Hybrid watermark techniques for skin cancer images

The aims of this study are to reveal the potentials of digital watermarking in medical datamanagement issues, and proposes a hybrid watermark technique for skin cancer to enforce integrity,authenticity and confidentiality of the medical information. Dermoscopic image dataset (PH2) wasused for testin...

Full description

Saved in:
Bibliographic Details
Main Author: Omar Adil Dheyab
Format: thesis
Language:eng
Published: 2019
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=17
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:17
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic RC0254 Neoplasms
Tumors
Oncology (including Cancer)
spellingShingle RC0254 Neoplasms
Tumors
Oncology (including Cancer)
Omar Adil Dheyab
Hybrid watermark techniques for skin cancer images
description The aims of this study are to reveal the potentials of digital watermarking in medical datamanagement issues, and proposes a hybrid watermark technique for skin cancer to enforce integrity,authenticity and confidentiality of the medical information. Dermoscopic image dataset (PH2) wasused for testing purpose, which includes 200 different images. The hybrid watermark is proposedbased on chaotic embedding. The hybrid watermarking includes robust and fragile watermarks embeddedin the region of non interest of the image. The robust watermark utilizes the discrete wavelettransform to hide the patient information in the frequency domain. The fragile watermark utilizesthe least significant bit to hide the authentication data in the spatial domain. The findings ofthis study shows high watermarked image quality and promising robustness under different attacks,and when compared with other techniques including discrete cosine transform and 2LSB. The PeakSignalto-Noise Ratio (PSNR) of the watermarked image is 37.64 dB and the Mean Square Error (MSE)is 36.7507 dB, which indicate good image equality. In general, the hybrid watermark did not degradethe image quality and enhanced medical data security and authentication. The proposed hybridwatermarking can help health organizations todeal with medical information effectively, especially during storage and transmission.
format thesis
qualification_name
qualification_level Doctorate
author Omar Adil Dheyab
author_facet Omar Adil Dheyab
author_sort Omar Adil Dheyab
title Hybrid watermark techniques for skin cancer images
title_short Hybrid watermark techniques for skin cancer images
title_full Hybrid watermark techniques for skin cancer images
title_fullStr Hybrid watermark techniques for skin cancer images
title_full_unstemmed Hybrid watermark techniques for skin cancer images
title_sort hybrid watermark techniques for skin cancer images
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Seni, Komputeran dan Industri Kreatif
publishDate 2019
url https://ir.upsi.edu.my/detailsg.php?det=17
_version_ 1747832858161971200
spelling oai:ir.upsi.edu.my:172020-02-13 Hybrid watermark techniques for skin cancer images 2019 Omar Adil Dheyab RC0254 Neoplasms. Tumors. Oncology (including Cancer) The aims of this study are to reveal the potentials of digital watermarking in medical datamanagement issues, and proposes a hybrid watermark technique for skin cancer to enforce integrity,authenticity and confidentiality of the medical information. Dermoscopic image dataset (PH2) wasused for testing purpose, which includes 200 different images. The hybrid watermark is proposedbased on chaotic embedding. The hybrid watermarking includes robust and fragile watermarks embeddedin the region of non interest of the image. The robust watermark utilizes the discrete wavelettransform to hide the patient information in the frequency domain. The fragile watermark utilizesthe least significant bit to hide the authentication data in the spatial domain. The findings ofthis study shows high watermarked image quality and promising robustness under different attacks,and when compared with other techniques including discrete cosine transform and 2LSB. The PeakSignalto-Noise Ratio (PSNR) of the watermarked image is 37.64 dB and the Mean Square Error (MSE)is 36.7507 dB, which indicate good image equality. In general, the hybrid watermark did not degradethe image quality and enhanced medical data security and authentication. The proposed hybridwatermarking can help health organizations todeal with medical information effectively, especially during storage and transmission. 