Voltammetric sensors for pharmaceutical using zinc layered hydroxide/multiwalled carbon nanotubes paste (IR)
This study aims to develop a voltammetric sensors of acetaminophen, dopamine and hydroquinone using zinc layered hydroxide-L-phenylalanate/multiwalled carbon nanotubes, zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb/multiwalled carbon nanotubes and zinc layered hydroxide-ferulate/multiwal...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2018
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=4780 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:4780 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
QD Chemistry |
spellingShingle |
QD Chemistry Mohamad Syahrizal Ahmad Voltammetric sensors for pharmaceutical using zinc layered hydroxide/multiwalled carbon nanotubes paste (IR) |
description |
This study aims to develop a voltammetric sensors of acetaminophen, dopamine and hydroquinone using zinc layered hydroxide-L-phenylalanate/multiwalled carbon nanotubes, zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb/multiwalled carbon nanotubes and zinc layered hydroxide-ferulate/multiwalled carbon nanotubes, respectively. The surface morphology of these layered materials and multiwalled carbon nanotubes were determined using scanning electron microscope and transmission electron microscope, while the rate of electron transfer on the surface of these electrodes were determined by electrochemical impedance spectroscopy. The square wave voltammetry method was used to study the performance of these electrodes. Several experimental conditions influencing the voltammetric responses such as percentage of modifiers, type and concentration of supporting electrolyte, pH of the solutions and square wave voltammetry parameters were optimized. Under optimum conditions, these electrodes showed linear response ranges for the determination of acetaminophen, dopamine and hydroquinone from 0.3 M to 0.1 mM (correlation coefficient: 0.9965), 1.0 M to 0.3 mM (correlation coefficient = 0.9971) and 10.0 M to 1.0 mM (correlation coefficient = 0.9957) with the limit of detection was obtained at 0.83 nM, 0.43 M and 5.7 M, respectively. Interferences of several ions and compounds were studied and most of them did not interfere on the voltammetric responses. As a conclusion, the fabricated electrodes displayed excellent analytical performance with wider linear range, lower limit of detection and also exhibited good reproducibility, repeatability and stability. In its implication, these proposed electrodes were successfully applied for determination of acetaminophen, dopamine and hydroquinone in pharmaceutical tablet, dopamine hydrochloride injection, water samples and cosmetic cream, respectively. |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Mohamad Syahrizal Ahmad |
author_facet |
Mohamad Syahrizal Ahmad |
author_sort |
Mohamad Syahrizal Ahmad |
title |
Voltammetric sensors for pharmaceutical using zinc layered hydroxide/multiwalled carbon nanotubes paste (IR) |
title_short |
Voltammetric sensors for pharmaceutical using zinc layered hydroxide/multiwalled carbon nanotubes paste (IR) |
title_full |
Voltammetric sensors for pharmaceutical using zinc layered hydroxide/multiwalled carbon nanotubes paste (IR) |
title_fullStr |
Voltammetric sensors for pharmaceutical using zinc layered hydroxide/multiwalled carbon nanotubes paste (IR) |
title_full_unstemmed |
Voltammetric sensors for pharmaceutical using zinc layered hydroxide/multiwalled carbon nanotubes paste (IR) |
title_sort |
voltammetric sensors for pharmaceutical using zinc layered hydroxide/multiwalled carbon nanotubes paste (ir) |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2018 |
url |
https://ir.upsi.edu.my/detailsg.php?det=4780 |
_version_ |
1747833150260641792 |
