. DOI: 10.3982/ECTA10082 Durbin, J. (1959). Efficient Estimation of Parameters in Moving-Average Models. Biometrica Trust, 46(3/4), 306-316. DOI: 10.2307/2333528 Eickmeier, S., & Hofmann, B. (2013). Monetary policy, housing booms, and financial (im) balances. Macroeconomic dynamics, 17(04), 830-860. DOI: https://doi.org/10.1017/S1365100511000721 Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987-1007.DOI: 10.2307/1912773 Engle, R. F. (1983). Estimates of the Variance of US Inflation Based upon the ARCH Model. Journal of Money, Credit and Banking, 286-301. DOI: 10.2307/1992480 Engle, R. (2001). GARCH 101: The use of ARCH/GARCH models in applied econometrics. The Journal of Economic Perspectives, 15(4), 157-168. http://www.jstor.org/stable/2696523 Engsted, T., & Pedersen, T. Q. (2014). Bias-correction in vector autoregressive models: A simulation study. Econometrics, 2(1), 45-71. doi:10.3390/econometrics2010045 Ewing, B. T., & Malik, F. (2013). Volatility transmission between gold and oil futures under structural breaks. International Review of Economics & Finance, 25, 113-121. doi.org/10.1016/j.iref.2012.06.008 Faust, J. (1998, December). The robustness of identified VAR conclusions about money. In Carnegie-Rochester Conference Series on Public Policy (Vol. 49, pp. 207-244). North-Holland. doi.org/10.1016/S0167-2231(99)00009-3 Fildes, R. (1992). The evaluation of extrapolative forecasting methods. International Journal of Forecasting, 8(1), 81-98. doi.org/10.1016/0169-2070(92)90009-X Fildes, R., Wei, Y., & Ismail, S. (2011). Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures. International Journal of Forecasting, 27(3), 902-922. doi.org/10.1016/j.ijforecast.2009.06.002 Fisher, D., Hildrum, K., Hong, J., Newman, M., Thomas, M., & Vuduc, R. (2000, July). SWAMI (poster session): a framework for collaborative filtering algorithm development and evaluation. In Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 366-368). ACM. New York, NY: doi>10.1145/345508.345658 Francis, N., Owyang, M. T., Roush, J. E., & DiCecio, R. (2014). A flexible finitehorizon alternative to long-run restrictions with an application to technology shocks. Review of Economics and Statistics, 96(4), 638-647. doi:10.1162/REST_a_00406 Friedman, M., & Schwartz, A. J. (Eds.). (1982). The role of money. In Monetary Trends in the United States and United Kingdom: Their Relation to Income, Prices, and Interest Rates, 1867-1975 (pp. 621-632). University of Chicago Press. http://www.nber.org/chapters/c11412 Fujita, S. (2011). Dynamics of worker flows and vacancies: evidence from the sign restriction approach. Journal of Applied Econometrics, 26(1), 89-121. DOI: 10.1002/jae.1111 Godfrey, L. G. (1978). Testing for higher order serial correlation in regression equations when the regressors include lagged dependent variables. Econometrica: Journal of the Econometric Society, 1303-1310. DOI: 10.2307/1913830 Gordon, D. B., & Leeper, E. M. (1994). The dynamic impacts of monetary policy: an exercise in tentative identification. Journal of Political Economy, 1228-1247. DOI: 10.1086/261969 Greene, W. H. (2008). The econometric approach to efficiency analysis. The measurement of productive efficiency and productivity growth, 1, 92-250. Gregory, A. W., & Smith, G. W. (1995). Business cycle theory and econometrics. The Economic Journal, 1597-1608. DOI: 10.2307/2235121 Günnemann, N., Günnemann, S., & Faloutsos, C. (2014, April). Robust multivariate autoregression for anomaly detection in dynamic product ratings. In Proceedings of the 23rd international conference on World wide web (pp. 361-372). International World Wide Web Conferences Steering Committee. ACMNew York, NY: doi>10.1145/2566486.2568008 Hall, M. (2007). A decision