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=17 https://ir.upsi.edu.my/detailsg.php?det=17 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Seni, Komputeran dan Industri Kreatif Abdulbaki, A. S. (2012). Skin cancer image segmentation & detection by using unsupervisedmachine learning.Aher, M. S. V., & Vasekar, M. S. (2016). A Review: Histogram Equalization Algorithms for ImageEnhancement using FPGA. International Journal of Advanced Research in Computer andCommunication Engineering, 5(4), 711-714.Ahmad, M., Gupta, C., & Varshney, A. (2009, March). Digital image encryption based on chaotic map for secure transmission. In Multimedia, Signal Processing and CommunicationTechnologies, 2009. IMPACT'09. International (pp. 292-295). IEEE.Ahmed, I. N., & Chaya, P. (2014). Segmentation and Classification of Skin Cancer Images.International Journal, 4(5).Al-Dmour, H., & Al-Ani, A. (2016). Quality optimized medical image information hiding algorithmthat employs edge detection and data coding. Computer methods and programs in biomedicine, 127,24-43.Al-Qershi, O. M., & Khoo, B. E. (2011). High capacity data hiding schemes for medical images basedon difference expansion. Journal of Systems and Software, 84(1), 105-112.Alwan, I. M., & Mohammed, F. J. (2016). Image Hiding Using Discrete Cosine Transform.Journal Of The College Of Education For Women, 27(1), 393-399.An, L., Gao, X., Yuan, Y., Tao, D., Deng, C., & Ji, F. (2012). Content-adaptive reliable robustlossless data embedding. Neurocomputing, 79, 1-11.Anees, A., Siddiqui, A. M., Ahmed, J., & Hussain, I. (2014). A technique for digital steganographyusing chaotic maps. Nonlinear Dynamics, 75(4), 807-816.Ansari, S., Gupta, N., & Agrawal, S. (2012). A Review on Chaotic Map Based Cryptography.International Journal of Scientific Engineering and Technology.Anthony, G., Greg, H., & Tshilidzi, M. (2007). Classification of images using support vectormachines. arXiv preprint arXiv:0709.3967.Arsalan, M., Malik, S. A., & Khan, A. (2012). Intelligent reversible watermarking in integerwavelet domain for medical images. Journal of Systems and Software, 85(4), 883-894.Barani, M. J., Valandar, M. Y., & Ayubi, P. (2015, May). A secure watermark embeddingapproach based on chaotic map for image tamper detection. In Information and KnowledgeTechnology (IKT), 2015 7th Conference on (pp. 1-5). IEEE.Bard, R. L. (2017). High-Frequency Ultrasound Examination in the Diagnosis of Skin Cancer.Dermatologic Clinics.Bhuiyan, M. A. H., Azad, I., & Uddin, K. (2013). Image processing for skin cancer featuresextraction. International Journal of Scientific & Engineering Research, 4(2), 1-6.Bilal, M., Imtiaz, S., Abdul, W., Ghouzali, S., & Asif, S. (2014). Chaos based Zero- steganographyalgorithm. Multimedia tools and applications, 72(2), 1073-1092.Bloch, I. (2015). Fuzzy sets for image processing and understanding. Fuzzy Sets and Systems, 281,280-291.Botta, M., Cavagnino, D., & Pomponiu, V. (2015). A successful attack and revision of a chaoticsystem based fragile watermarking scheme for image tamper detection. AEU- International Journal ofElectronics and Communications, 69(1), 242-245.Bremnavas, I., Poorna, B., & Kanagachidambaresan, G. R. (2011). Medical image security using LSBand chaotic logistic map.Caragata, D., El Assad, S., & Luduena, M. (2015). An improved fragile watermarking algorithm forJPEG images. AEU-International Journal of Electronics and Communications, 69(12), 1783-1794.Celebi, M. E., Iyatomi, H., Schaefer, G., & Stoecker, W. V. (2009). Lesion border detection indermoscopy images. Computerized medical imaging and graphics, 33(2), 148-153.Celik, M. U., Sharma, G., & Tekalp, A. M. (2006). Lossless watermarking for image authentication: anew framework and an implementation. IEEE Transactions on Image Processing,15(4), 1042-1049.Chadha, A., Mallik, S., & Johar, R. (2012). Comparative study and optimization of feature-extraction techniques for content based image retrieval. arXiv preprint arXiv:1208.6335.Chakravorty, R., Liang, S., Abedini, M., & Garnavi, R. (2016, August). Dermatologist-like feature extraction from skin lesion for improved asymmetry classification in PH 2 database. InEngineering in Medicine and Biology Society (EMBC), 2016 IEEE 38thAnnual International Conference of the (pp. 3855-3858). IEEE.Chandra, G., Chandra, N., & Verma, S. (2015). A Review on Multiple Chaotic Maps for ImageEncryption with Cryptographic Technique. International Journal of ComputerApplications, 121(13).Chang, C. C., & Tseng, H. W. (2009, June). Data hiding in images by hybrid LSB substitution.In Multimedia and Ubiquitous Engineering, 2009. MUE'09. Third International Conference.Chang, C. C., Chen, K. N., Lee, C. F., & Liu, L. J. (2011). A secure fragile watermarking schemebased on chaos-and-hamming code. Journal of Systems and Software, 84(9), 1462-1470.Chettri, R., Pradhan, S., & Chettri, L. (2015). Internet of Things: Comparative Study onClassification Algorithms (k-NN, Naive Bayes and Case based Reasoning). International Journal ofComputer Applications, 130(12), 