spelling |
oai:ir.upsi.edu.my:47802020-02-27 Voltammetric sensors for pharmaceutical using zinc layered hydroxide/multiwalled carbon nanotubes paste (IR) 2018 Mohamad Syahrizal Ahmad QD Chemistry This study aims to develop a voltammetric sensors of acetaminophen, dopamine and hydroquinone using zinc layered hydroxide-L-phenylalanate/multiwalled carbon nanotubes, zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb/multiwalled carbon nanotubes and zinc layered hydroxide-ferulate/multiwalled carbon nanotubes, respectively. The surface morphology of these layered materials and multiwalled carbon nanotubes were determined using scanning electron microscope and transmission electron microscope, while the rate of electron transfer on the surface of these electrodes were determined by electrochemical impedance spectroscopy. The square wave voltammetry method was used to study the performance of these electrodes. Several experimental conditions influencing the voltammetric responses such as percentage of modifiers, type and concentration of supporting electrolyte, pH of the solutions and square wave voltammetry parameters were optimized. Under optimum conditions, these electrodes showed linear response ranges for the determination of acetaminophen, dopamine and hydroquinone from 0.3 M to 0.1 mM (correlation coefficient: 0.9965), 1.0 M to 0.3 mM (correlation coefficient = 0.9971) and 10.0 M to 1.0 mM (correlation coefficient = 0.9957) with the limit of detection was obtained at 0.83 nM, 0.43 M and 5.7 M, respectively. Interferences of several ions and compounds were studied and most of them did not interfere on the voltammetric responses. As a conclusion, the fabricated electrodes displayed excellent analytical performance with wider linear range, lower limit of detection and also exhibited good reproducibility, repeatability and stability. In its implication, these proposed electrodes were successfully applied for determination of acetaminophen, dopamine and hydroquinone in pharmaceutical tablet, dopamine hydrochloride injection, water samples and cosmetic cream, respectively. 2018 thesis https://ir.upsi.edu.my/detailsg.php?det=4780 https://ir.upsi.edu.my/detailsg.php?det=4780 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abdel Salam, M., & Burk, R. (2017). Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arabian Journal of Chemistry, 10, 921-927. Abdelwahab, A. A., & Shim, Y. B. (2015). Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters. Sensors and actuators B: Chemical, 221, 659-665. Abdolmaleki, A., Mallakpour, S., & Borandeh, S. (2015). Improving interfacial interaction of L-phenylalanine-functionalized graphene nanofiller and poly(vinyl alcohol) nanocomposites for obtaining significant mambrane properties: Morphology, thermal and mechanical studies. polymer Composites, 37(6), 23-37. Abdolmohammad Zadeh, H., Morshedzadeh, F., & Rahimpour, E. (2014). Trace analysis of mefenamic acid in human serum and pharmaceutical wastewater samples after pre-concentration with Ni-Al layered double hydroxide nanoparticles. Journal of Pharmaceutical Analysis, 4(5), 331-338. Adams, R. N. (1958). Carbon paste electrodes. Analytical Chemistry, 30(9), 1576- 1578. Adam, R. N. (1969). Electrochemistry at solid electrodes. New York: Marcel Dekker. Alam, M. A., Sernia, C., & Brown, L. (2013). Ferulic acid improves cardiovascular and kidney structure and function in hypertensive rats. Journal of Cardiovascular Pharmacology, 61(3), 240-249. Alshahrani, L. A., Li, X., Luo, H., Yang, L., Wang, M., Yan, S., et al. (2014). The Simultaneous Electrochemical Detection of Catechol and Hydroquinone with [Cu(Sal--Ala)(3,5-DMPz)2]/SWCNTs/GCE. Sensors, 14, 22274-22284. Amiri, M., Eynaki, H., & Mansoori, Y. (2014). Cysteine-anchored receptor on