tree-based attribute weighting filter for naive Bayes. Knowledge-Based Systems, 20(2), 120-126. doi.org/10.1016/j.knosys.2006.11.008 Harvey, A. C. (1993). Time series models 2nd edition. The MIT Press. Cambridge. Massachusetts. Harvester Wheatsheaf Publisher. Harvey, A. C. & Philips, G. D. A. (1979). Maximum Likelihood Estimation of Regression Models with Autoregressive-Moving Average Disturbances. Biometrica Trust, 66(1), 49-58. doi.org/10.1093/biomet/66.1.49 Harvey, A., & Sucarrat, G. (2014). EGARCH models with fat tails, skewness and leverage. Computational Statistics & Data Estimation, 76, 320-338. doi.org/10.1016/j.csda.2013.09.022 Hassan, M., Hossny, M., Nahavandi, S., & Creighton, D. (2012, March). Heteroscedasticity variance index. In Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on (pp. 135-141). IEEE. DOI: 10.1109/UKSim.2012.28 Hassan, M., Hossny, M., Nahavandi, S., & Creighton, D. (2013, April). Quantifying Heteroscedasticity Using Slope of Local Variances Index. In Computer Modelling and Simulation (UKSim), 2013 UKSim 15th International Conference on (pp. 107-111). IEEE.DOI: 10.1109/UKSim.2013.75 Hentschel, L. (1995). All in the family nesting symmetric and asymmetric GARCH models. Journal of Financial Economics, 39(1), 71-104. doi.org/10.1016/0304-405X(94)00821-H Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999, August). An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 230-237). ACM.New York, NY: doi>10.1145/312624.312682 Higgins, M. L., & Bera, A. K. (1992). A class of nonlinear ARCH models. International Economic Review, 137-158. DOI: 10.2307/2526988 Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. Statistical science, 382-401. http://www.jstor.org/stable/2676803 Hofmann, T., & Puzicha, J. (1999, July). Latent class models for collaborative filtering. IJCAI'99 Proceedings of the 16th international joint conference on Artificial intelligence- Volume 2. pp. 688-693.Morgan Kaufmann Publishers Inc. San Francisco, CA, USA Hooten, M. B., & Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. Ecological Monographs, 85(1), 3-28. DOI: 10.1890/14-0661.1 Hu, P., & Ding, F. (2013). Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle. Nonlinear Dynamics, 73(1-2), 583-592. DOI 10.1007/s11071-013-0812-0 Inoue, A., & Kilian, L. (2013). Inference on impulse response functions in structuralVAR models. Journal of Econometrics, 177(1), 1-13. doi.org/10.1016/j.jeconom.2013.02.009 Jin, R., Chai, J. Y., & Si, L. (2004, July). An automatic weighting scheme for collaborative filtering. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 337-344). ACM New York, NY: doi>10.1145/1008992.1009051 Kaplan, D., & Chen, J. (2014). Bayesian model averaging for propensity score estimation. Multivariate Behavioral Research, 49, 505-517. doi.org/10.1080/00273171.2014.928492 Kelejian, H. H. & Oates, W. E. (1981). Introduction to econometrics principles and applications 2nd edition. New York, NY: Harper and Row, Publishers Kennedy, P. (2008). A guide to econometrics 6th edition. Blackwell Publishing. www.wiley.com Kilian, L., & Murphy, D. P. (2012). Why agnostic sign restrictions are not enough: understanding the dynamics of oil market VAR models. Journal of the European Economic Association, 10(5), 1166-1188. DOI: 10.1111/j.1542-4774.2012.01080.x Kilian, L., & Murphy, D. P. (2014). The role of inventories and speculative trading in the global market for crude oil. Journal of Applied Econometrics, 29(3), 454-478. DOI: 10.1002/jae.2322 Kydland, F. E., & Prescott, E. C. (1991). The econometrics of the general equilibrium approach to business cycles. The Scandinavian Journal of Economics, 161-178. DOI: 10.2307/3440324 Lang, W. W., & Nakamura, L. I. (1995). „Flight to quality‟ in banking and economic activity. Journal of Monetary Economics, 36(1), 145-164. doi.org/10.1016/0304-3932(95)01204-9 Lazim, M. A. (2013). Introductory business forecasting. A practical approach 3rd edition. Printed in Kuala Lumpur, Malaysia: Penerbit Press, University Technology Mara Li, L., Zeng, L., Lin, Z. J., Cazzell, M., & Liu, H. (2015). Tutorial on use of intraclass correlation coefficients for assessing intertest reliability and its application in functional near-infrared spectroscopy–based brain imaging. Journal of biomedical optics, 20(5), 050801-050801. doi:10.1117/1.JBO.20.5.050801 Lim, T.-S. & Loh, W.-Y. (1996). A comparison of tests of equality of variances. Computational Statistics and Data Estimation, 22, 287-301. doi.org/10.1016/0167-9473(95)00054-2 Link, W. A., & Barker, R. J. (2006). Model weights and the foundations of multimodel inference. Ecology, 87(10), 2626-2635. DOI:10.1890/0012-9658(2006)87[2626:MWATFO]2.0. CO;2 Lippi, M., & Reichlin, L. (1993). The dynamic effects of aggregate demand andsupply disturbances: Comment. The American Economic Review, 644-652. http://www.jstor.org/stable/2117539 Liu, T. C. (1960). Under identification, structural estimation, and forecasting. Econometrica: Journal of the Econometric Society, 855-865. DOI: 10.2307/1907567 Lu, L., & Shara, N. (2007). Reliability estimation: Calculate and compare intra-class correlation coefficients (ICC) in SAS. Northeast SAS Users Group, 14.xa.yimg.comf equality Lütkepohl, H. (2006). Structural vector autoregressive estimation for cointegrated variables (pp. 73-86). Springer Berlin Heidelberg. New York DOI:10.1007/3-540-32693-6_6 Marek, T. (2005). On invertibility of a random coefficient moving average model. Kybernetika, 41(6), 743-756.http://dml.cz/dmlcz/135690 Martinet, G. G., & McAleer, M. (2016). On the Invertibility of EGARCH (p,q). Econometric Reviews, 1-26. doi.org/10.1080/07474938.2016.1167994 McAleer, M. (2014). Asymmetry and Leverage in Conditional Volatility Models. Econometrics, 2(3),145-150. doi:10.3390/econometrics2030145 McAleer, M., & Hafner, C. M. (2014). A one line derivation of EGARCH. Econometrics, 2(2),92-97. doi:10.3390/econometrics2020092 McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological methods, 1(1), 30. doi.org/10.1037/1082-989X.1.1.30 Mountford, A., & Uhlig, H. (2009). What are the effects of fiscal policy shocks?. Journal of applied econometrics, 24(6), 960-992. DOI: 10.1002/jae.1079 Mutunga, T. N., Islam, A. S., & Orawo, L. A. O. (2015). Implementation of the estimating functions approach in asset returns volatility forecasting using first order asymmetric GARCH models. Open Journal of Statistics, 5(05), 455. DOI:10.4236/ojs.2015.55047 Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of mathematical Psychology, 47(1), 90-100. doi.org/10.1016/S0022-2496(02)00028-7 Nelson, D. B. (1991). Conditional heteroscedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347-370. DOI: 10.2307/2938260 Newbold, P. and Granger, C. W. J. (1974). Experience with Forecasting Univariate Time Series and the Combination of Forecasts. Journal of the Royal Statistical Society, 137(2), 131–165.DOI: 10.2307/2344546 Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: Acomparison of logistic regression and naive bayes. Advances in neural information processing systems, 2, 841-848. Ng, H. S., & Lam, K. P. (2006, October). How Does Sample Size Affect GARCH Models?. In JCIS. Pappa, E. (2009). The effects of fiscal shocks on employment and the real wage. International economic review, 50(1). DOI: 10.1111/j.1468-2354.2008.00528.x Park, B. U., Simar, L., & Zelenyuk, V. (2015). Categorical data in local maximum likelihood: theory and applications to productivity analysis. Journal of Productivity Analysis, 43(2), 199-214.doi:10.1007/s11123-014-0394-y Paruolo, P., & Rahbek, A. (1999). Weak exogeneity in I (2) VAR systems. Journal of Econometrics, 93(2), 281-308.doi.org/10.1016/S0304-4076(99)00012-3 Pennock, D. M., Horvitz, E., Lawrence, S., & Giles, C. L. (2000, June). Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach. In Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence (pp. 473-480). Morgan Kaufmann Publishers Inc. San Francisco, CA, USA. Piovesana, A., & Senior, G. (2016). How Small Is Big Sample Size and Skewness. Assessment.DOI: 10.1177/1073191116669784 Qin, D. & Gilbert, C. L. (2001). The error term in the history of time series econometrics. Econometric theory, 17, 424-450. Cambridge University Press Quah, D. T. (1995). Business Cycle Empirics: Calibration and Estimation. The Economic, 105(433).1594-1596. DOI: 10.2307/2235120 Raftery, A. E. (1995). Bayesian model selection in social research. Sociological methodology, 111-163.DOI: 10.2307/271063 Raftery, A. E., & Painter, I. S. (2005). BMA: An R package for Bayesian model averaging. R news, 5(2), 2-8. Rajan, R. G. (2006). Has finance made the world riskier? European Financial Management, 12(4), 499-533. DOI: 10.1111/j.1468-036X.2006.00330.x Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares regression estimation. Journal of the Royal Statistical Society. Series B (Methodological), 350-371.http://www.jstor.org/stable/2984219 Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994, October). Group Lens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186). ACMNew York, NY: doi>10.1145/192844.192905 Rodrıguez, G., & Elo, I. (2003). Intra-class correlation in random-effects models for binary data. The Stata Journal, 3(1), 32-46 Rodríguez, M. J., & Ruiz, E. (2012). Revisiting several popular GARCH models with leverage effect: Differences and similarities. Journal of Financial Econometrics, 10(4), 637-668. DOI: https://doi.org/10.1093/jjfinec/nbs003 Sargent, T. J., & Sims, C. A. (1977). Business cycle modelling without pretending tohave too much a priori economic theory. New methods in business cycle research,1, 145-168. Savolainen, P. T., Mannering, F. L., Lord, D., & Quddus, M. A. (2011). The statistical estimation of highway crash-injury severities: A review and assessment of methodological alternatives. Accident Estimation & Prevention, 43(5), 1666- 1676.doi.org/10.1016/j.aap.2011.03.025 Scholl, A., & Uhlig, H. (2008). New evidence on the puzzles: Results from agnostic identification on monetary policy and exchange rates. Journal of International Economics, 76(1), 1-13.doi.org/10.1016/j.jinteco.2008. 02.005 Shao, K., & Gift, J. S. (2014). Model uncertainty and Bayesian model averaged benchmark dose estimation for continuous data. Risk Estimation, 34(1), 101-120. DOI: 10.1111/risa.12078. Si, L. & Jin, R. (2003). Flexible Mixture Model for Collaborative Filtering. In Uncertainty in artificial intelligence (pp. 704–711). CML. Sims, C. A. (1980). Macroeconomics and Reality, Econometrica, 48(1), 1–48. DOI: 10.2307/1912017 Sims, C. A. (1986). Are forecasting models usable for policy estimation? Federal Reserve Bank of Minneapolis Quarterly Review, 10(1), 2-16. http://www.minneapolisfed.org/ publications_papers/pub_display.cfm?id=186 Sims, C. A., & Zha, T. A. O. (2006). Does monetary policy generate recessions? Macroeconomic Dynamics, 10, 231–272. DOI: https://doi.org/10.1017/S136510050605019X Snipes, M., & Taylor, D. C. (2014). Model selection and Akaike Information Criteria: An example from wine ratings and prices. Wine Economics and Policy, 3(1), 3-9. http://dx.doi.org/10.1016/j.wep.2014.03.001 Soboroff, I., & Nicholas, C. (2000, July). Collaborative filtering and the generalized vector space model (poster session). In Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 351-353). ACM New York, NY: doi>10.1145/345508.345646 Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. (2014). The deviance information criterion: 12 years on. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(3), 485-493. DOI: 10.1111/rssb.12062 Stanford, D. C., & Raftery, A. E. (2002). Approximate Bayes factors for image segmentation: The pseudolikelihood information criterion (PLIC). IEEE Transactions on Pattern Estimation and Machine Intelligence, 24(11), 1517-1520. DOI: 10.1109/TPAMI.2002.1046170 Stapleton, J. H. (2009). Linear statistical models (2nd edition). John Wiley & Sons. New York.www.wiley.com Stock, J. H., & Watson, M. W. (2001). Vector autoregressions. Journal of Economic perspectives, 101-115.http://www.jstor.org/stable/2696519 Strongin, S. (1995). The identification of monetary policy disturbances explaining the liquidity puzzle. Journal of Monetary Economics, 35(3), 463-497. doi.org/10.1016/0304-3932(95)01197-V Sucarrat, G. (2013). betategarch: Simulation, estimation and forecasting of Beta-Skew-t-EGARCH Models. The R Journal, 5(2), 137-147. https://journal.r-project.org/archive/2013-2/ sucarrat Sucarrat, G., & Sucarrat, M. G. (2013). Package „betategarch‟. http://www.sucarrat.net/ Swamy, V. (2014). Testing the interrelatedness of banking stability measures. Journal of Financial Economic Policy, 6(1), 25-45. doi.org/10.1108/JFEP-01-2013-0002 Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8), 1352-1362.doi.org/10.1057/jors.2014.124 Törnqvist, L., Vartia, P., & Vartia, Y. O. (1985). How should relative changes be measured?. The American Statistician, 39(1), 43-46. doi.org/10.1080/00031305.1985.10479385 Uchôa, C. F. A., Cribari-Neto, F., & Menezes, T. A. (2014). Testing inference in heteroscedastic fixed effects models. European Journal of Operational Research, 235(3), 660–670. doi.org/10.1016/j.ejor.2014.01.032 Uhlig, H. (2005). What are the effects of monetary policy on result? Results from an agnostic identification procedure. Journal of Monetary Economics, 52(2), 381–419. doi.org/10.1016/j.jmoneco.2004.05.007 Van Beers, R. J., Van der Meer, Y., & Veerman, R. M. (2013). What autocorrelation tells us about motor variability: Insights from dart throwing. PloS one, 8(5), e64332. doi.org/10.1371/journal.pone.0064332 Vivian, A., & Wohar, M. E. (2012). Commodity volatility breaks. Journal of International Financial Markets, Institutions and Money, 22(2), 395-422. doi.org/10.1016/j.intfin.2011.12.003 Wallis, K. F. (2011). Combining forecasts–forty years later. Applied Financial Economics, 21(1-2), 33-41.doi.org/10.1080/09603107.2011.523179 White, H. (1980). A heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica, 48 (4), 817-838. DOI: 10.2307/1912934 Williams, R. (2009). Using heterogeneous choice models to compare logit and probit coefficients across groups. Sociological Methods & Research, 37(4), 531-559. http://smr.sagepub.com http://online.sagepub.com Yan, X.& Su, X. G. (2009). Linear regression estimation: theory and computing. World Scientific Publishing Co. Pte. Ltd. www.manalhelal.com/Books/geo/LinearRegression AnalysisTheoryandComputing Yu, K., Wen, Z., Xu, X., & Ester, M. (2001). Feature weighting and instance selection for collaborative filtering. In Database and Expert Systems Applications, 2001. Proceedings. 12th International Workshop on (pp. 285-290). IEEEDOI: 10.1109/DEXA.2001.953076 Zhang, Z., Jia, J., & Ding, R. (2012). Hierarchical least squares based iterativeestimation algorithm for multivariable Box–Jenkins-like systems using the auxiliary model. Applied Mathematics and Computation, 218(9), 5580–5587. doi.org/10.1016/j.amc.2011.11.051