7-9.Chitaliya, N. G., & Trivedi, A. I. (2010, March). Feature extraction using wavelet-pca and neuralnetwork for application of object classification & face recognition. In Computer Engineering andApplications (ICCEA), 2010 Second International Conference on (Vol. 1, pp. 510-514). IEEE.Chitla, A., & Chandra Mohan, M. (2014). Authenticating Medical Images With Lossless DigitalWatermarking. International Journal Of Multidisciplinary And Current Research, 2.Chitla, A., & Chandra Mohan, M. (2014). Authenticating Medical Images With Lossless DigitalWatermarking. International Journal Of Multidisciplinary And Current Research, 2.ifti, G. (2003). Shape Analysis Using Contour-Based and Region-Based Approaches. Doctoraldissertation, Middle East Technical University.Cui, S., Jiang, H., Wang, Z., & Shen, C. (2017, June). Application of neural network based on SIFTlocal feature extraction in medical image classification. In Image, Vision and Computing (ICIVC),2017 2nd International Conference on (pp. 92-97). IEEE.Dalila, F., Zohra, A., Reda, K., & Hocine, C. (2017). Segmentation and Classification of Melanomaand Benign Skin Lesions. Optik-International Journal for Light and Electron Optics.Das, S., & Kundu, M. K. (2013). Effective management of medical information through ROI- losslessfragile image watermarking technique. Computer methods and programs inbiomedicine,111(3), 662-675.Demidova, L., Nikulchev, E., & Sokolova, Y. (2016). Big data classification using the SVMclassifiers with the modified particle swarm optimization and the SVM ensembles. InternationalJournal of Advanced Computer Science and Applications (IJACSA), 7(5), 294-312.Denil, M., Matheson, D., & De Freitas, N. (2013). Narrowing the gap: Random forests in theory andin practice. Cornell University Library:arXiv preprint arXiv:1310.1415.Diaconu, A. V. (2016). Circular interintra pixels bit-level permutation and chaos-based imageencryption. Information Sciences, 355, 314-327.Dimitrovski, I., Kocev, D., Kitanovski, I., Loskovska, S., & D?eroski, S. (2015). Improved medicalimage modality classification using a combination of visual and textual features. ComputerizedMedical Imaging and Graphics, 39, 14-26.Dobbin, K. K., & Simon, R. M. (2011). Optimally splitting cases for training and testing highdimensional classifiers. BMC medical genomics, 4(1), 1.Drew, T., Evans, K., V, M. L. H., Jacobson, F. L., & Wolfe, J. M. (2013). Informatics inradiology: what can you see in a single glance and how might this guide visual search in medicalimages?. Radiographics, 33(1), 263-274.Elgamal, M. (2013). Automatic skin cancer images classification. IJACSA) International Journal ofAdvanced Computer Science and Applications, 4(3), 287-294.Fakhari, P., Vahedi, E., & Lucas, C. (2011). Protecting patient privacy from unauthorized releaseof medical images using a bio-inspired wavelet-based watermarking approach. Digital SignalProcessing, 21(3), 433-446.Fawcett, T., (2003). ROC graphs: notes and practical consideration for researchers, TechnicalReport, HP Lab, 1-27.Garbe, C., Peris, K., Hauschild, A., Saiag, P., Middleton, M., Spatz, A., ... & Pehamberger, H.(2012). Diagnosis and treatment of melanoma. European consensus-based interdisciplinaryguidelineUpdate 2012. European journal of cancer, 48(15), 2375-2390.Garcia-Hernandez, J. J., Gomez-Flores, W., & Rubio-Loyola, J. (2016). Analysis of the impact ofdigital watermarking on computer-aided diagnosis in medical imaging. Computers in biology andmedicine, 68, 37-48.Gasparini, F., Corchs, S., and Schettini, R., (2008). Recall or precision-oriented strategies forbinary classification of skin pixels. Journal of Electronic Imaging, 17(2), 1-15.Ghebleh, M., & Kanso, A. (2014). A robust chaotic algorithm for digital image steganography.Communications in Nonlinear Science and Numerical Simulation, 19(6), 1898-1907.Goel, R., Kumar, V., Srivastava, S., Sinha, A. K. (2017). A Review of Feature Extraction Techniquesfor Image Analysis. International Conference on Advances in Computational Techniques and ResearchPractices, Vol. 6(Special Issue 2).Gonzalez, R.C., Woods, R.E., and Eddins, S.L., (2009). Digital image processing using MATLAB.Gatesmark Publishing, Second Edition, 827 pagesGu, Q., & Gao, T. (2013). A novel reversible robust watermarking algorithm based on chaotic system.Digital Signal Processing, 23(1), 213-217.Guzella, T.S., and Caminhas, W.M., (2009). A review of machine learning approaches to spam,filtering. Expert System with Application, 36(7), 10206-10222.Hamouda, K., Elmogy, M., & El-Desouky, B. S. (2014, December). A fragile watermarkingauthentication schema based on Chaotic maps and fuzzy cmeans clustering technique. In ComputerEngineering & Systems (ICCES), 2014 9th International Conference on (pp. 