carbon nanoparticles for dopamine sensing. Electrochimica Acta, 123, 362-368. Anandhakumar, S., Mathiyarasu, J., & Phani, K. L. (2012). Anodic stripping voltammetric detection of mercury(II) using Au-PEDOT modified carbon paste electrode. Analytical Methods, 4(8), 2486-2491. Anson, F. C. (1964). Application of potentiostatic current integration to the study of the adsorption of cobalt(III) - (ethylenedinitrolo(tetraacetate) on mercury electrodes. Analytical Chemistry, 36(4), 932-934. Araujo, R. S., Grafova, I., Marques, M. F., Kemell, M., Leskela, M., & Grafov, A. (2013). Properties and Nanoscale Structure of Polypropylene-Layered Double Hydroxide Composites Prepared by CompatibilizerFree-Way. Journal of Applied Polymer Science, 130(4), 2429-2438. Arizaga, G. G., Mangrich, A. S., da Costa Gardolinski, J. E., & Wypych, F. (2008). Chemical modification of zinc hydroxide nitrate and Zn-Al-layered double hydroxide with dicarboxylic acids. Journal of Colloid and Interface Science, 320(1), 168-176. Arizaga, G. G., Satyanarayana, K. G., & Wypych, F. (2007). Layered hydroxide salts: synthesis, properties and potential application. Solid State Ionics, 178(15), 1143- 1162. Arvand, M., & Gholizadeh, T. M. (2013). Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloids and Surfaces B: Biointerfaces, 103, 84-93. Ayano, G. (2016). Dopamine: Receptors, Function, Synthesis, Pathways, Location and Mental Disorders: review of Literatures. Journal of Mental Disorders and Treatment, 2(2), 1-4. Babaei, A., Yousefi, A., Afrasiabi, M., & Shabanian, M. (2015). A sensitive simultaneous determination of dopamine, acetaminophen and indomethacin on a glassy carbon electrode coated with a new composite of MCM-41 molecular seive/nickel hydroxide nanoparticles/multiwalled carbon nanotubes. Journal of Electroanalytical Chemistry, 740, 28-36. Bahera, S., Dey, R. S., Kumar, M., & Raj, C. R. (2013). Electrochemistry of surface wired cytochrome c and bioelectrocatalytic sensing of superoxide. Journal of Chemical Sciences, 125(2), 275-282. Bahga, S. S., Bercovici, M., & Santiago, J. G. (2010). Ionic strength effects on electrophoretic focusing and separations. Electrophoresis, 31, 910-919. Bakhti, H., & Hamida, N. B. (2014). Kinetic study by UV Spectrophotometry of isoprocarb degradation in aqueous medium. Journal de la Societe Chimique de Tunisie, 16, 35-43. Banica, F. G. (2012). Chemical Sensors and Biosensors: Fundamental and Applications. West Sussex: John Wiley & Sons, Inc. Banks, C. E., Davies, T. J., Wildgoose, G. G., Compton, R. G., Hitimi, R., Pinson, J., et al. (2005). Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube end are the reactive sites. Chemical Communications, 125(7), 829-834. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications. New York: Wiley. Bard, A. J., Stratmann, M., & Schafer, H. J. (2007). Encyclopedia of Electrochemistry. Berlin: Wiley-VCH. Barsoukov, E., & Macdonald, J. R. (2005). Impedence Spectroscopy: Theory, Experiment, and Applications. New Jersey: John Wiley & Sons. Benedetto, G. E., Fico, D., Pennetta, A., Malitesta, C., Nicolardi, G., Lofrumento, D. D., et al. (2014). A rapid and simple method for the determination of 3,4- dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal of Pharmaceutical and Biomedical Analysis, 98, 266-270. Ben-Jonathan, N., & Hnasko, R. (2001). Dopamine as a prolactin (PRL) inhibitor. Endocrine Reviews, 22, 724-763. Bergaya, F., Theng, B. K., & Lagaly, G. (2006). Handbook of Clay Science. London: Elsevier. Bjorklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: an update. Trends in Neurosciences, 30, 194-202. Blakley, R. L., Henry, D. D., & Smith, C. J. (2001). Lack of correlation between cigarette mainstream smoke particulate phase radicals and hydroquinone yield. Food and Chemical