245-252). IEEE.Hassan, M. M. (2013). Current studies on intrusion detection system, genetic algorithm and fuzzylogic. Cornell University Library:arXiv preprint arXiv: 1304.3535.Hasso, M. A. R., & Elyas, R. M. (2014). Fast Image Registration Based on Features Extraction andAccurate Matching Points for Image Stitching. International Journal of Computer Science Issues(IJCSI), 11(5), 138.Hemamalini, N., & Aggarwal, L. M. (2010). Automated medical image segmentation techniques.Journal of medical physics/Association of Medical Physicists of India, 35(1), 3.Hoshyar, A. N., Al-Jumaily, A., & Hoshyar, A. N. (2014). The Beneficial Techniques in PreprocessingStep of Skin Cancer Detection System Comparing. Procedia Computer Science,Hota, H. S., Shukla, S. P., & Gulhare, K. (2013). Review of intelligent techniques applied forclassification and preprocessing of medical image data. International Journal of ComputerScience Issues, 10(1/3), 267-272.Ibrahim, A. S., Sartep, H. J. (2017). Grayscale Image Coloring by Using YCbCr and HSV Color Spaces.IJMTER, VoL. 4(4).Iftikhar, S., Kamran, M., & Anwar, Z. (2015). A survey on reversible watermarking techniques forrelational databases. Security and Communication Networks, 8(15), 2580-2603.Ingale, S. P., & Dhote, C. A. (2016). Digital Watermarking Algorithm using DWT Technique.IJCSMC, Vol. 5(5), 01 0Jain, S. (2013). Brain cancer classification using GLCM based feature extraction in artificialneural network. International Journal of Computer Science & Engineering Technology, 4(7), 966-970.Jain, S., jagtap,, V., Pise, N. (2015). Computer aided melanoma skin cancer detection using image processing. Procedia Computer Science, 48, 735-740.Jasani, D., Patel, P., Patel, S., Ahir, B., Patel, K., & Dixit, M. (2015). Review of shape andtexture feature extraction techniques for fruits. International Journal of Computer Science andInformation Technologies, 6(6), 4851-4854.Jaskaran Singh, & Anoop Kumar Patel, (2017). Region of Interest Based Adaptable WatermarkingTechnique for Medical Images . International Journal of Advances in Electronics and ComputerScience ISSN: 2393-2835 Volume-4, Issue-11.Jianli, L., & Baoqi, Z. (2009, March). The segmentation of skin cancer image based on geneticneural network. In Computer Science and Information Engineering, 2009 WRI World Congress on (Vol.5, pp. 594-599). IEEE.Joshi, S., Pandey, B., & Joshi, N. (2015). Comparative analysis of Naive Bayes and J48classification. International Journal of Advanced Research in Computer Science and SoftwareEngineering, 5(12), 813-7.Kadhim, Q. K. (2016). Image Compression Using Discrete Cosine Transform Method.International Journal of Computer Science and Mobile Computing,Vol.5 (9).Kakumanu, P., Makrogiannis, S., & Bourbakis, N. (2007). A survey of skin-color modeling anddetection methods. Pattern recognition, 40(3), 1106-1122.Kanan, C., & Cottrell, G. W. (2012). Color-to-grayscale: does the method matter in imagerecognition?. PloS one, 7(1), e29740.Kanso, A., & Own, H. S. (2012). Steganographic algorithm based on a chaotic map.Communications in Nonlinear Science and Numerical Simulation, 17(8), 3287-3302.Kapoor, K., & Arora, S. (2015). Colour image enhancement based on histogram equalization.Electrical & Computer Engineering: An International Journal, 4(3), 73-82.Kaur, D., & Kaur, Y. (2014). Various Image Segmentation Techniques: A Review. International Journalof Computer Science and Mobile Computing, 3(5), 809-814.Keshari, S., & Modani, S. G. (2011). Image Encryption Algorithm based on Chaotic Map Latticeand Arnold cat map for Secure Transmission 1.Khalind, O., & Aziz, B. (2013, December). Single-mismatch 2LSB embedding steganography.In Signal Processing and Information Technology (ISSPIT), 2013 IEEE International Symposium on (pp.000283-000286). IEEE.Khan, W. (2013). Image segmentation techniques: A survey. Journal of Image and Graphics, 1(4),166-170.Khor, H. L., Liew, S. C., & Zain, J. M. (2017). Region of Interest-Based Tamper Detection andLossless Recovery Watermarking Scheme (ROI-DR) on Ultrasound Medical Images. Journal of digitalimaging, 30(3), 328-349.Kone, C., Le Thanh, N., Flamary, R., & Belleudy, C. (2018). Performance Comparison of the KNN andSVM Classification Algorithms in the Emotion Detection System EMOTICA. International Journal ofSensor Networks and Data Communications.Koppu, S., & Viswanatham, V. M. (2017). A Fast Enhanced Secure Image Chaoti Cryptosystem Based onHybrid Chaotic Magic Transform. Modelling and Simulation in Engineering, 2017.Krishna, M. C., Ranganayakulu, S., Venkatesan, P. (2016). Skin Cancer Detection and FeatureExtraction through Clustering Technique. IJIRCCE, Vol. 4(3).Kumar, M. ( 2003). DIGITAL IMAGE PROCESSING. Satellite Remote Sensing and GIS Applications inAgricultural Meteorology, India.Kumravat, S. (2013). An efficient steganographic scheme using skin tone detection and discretewavelet transformation. Int J Comput Sci Eng Technol (IJCSET), 4(7), 971-976.Lau, H. T., & Al-Jumaily, A. (2009, December). Automatically early detection of skin cancer: Studybased on nueral netwok classification. In Soft Computing and Pattern Recognition, 2009. SOCPAR'09.International Conference of (pp. 375-380). IEEE.Lazarov, N., & Ilcheva, Z. (2016, September). A fragile watermarking algorithm for image tamperdetection based on chaotic maps. In Intelligent Systems (IS), 2016 IEEE 8th InternationalConference on (pp. 723-728). IEEE.Lee, H., & Chen, Y. P. P. (2015). Image based computer aided diagnosis system for cancer detection.Expert Systems with Applications, 42(12), 5356-5365.Lee, H., & Chen, Y. P. P. (2015). Image based computer aided diagnosis system for cancer detection.Expert Systems with Applications, 42(12), 5356-5365.Lee, J., Pant, S. R., & Lee, H. S. (2015). An adaptive histogram equalization based local techniquefor contrast preserving image enhancement. International Journal of FuzzyLogic and Intelligent Systems, 15(1), 35-44.Lei, B., & Soon, Y. (2015). Perception-based audio watermarking scheme in the compressedbitstream. AEU-International Journal of Electronics and Communications, 69(1), 188- 197.Li, S. Q., & Wu, Y. (2010, April). A Robust Chaos-Based Watermarking for Copyright Protection. InBiomedical Engineering and Computer Science (ICBECS), 2010 International Conference on(pp. 1-3). IEEE.Liao, X., & Wen, Q. Y. (2008, December). Embedding in two least significant bits with wet papercoding. In 2008 International Conference on Computer Science and SoftwareEngineering (pp.555-558). IEEE.Liu, L., & Miao, S. (2016). A new image encryption algorithm based on logistic chaotic map withvarying parameter. SpringerPlus, 5(1), 289.Lpez-Hernndez, J., Vazquez-Medina, R., Ortiz-Moctezuma, M. B., & Del-Rio-Correa, J. L. (2012).Digital implementation of a pseudo-random noise generator using chaotic maps. IFAC ProceedingsVolumes, 45(12), 209-214.Lorentzon, M. (2017). Feature extraction for image selection using machine learning. Master thesis,Linkping University, Sweden.Loussaief, S., & Abdelkrim, A. (2017, July). Machine learning framework for image classification.In Information and Digital Technologies (IDT), 2017 International Conference on (pp. 58-61).IEEE.Ma, Z., & Tavares, J. M. R. (2015). A review of the quantification and classification of pigmentedskin lesions: From dedicated to hand-held devices. Journal of medical systems, 39(11), 177.Mahmoud, M. K. A., & Al-Jumaily, A. (2011, August). Segmentation of skin cancer images based ongradient vector flow (GVF) snake. In Mechatronics and Automation (ICMA), 2011 InternationalConference on (pp. 216-220). IEEE.Mandal, A. K., & Baruah, D. K. (2013). Image Segmentation Using Local Thresholding And Ycbcr ColorSpace. Journal of Engineering Research and Applications, Vol. 3 (6), pp. 511-514.Mandloi, G. (2014). A survey on feature extraction techniques for color images. InternationalJournal of Computer Science and Information Technologies, 5(3), 4615-4620.Manojbhai, D. D., & Rajamenakshi, R. (2016). Large Scale Image feature extraction frommedical image analysis. International journal of advanced engineering and research.Masood, A., & Ali Al-Jumaily, A. (2013). Computer aided diagnostic support system for skincancer: a review of techniques and algorithms. International journal of biomedical imaging, 2013.Medhi, S., Ahmed, C., & Gayan, R. (2016). A Study on Feature Extraction Techniques in ImageProcessing. International Journal of Computer Sciences and Engineering, Vol.4 (Special Issue-7).Mendonca Chahar, P. S., & Thakare, V. (2015). Performance Comparison of Various Filters forRemoving Gaussian and Poisson Noises. International Research Journal of Engineering and Technology,2(5), 1101-1105.Mhaske, H. R., & Phalke, D. A. (2013, December). Melanoma skin cancer detection and classificationbased on supervised and unsupervised learning. In Circuits, Controls and Communications (CCUBE),2013 International conference on (pp. 1-5). IEEE.Mishra, A., Rai, A., & Yadav, A. (2014). Medical image processing: A challenging analysis.International Journal of Bio-Science and Bio-Technology, 6(2), 187-194.Mitra, S., & Shankar, B. U. (2015). Medical image analysis for cancer management in naturalcomputing framework. Information Sciences, 306, 111-131.Mohammadi, S. (2015, September). A chaotic watermarking scheme using discrete cosine transform. InInformation Security and Cryptology (ISCISC), 2015 12th International Iranian Society of CryptologyConference on (pp. 6-10). IEEE.Moniruzzaman, M., Hawlader, M. A. K., & Hossain, M. F. (2014, May). An image fragile watermarkingscheme based on chaotic system for image tamper detection. In Informatics, Electronics &Vision (ICIEV), 2014 International Conference on (pp. 1-6). IEEE.Moss, H. B., Leslie, D. S., & Rayson, P. (2018). Using JK fold Cross Validation to Reduce VarianceWhen Tuning NLP Models. arXiv preprint arXiv:1806.07139.Murumkar, O. S., & Gumaste, P. P. (2015). Feature Extraction for Skin Cancer Lesion Detection.International Journal of Science, Engineering and Technology Research (IJSETR), 4(5).Naheed, T., Usman, I., Khan, T. M., Dar, A. H., & Shafique, M. F. (2014). Intelligent reversiblewatermarking technique in medical images using GA and PSO. Optik-International Journal forLight and Electron Optics, 125(11), 2515-2525.Nambakhsh, M. S., Ahmadian, A., & Zaidi, H. (2011). A contextual based double watermarking of PETimages by patient ID and ECG signal. Computer methods and programs inbiomedicine, 104(3), 418-425.Nammalwar, P., Ghita, O., & Whelan, P. F. (2009). Segmentation of skin cancer images. Googlescholar.Naseem, M. T., Qureshi, I. M., & Muzaffar, M. Z. (2013, December). Chaos based invertibleauthentication of medical images. In Emerging Technologies (ICET), 2013 IEEE 9thInternational Conference on (pp. 1-5). IEEE.Natanj, S., & Taghizadeh, S. R. (2011). Current Steganography Approaches: A survey.International Journal of Advanced Research in Computer Science and SoftwareEngineering, 1.Naveed, A., Saleem, Y., Ahmed, N., & Rafiq, A. (2015). Performance evaluation and watermarksecurity assessment of digital watermarking techniques. Science International, 27(2).Oliveira, R. B., Marranghello, N., Pereira, A. S., & Tavares, J. M. R. (2016). A computationalapproach for detecting pigmented skin lesions in macroscopic images. Expert Systemswith Applications, 61, 53-63.Orozco, J., & Garca, C. A. R. (2003, April). Detecting pathologies from infant cry applyingscaled conjugate gradient neural networks. In European Symposium on Artificial NeuralNetworks, Bruges (Belgium) (pp. 349-354).Patel, M. N., & Tandel, P. (2016). A Survey on Feature Extraction Techniques for Shape basedObject Recognition. Image, 137(6).Patil, A. B., & Shaikh, J. A. (2016). Segmentation and Feature Extraction of Flowers Intendedfor Image Retrieval: A survey .IJARECE, Vol. 5(1).Pereira, S. Voloshynovskiy, S., Pun, T. (2000). Optimized wavelet domain watermarkembedding strategy using linear programming, in: Proceedings of SPIE on AeroSense,Orlando, Florida, USA, 2000, pp. 490498.Pereira, S., & Pun, T. (1999, September). Fast robust template matching for affine resistantimage watermarks. In Information Hiding (pp. 199-210).Preethi, B. C., & Abraham, G. E. (2016). Lung Tissue Extraction Using OTSU Thresholding inLung Nodule Detection from CT Images. International Journal of Current Trends inEngineering & Technology , 2(06).Ram, B., Kumar,M. (2013). Digital image watermarking technique using discrete wavelettransform and discrete cosine transform. International journal of Advancements inResearch & technology, 2(4), 19-27.Rawat, S., & Raman, B. (2011). A chaotic system based fragile watermarking scheme for imagetamper detection. AEU-International Journal of Electronics and Communications, 65(10),840-847.Ren, W., Hu, L., Zhao, K., Chu, J., & Jia, B. (2013). Intrusion Classifier based on MultipleAttribute Selection Algorithms. Journal of Computers, 8(10), 2536-2543.Renu Bala (2016). Image Edge Detection using Discrete Wavelet Transform. InternationalJournal of Innovative Research in Computer and Communication Engineering, Vol. 4(Special Issue 4).Review on Different Chaotic Based Image Encryption Techniques. Intern. Journal of Info. andComputation Tech.Vol. 4(2), pp. 197-206.Roy, K. K., & Phadikar, A. (2014). Automated Medical Image Segmentation: A Survey. In Proc.of Int. Conf. on Computing, Communication & Manufacturing.Roy, R., Sarkar, A., & Changder, S. (2013). Chaos based edge adaptive image steganography.Procedia Technology, 10, 138-146.Sajasi, S., & Eftekhari-Moghadam, A. M. (2013, April). A high quality image hiding schemebased upon Noise Visibility Function and an optimal chaotic based encryption method. InAI & Robotics and 5th RoboCup Iran Open International Symposium (RIOS),Sathisha, N., Madhusudan, G. N., Bharathesh, S., Babu, K. S., Raja, K. B., & Venugopal, K. R.(2010, July). Chaos based spatial domain steganography using MSB. In Industrial andInformation Systems (ICIIS), 2010 International Conference on (pp. 177-182). IEEE.Scholl, I., Aach, T., Deserno, T. M., & Kuhlen, T. (2011). Challenges of medical imageprocessing. Computer science-Research and development, 26(1), 5-13.Shahzad, R. K., & Lavesson, N. (2013). Comparative analysis of voting schemes for ensemblebasedmalware detection. Journal of Wireless Mobile Networks, Ubiquitous Computing,and Dependable Applications, 4(1), 98-117.Sharma, N., & Aggarwal, L. M. (2010). Automated medical image segmentation techniques.Journal of medical physics/Association of Medical Physicists of India, 35(1), 3.Shaw, G.A., and Burke, H.H.K., (2003). Spectral imaging for remote sensing. LincolnLaboratoryShejul, A. A., & Kulkarni, U. L. (2010, February). A DWT based approach for steganographyusing biometrics. In Data Storage and Data Engineering (DSDE), 2010 InternationalConference on (pp. 39-43). IEEE.Shen, Q., Diao, R., & Su, P. (2012). Feature Selection Ensemble. Turing-100, 10, 289-306.Silveira, M., Nascimento, J. C., Marques, J. S., Maral, A. R., Mendona, T., Yamauchi, S., ... &Rozeira, J. (2009). Comparison of segmentation methods for melanoma diagnosis indermoscopy images. IEEE Journal of Selected Topics in Signal Processing, 3(1), 35-45.Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing: A practicalapproach with examples in Matlab. John Wiley & Sons.Starck, J. L., Murtagh, F., Cands, E. J., & Donoho, D. L. (2003). Gray and color image contrastenhancement by the curvelet transform. IEEE Transactions on image processing, 12(6),706-717.Subramanian, T., Taqa, A.Y., and Jalab, H.A., (2010). Overview of textual anti-spam filtering,techniques. International Journal of Physical Science, 5 (12), 1869-1882.Suksut, K., Chanklan, R., Kaoungku, N., Chaiyakhan, K., Kerdprasop, N., & Kerdprasop, K.(2017). Parameter Optimization for Mammogram Image Classification with SupportVector Machine. In Proceedings of the International MultiConference of Engineers andComputer Scientists (Vol. 1).Tabash, F. K., Rafiq, M. Q., & Izharrudin, M. (2013). Image encryption algorithm based onchaotic map. International Journal of Computer Applications, 64(13).Tataru, R. L., El Assad, S., & Dforges, O. (2012, December). Improved blind DCTwatermarking by using chaotic sequences. In Internet Technology And SecuredTransactions, 2012 International Conference for (pp. 46-50). IEEE.Thabit, R., & Khoo, B. E. (2015). A new robust lossless data hiding scheme and its application tocolor medical images. Digital Signal Processing, 38, 77-94.Thanh Noi, P., & Kappas, M. (2017). Comparison of random forest, k-nearest neighbor, andsupport vector machine classifiers for land cover classification using Sentinel-2 imagery.Sensors, 18(1), 18.Thongkor, K., & Amornraksa, T. (2014, December). Digital image watermarking with partialembedding on blue color component. In APSIPA (pp. 1-4).Thorat, C. G., & Jadhav, B. D. (2010). A blind digital watermark technique for color imagebased on integer wavelet transform and SIFT. Procedia Computer Science, 2, 236-241.Tong, X., Liu, Y., Zhang, M., & Chen, Y. (2013). A novel chaos-based fragile watermarking forimage tampering detection and self-recovery. Signal Processing: Image Communication,28(3), 301-308.Trabelsi, O., Tlig, L., Sayadi, M., & Fnaiech, F. (2015, March). Skin lesion segmentation usingthe DS evidence theory based on the FCM using feature parameters. In Systems, Signals& Devices (SSD), 2015 12th International Multi-Conference on (pp. 1-5). IEEE.Tsai, D. Y., Lee, Y., Sekiya, M., & Ohkubo, M. (2004). Medical image classification usinggenetic-algorithm based fuzzy-logic approach. Journal of Electronic Imaging, 13(4),780-788.Tzotso, A. (2006). A support vector machine approach for object based image analysis.Proceedings of OBIA.Umbaugh, S.E., (2010). Digital image processing and analysis: human and computer applicationswith CVIP tools. CRC Press, Second Edition, 977 pagesWang, G., Zuluaga, M. A., Li, W., Pratt, R., Patel, P. A., Aertsen, M., ... & Vercauteren, T.(2018). DeepIGeoS: a deep interactive geodesic framework for medical imagesegmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.Wang, J., Sun, Y., Xu, H., Chen, K., Kim, H. J., & Joo, S. H. (2010). An improved section-wiseexploiting modification direction method. Signal Processing, 90(11), 2954-2964.Wang, P., Wei, Z., & Cao, C. (2010, June). A Fragile Watermarking Algorithm Based onLogistic System. In Information and Computing (ICIC), 2010 Third InternationalConference on (Vol. 4, pp. 304-307). IEEE.Wisaeng, K. (2013). A Comparison of Different Classification Techniques for Bank DirectMarketing. International Journal of Soft Computing and Engineering (IJSCE), 3(4), 116-119.Wu, C. M., & Shih, Y. S. (2013). A simple image tamper detection and recovery based onfragile watermark with one parity section and two restoration sections. Optics andPhotonics Journal, 3(02), 103.Wu, J. K., Kankanhalli, M. S., Lim, J. H., & Hong, D. (2000). Perspectives on content-basedmultimedia systems (Vol. 9). Springer Science & Business Media.Xia, R., Zhao, J., & Liu, Y. (2013, October). A robust feature-based registration method ofmultimodal image using phase congruency and coherent point drift. In EighthInternational Symposium on Multispectral ImageProcessing and Pattern Recognition (pp.891903-891908).Xiao, D., & Jin, J. (2012, November). A reversible two-level image authentication scheme basedon chaotic fragile watermark. In Emerging Technologies for a Smarter World (CEWIT),2012 9th International Conference & Expo on (pp. 1-6). IEEE.Xiao, D., & Shih, F. Y. (2012). An improved hierarchical fragile watermarking scheme usingchaotic sequence sorting and subblock post-processing. Optics Communications,285(10), 2596-2606.Xie, S., Lawnizak, A. T., Lio, P., & Krishnan, S. (2013). Feature extraction by multi-scaleprincipal component analysis and classification in spectral domain. Engineering, 5(10),268.Xingyang, Z., & Jiyin, S. (2009, October). A novel clor image fragile watermarking based on theextended channel. In Broadband Network & Multimedia Technology, 2009. ICBNMT'09. 2nd IEEE International Conference on (pp. 422-428). IEEE.Xu, H., Wang, J., & Kim, H. J. (2010). Near-optimal solution to pair-wise LSB matching via animmune programming strategy. Information Sciences, 180(8), 1201-1217.Yadav, M., & Dhankhar, A.(2015) Image Steganography Techniques: A Review. IJIRST, Vol. 2Yaiprasert, C., Jaroensutasinee, K., and Jaroensutasinee, M., (2007). The pixel valuedataapproach for rainfall forecasting based on GOES-9 satellite image sequence analysis.World Academy of Science, Engineering and Technology, 3(8), 186-191.Yang, M., Kpalma, K., & Ronsin, J. (2008). A survey of shape feature extraction techniques.Pattern Recognition, IN-TECH, pp.43-90, 2008.Yogamangalam, R., & Karthikeyan, B. (2013). Segmentation techniques comparison in imageprocessing. International Journal of Engineering and Technology (IJET), 5(1), 307-313.Yu, H., Yang, J., & Han, J. (2003, August). Classifying large data sets using SVMs withhierarchical clusters. In Proceedings of the ninth ACM SIGKDD international conferenceon Knowledge discovery and data mining (pp. 306-315). ACM.Yu, L., Zhao, Y., Ni, R., & Li, T. (2010). Improved adaptive LSB steganography based on chaosand genetic algorithm. EURASIP Journal on Advances in Signal Processing, 2010(1),876946.Yuan, X., Situ, N., & Zouridakis, G. (2008). Automatic segmentation of skin lesion images usingevolution strategies. Biomedical signal processing and control, 3(3), 220-228.Zaidan, A. A. (2013). Anti-pornography algorithm based on multi-agent learning in skin detectorand pornography classifier (Doctoral dissertation, Multimedia University (Malaysia)).Zaidan, A. A., Karim, H. A., Ahmad, N. N., Alam, G. M., & Zaidan, B. B. (2010). A new hybridmodule for skin detector using fuzzy inference system structure and explicit rules.International Journal of Physical Sciences, 5(13), 2084-2097.Zainal, A. (2011). An adaptive intrusion detection model for dynamic network traffic patternsusing machine learning techniques. Doctoral dissertation, Universiti Teknologi Malaysia,Faculty of Computer Science and Information System.Zhang, J., Zhang, Q., & Lv, H. (2013). A novel image tamper localization and recoveryalgorithm based on watermarking technology. Optik-International Journal for Light andElectronZhang, J., Zhang, Q., & Lv, H. (2013). A novel image tamper localization and recoveryalgorithm based on watermarking technology. Optik-International Journal for Light andElectron Optics, 124(23), 6367-6371.Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for knn classification.ACM Transactions on Intelligent Systems and Technology (TIST), 8(3), 43.Zhongqin, W., Lu, H., Yang, S., Qiang, Z., & Chaoxia, W. (2015, October). Study of digitalwatermark based on chaos algorithm. In Cyberspace Technology (CCT 2015), ThirdInternational Conference on (pp. 1-5). IET.Zhongqin, W., Lu, H., Yang, S., Qiang, Z., & Chaoxia, W. (2015, October). Study of digitalwatermark based on chaos algorithm. In Cyberspace Technology (CCT 2015), ThirdInternational Conference on (pp. 1-5). IET.Zhu, H. (2003). Medical image processing overview. University of Calgary.Zhu, P., & Zhao, M. S. (2010, July). A chaotic system based watermarking algorithm for imagecopyright protection. In Computer Science and Information Technology (ICCSIT), 20103rd IEEE International Conference on (Vol. 6, pp. 220-222). IEEE.Zhu, Y., & Huang, C. (2012). An improved median filtering algorithm for image noise reduction.Physics Procedia, 25, 609-616.Zouridakis, G., Doshi, M., & Mullani, N. (2004, September). Early diagnosis of skin cancerbased on segmentation and measurement of vascularization and pigmentation innevoscope images. In Engineering in Medicine and Biology Society, 2004. IEMBS'04.26th Annual International Conference of the IEEE (Vol. 1, pp. 1593-1596). IEEE.