Toxicology, 39(4), 401-406. Blay, Y. A. (2011). Skin Bleaching and Global White Supremacy: By Way of Introduction. The Journal of Pan African Studies, 4(4), 4-46. Bond, A. (1980). Modern polarographic methods in analytical chemistry. Boca Raton: CRC Press. Borman, S. (1982). New electroanalytical pulse techniques. Analytical Chemistry, 54(6), A698. Boulkroune, M., Chibani, A., & Geneste, F. (2016). Monocopper complex based on N-tripodal ligand immobilized in a Nafion film for biomimetic detection of catechols: application to dopamine. Electrochimica Acta, 221, 80-85. Braungardt, C. B. (2015). Evaluation of Analytical Instrumentation. Part XXVI: Instrumentation for Voltammetry. Analytical Methods, 7, 1249-1260. Bunchorntavakul, C., & Reddy, K. R. (2013). Acetaminophen-related Hepatotoxicity. Clinical Liver Disease, 17(4), 587-607. Canevari, T. C., Raymundo-Pereira, P. A., Landers, R., Benvenutti, E. V., & Machado, S. A. (2013). Sol-gel thin-film based mesoporous silica and carbon nanotubes for the determination of dopamine, uric acid and paracetamol in urine. Talanta, 116, 726-735. Carlsson, A. (1959). The occurrance, distribution and physiological role of catecholamines in the nervous system. Pharmacological Reviews, 11, 490-493. Cheemalapati, S., Palanisamy, S., Mani, V., & Chen, S. (2013). Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta, 117, 297-304. Chen, T. W., Palanisamy, S., Chen, S. M., Velusamy, V., Liu, Y. H., Tseng, T. W., et al. (2017). Sensitive and Low-potential Electrochemical Detection of Hydroquinone Using a Nanodiamond Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 12, 8021-8032. Chen, Z., Guo, J., Zhou, T., Zhang, Y., & Chen, L. (2013). A novel nonenzymatic electrochemical glucose sensor modified with Ni/Al layered double hydroxide. Electrochimica Acta, 109, 532-535. Cheng, X., Zhong, J., Meng, J., Yang, M., Jia, F., Xu, Z., et al. (2011). Characterization of Multiwalled Carbon Nanotubes Dispersing in Water and Association with Biological Effects. Journal of Nanomaterials, 1-12. Cheng, Y., Wu, J., Guo, C., Li, G., Ding, B., & Li, Y. (2017). A facile water-stable MOF-based "on-off" fluorescent switch for label-free detection of dopamine in biological fluid. Journal of Materials Chemistry B, 5, 2524-2534. Chiavazza, E., Berto, S., Giacomino, A., Malandrino, M., Barolo, C., Prenesti, E., et al. (2016). Electrocatalysis in the oxidation of acetaminophen with an electrochemically activated glassy carbon electrode. Electrochimica Acta, 192, 139-147. Civan, J. M., Navarro, V., Herrine, S. K., Riggio, J. M., Adams, P., & Rossi, S. (2014). Patterns of Acetaminophen Use Exceeding 4 Grams Daily in a Hospitalized Population at a Tertiary Care Center. Gastroenterology & Hepatology, 10(1), 27-34. Couteau, C., & Coiffard, L. (2016). Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics, 3(27), 1-16. Deconinck, E., Bothy, J. L., Desmedt, B., Courselle, P., & De Beer, J. O. (2014). Detection of whitening agents in illegal cosmetics using attenuated total reflectance-infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 98, 178-185. Deisinger, P. J., Hill, T. S., & English, J. C. (1996). Human exposure to naturally occurring hydroquinone. Journal of Toxicology and Environmental Health, 47(1), 31-46. del Valle, M. A., Ramirez, A. M., Hernandez, L. A., Armijo, F., Diaz, F. R., & Arteaga, G. C. (2016). Influence of the Supporting Electrolyte on the Electrochemical Polymerization of 3,4-ethylenedioxythiophene. Effect on p- and n-Doping/Undoping, Conductivity and Morphology. International Journal of Electrochemical Science, 11, 7048-7065. Enguita, F. J., & Leitao, A. L. (2013). Hydroquinone: Environmental Pollution, Toxicity, and Microbial Answers. BioMed Research International, 1-14. Erogul, S., Bas, S. Z., Ozmen, M., & Yildiz, S. (2015). A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochimica Acta, 186, 302-313. Eyer, P. (1991). Effects of superoxide dismutase on the autoxidation of 1,4- hydroquinone. Chemico-Biological Interactions, 80(2), 159-176. Feng, J. J., Guo, H., Li, Y. F., Wang, Y. H., Chen, W. Y., & Wang, A. J. (2013). Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Applied Materials & Interfaces, 5, 1226-1231. Fernandes, F. M., Baradari, H., & Sanchez, C. (2014). Integrative strategies to hybrid lamellar compounds: an integration challenge. Applied Clay Science, 100, 2-21. Filik, H., Avan, A. A., Aydar, S., & Cetintas, G. (2014). Determination of Acetaminophen in the Presence of Ascorbic Acid Using a Glassy Carbon Electrode Modified with Poly(Caffeic acid). International Journal of Electrochemical Science, 9, 148-160. Ghadimi, H., Tehrani, R. M., Ali, A. S., Mohamed, N., & Ghani, S. A. (2013). Sensitive voltammetric determination of paracetamol by poly(4- vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Analytica Chimica Acta, 765, 70-76. Garazhian, E., & Shishehbore, M. R. (2015). A New Sensitive sensor for Simultaneous Differential Pulse Voltammeteric Determination of Codeine and Acetaminophen Using Hydroquinone Derivative and Multiwall Carbon Nanotubes Carbon Paste Electrode. International Journal of Analytical Chemistry, 2015, 1-11. Ghica, M. E., Ferreira, G. M., & Brett, C. M. (2015). Poly(thionine)-carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. Journal of Solid State Electrochemistry, 19, 2869-2881. Girault, J. A., & Greengard, P. (2004). The Neurobiology of Dopamine Signaling. Archives of Neurology, 61(8), 641-644. Goulart, L. A., & Mascaro, L. H. (2016). GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol. Electrochimica Acta, 196, 48-55. Gulaboski, R., & Mirceski, M. (2015). New aspects of the electrochemical-catalytic (EC') mechanism in square-wave voltammetry. Electrochimica Acta, 167, 219- 225. Harrington, D. A., & Van Den Driessche, P. (2011). Mechanism and equivalent circuits in electrochemical impedence spectroscopy. Electrochimica Acta, 56(23), 8005-8013. Hashim, N., Muda, Z., Hamid, S. H., Isa, I. M., Kamari, A., Mohamed, A., et al. (2014). Characterization and controlled release formulation of agrochemical herbicides based on zinc-layered hydroxide-3-(4-methoxyphenyl) propionate nanocomposite. Journal of Physical and Chemical Sciences, 1(4), 1-6. Hashim, N., Sharif, S. N., Isa, I. M., Hamid, S. A., Hussein, M. Z., Bakar, S. A., et al. (2017). Controlled release formulation of an anti-depression drug based on a L- phenylalanate-zinc layered hydroxide intercalation compound. Journal of Physics and Chemistry of Solids, 105, 35-44. Hashim, N., Sharif, S. N., Muda, Z., Isa, I. M., Ali, N. M., Bakar, S. A., et al. (2018). Preparation of zinc layered hydroxide-ferulate and coated zinc layered hydroxide- ferulate nanocomposites for controlled release of ferulic acid. Materials Research Innovations, DOI: 10.1080/14328917.2018.1444696. Hawton, K., Bergen, H., Simkin, S., Arensman, E., Corcoran, P., Cooper, J., et al. (2011). Impact of different pack sizes of paracetamol in the United Kingdom and Ireland on intentional overdoses: a comparative study. BMC Public Health, 11, 460-470. He, W., Ding, Y., Zhang, W., Ji, L., Zhang, X., & Yang, F. (2016). A highly sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid based on ultra-small Ni nanoparticles. Journal of Electroanalytical Chemistry, 775, 205-211. Herndon, C. M., & Dankenbring, D. M. (2014). Patient perception and knowledge of acetaminophen in a large family medicine service. Journal of Pain & Palliative Care Pharmacotherapy, 28(2), 109-116. Hertel, T., Martel, R., & Avouris, P. (1998). Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces. The Journal of Physical Chemistry B, 102(6), 910-915. Heyrovsky, J. (1922). Electrolysis with the Dropping Mercury Electrode. Chemicke Listy, 16, 256-304. Hoang, V. D., Ly, D. T., tho, N. H., & Nguyen, H. M. (2014). UV Spectrophotometric Simultaneous Determination of Paracetamol and Ibuprofen in Combined Tablets by Derivative and Wavelet Transforms. The Scientific World Journal, 2014, 1-13. Holanda, L. F., Ribeiro, F. W., Sousa, C. P., Casciano, P. N., Neto, P. L., & Correia, A. N. (2016). Multi-walled carbon nanotubes-cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen. Journal of Electroanalytical Chemistry, 772, 9-16. Hu, S., Wang, Y., Wang, X., Xu, L., Xiang, J., & Sun, W. (2012). Electrochemical detection of hydroquinone with a gold nanoparticle and graphene modified carbon ionic liquid electrode. Sensors and Actuators B: Chemical, 168, 27-33. Huang, B., Liu, J., Lai, L., Yu, F., ying, X., Ye, B. C., et al. (2017). A free-standing electrochemical sensor based on graphene foam-carbon nanotube composite coupled with gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Journal of Electroanalytical Chemistry, 801, 129-134. Isa, I. M., Saruddin, S., Hashim, N., Ahmad, M., & Ab Ghani, S. (2016). Determination of hydrazine in Various Water Samples by Square Wave Voltammetry with Zinc-Layered Hydroxide-3(4-methoxyphenyl) Propionate Nanocomposite Modified Glassy Carbon Electrode. International Journal of Ilectrochemical Science, 11, 4619-4631. Issa, Y. M., Hassoun, M. E., & Zayed, A. G. (2012). Simultaneous determination of paracetamol, caffeine, domperidone, ergotamine tartrate, propyphenazone and drotaverine HCl by high performance liquid chromatography. Journal of Liquid Chromatography, 35, 2148-2161. Issaq, H. J., Atamna, I. Z., Muschik, G. M., & Janini, G. M. (1991). The effect of electric field strength, buffer type and concentration on separation parameters in capillary zone electrophoresis. Chromatographia, 32(3-4), 155-161. Itodo, A. U., & Onyinye, N. V. (2017). Comparative Chromatographic and Spectrophotometric Methods for Quantitative Estimation of Paracetamol in Analgesic Tablet Dosage Forms. Science Journal of Analytical Chemistry, 5(6), 98-103. Jaafar, A. M., Anuar, A. N., Hashim, N., & Ayob, F. H. (2016). Intercalation study of curcumin into zinc layered hydroxide. Malaysian Journal of Analytical Sciences, 20(6), 1359-1364. Jackson, P., Jacobsen, N. R., Baun, A., Birkedal, R., Kuhnel, D., Jensen, K. A., et al. (2013). Bioaccumulation and ecotoxicity of carbon nanotubes. Chemistry Central Journal, 7(154), 1-21. Jiang, H., Wang, S., Deng, W., Zhang, Y., Tan, Y., Xie, Q., et al. (2017). Graphene- like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol. Talanta, 164, 300-306. Jiang, L., Gu, S. Q., Ding, Y. P., Jiang, F., & Zhang, Z. (2013). Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultra-sensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale, 6, 207-214. Kamyabi, M. A., & Aghajanloo, F. (2009). Electrocatalytic Response of Dopamine at a Carbon Paste Electrode Modified with Ferrocene. Croatica Chemica Acta, 82(3), 599-606. Keyvanfard, M., Shakeri, R., Maleh, H. K., & Alizad, K. (2013). Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Materials Science and Engineering C, 33, 811-816. Kokkinos, C., Economou, A., Raptis, I., & Speliotis, T. (2008). Disposable mercury- free cell-on-a-chip devices with integrated microfabricated electrodes for the determination of trace nickel(II) by adsorptive stripping voltammetry. Analytica Chimica Acta, 622(1-2), 111-118. Kooyers, T. J., & Westerhof, W. (2006). Toxicology and health risks of hydroquinone in skin lightening formulations. Journal of the European Academy of Dermatology and Venereology, 20, 777-780. Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports, 4, 86-93. Kumar, R., Bhuvana, T., & Sharma, A. (2017). Nickel tungstate-graphene nanocomposite for simultaneous electrochemical detection of heavy metal ions with application to complex aqueous media. RSC Advances, 7, 42146-42158. Lai, T., Cai, W., Dai, W., & Ye, J. (2014). Easy processing laser reduced graphene: A green and fast sensing platform for hydroquinone and catechol simultaneous determination. Electrochimica Acta, 138, 48-55. Lee, W. M. (2013). Drug-induced Acute Liver Failure. Clinical Liver Disease, 17, 575-586. Li, H., Xu, Z., Li, K., Hou, X., Cao, G., Zhang, Q., et al. (2011). Modification of multi-walled carbon nanotubes with cobalt phthalocyanine: effects of the templates on the assemblies. Journal of Materials Chemistry, 21(4), 1181-1186. Li, T., Xu, J., Zhao, L., Shen, S., Yuan, M., Liu, W., et al. (2016). Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen. Talanta, 159, 356-364. Li, Y., Gu, Y., Zheng, B., Luo, L., Li, C., Yan, X., et al. (2017). A novel electrochemical biomimetic sensor based on poly(Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine. Talanta, 162, 80-89. Liu, B., Ouyang, X., Ding, Y., Luo, L., Xu, D., & Ning, Y. (2016). Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta, 146, 114-121. Liu, L., Xia, N., Meng, J. J., Zhou, B. B., & Li, S. J. (2016). An electrochemical aptasensor for sensitive and selective detection of dopamine based on signal amplification of electrochemical-chemical redox cycling. Journal of Electroanalytical Chemistry, 775, 58-63. Liu, Y., Liao, H., Zhou, Y., Du, Y., Wei, C., Zhao, J., et al. (2015). Fe2O3 Nanoparticle/SWCNT Composite Electrode for Sensitive Electrocatalytic Oxidation of Hydroquinone. Electrochimica Acta, 180, 1059-1067. Mahmoud, B. G., Khairy, M., Rashwan, F. A., & Banks, C. E. (2017). Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity- related Drugs) Utilizing Bismuth Oxide Nanorod Modified Screen-printed Electrochemical Sensing Platforms. Analytical Chemistry, 89, 2170-2178. Mao, A., Li, H., Jin, D., Yu, L., & Hu, X. (2015). Fabrication of electrochemical sensor for paracetamol based on multi-walled carbon nanotubes and chitosan- copper complex by self-assembly technique. Talanta, 144, 252-257. Mao, X., Rutledge, G. C., & Hatton, T. A. (2014). Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage. Nano Today, 9, 405- 432. Maouche, N., Ktari, K., Bakas, I., Fourati, N., Zerrouki, C., Seydou, M., et al. (2015). A surface acoustic wave sensor funcionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection. Journal of Molecular Recognition, 28, 667-678. Marangoni, R., Ramos, L. P., & Wypych, F. (2009). New multifunctional materials obtained by the intercalation of anionic dyes into layered zinc hydroxide nitrate followed by dispersion into poly(vinyl alcohol) (PVA). Journal of Colloid and Interface Science, 330(2), 303-309. Mazer, M., & Perrone, J. (2008). Acetaminophen-induced nephrotoxicity: Pathophysiology, clinical manifestations, and management. Journal of Medical Toxicology, 4, 2-6. McDonald, T. A., Holland, N. T., Skibola, C., Duramad, P., & Smith, M. T. (2001). Hypothesis: phenol and hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in leukemia. Leukemia, 15(1), 10- 20. Melisa, C. S., & Jay, W. M. (2009). FDA Proposes Hydroquinone Ban. Journal of Culture and Africa Women Studies, 14, 5-16. Merims, D., & Giladi, N. (2008). Dopamine dysregulations syndrome, addiction and behavioural changes in Parkinsons disease. Parkinsonism & Related Disorders, 14, 273. Mirceski, V., Komorsky-Lovric, S., & Lovric, M. (2007). Square-wave voltammetry: theory and application. (F. Scholz, Ed.). Berlin-Heidelberg: Springer. Mirceski, V., Sebez, B., Jancovska, M., Ogorevc, B., & Hocevar, S. B. (2013). Mechanism and kinetics of electrode processes at bismuth and antimony film and bare glassy carbon surfaces under square-wave anodic stripping voltammetry conditions. Electrochimica Acta, 105, 254-260. Moghadam, R. M., Dadfarnia, S., Haji, A., & Shahbazjkhan, P. (2011). Chemometric- assisted kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Analytical Biochemistry, 410, 289-295. Mohsin, S. M., Hussein, M. Z., Sarijo, S. H., Fakurazi, S., Arulselvan, P., & Hin, T. - Y. (2013). Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application. Chemistry Central Journal, 7, 26-34. Mustafa, A. M., & Aziz, M. E. (2016). Determination of Hydroquinone in Skin- Lightening Creams Sold in Sudan-by Using High-Performance Liquid Chromatography. The Journal of Middle East and North Africa Sciences, 2(7), 17-21. Mustafa, H. N., Isa, I. M., Mohd Ali, N., Hashim, N., Muda, M., & Ab Ghani, S. (2015). Amperometric Detection of Hydroquinone at Modified Ionic Liquid Graphene Composite Paste Electrode. International Journal of Electrochemical Science, 10, 9232-9245. Nabipour, H., & Sadr, M. H. (2015). Layered zinc hydroxide-ibuprofen nanohybrids: synthesis and characterization. Bulletin of Material Science, 38(6), 1561-1567. Nagles, E., Ibarra, L., Llanos, J. P., Hurtado, J., & Garcia Beltran, O. (2017). Development of a novel electrochemical sensor based on cobalt(II) complex useful in the detection of dopamine in presence of ascorbic acid and uric acid. Journal of Electroanalytical Chemistry, 788, 38-43. Narayanan, V. L., & Austin, A. (2016). Determination of Acetaminophen and Caffeine using reverse phase liquid (RP-LC) chromatographic technique. Journal of Research in Pharmaceutical Science, 3(4), 5-10. Ndiaye, A. L., Delile, S., Brunet, J., Varenne, C., & Pauly, A. (2016). Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection. Biosensors, 6, 46-57. OECD, S. (2012). Hydroquinone. USA: UNEP Publications. Oldair, D. L. (2009). Determination of paracetamol using a flow injection analysis with multi commutation and chemiluminescence detection. Quimica Nova, 32, 1755-1759. Olguin, H. J., Guzman, D. C., Garcia, E. H., & Mejia, G. B. (2016). The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxidative Medicine and Cellular Longevity, 1-13. Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D. K., et al. (2008). Approaching the Dirac point in high mobility multi-layer epitaxial graphene. Physical Review Letters, 1001(26), 267601-267604. Osteryoung, J. G., & Osteryoung, R. A. (1985). Square Wave Voltammetry. Analytical Chemistry, 57(1), 101A-110A. Otles, S. (2016). Handbook of food analysis instruments. (S. Otles, Ed.). Boca Raton: CRC Press. Pandey, P. C., & Pandey, A. K. (2013). Electrochemical sensing of dopamine and pyrogallol on mixed analogue of Prussian blue nanoparticles modified electrode- role of transition metal on the electrocatalysis and peroxidase mimetic activity. Electrochimica Acta, 109, 536-545. Pejcic, B., & De Marco, R. (2006). Impedence spectroscopy: Over 35 years of electrochemical sensor optimization. Electrochimica Acta, 51(28), 6217-6229. Petersen, L., & Juan, G. (2010). Weakly supported voltammetry. UK: University of Oxford. Pharmacopoeia, B. (1999). HM Stationary Office. London: 2. Pistonesi, M. F., Di Nezio, M. S., Centurion, M., Palomeque, M. E., Lista, A. G., & Band, B. S. (2006). Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta, 69, 1265-1268. Pop, E., Mann, D., Wang, Q., Goodson, K., & Dai, H. (2006). Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Letters, 6(1), 96-100. Rives, V. (2001). Layered Double Hydroxide: Present and Future. New York: Nova Science Publishers. Rote, A. R., Kumbhoje, P. A., & Bhambar, R. S. (2012). UV-visible spectrophotometric simultaneous estimation of paracetamol and nabumetone by AUC method in combined tablet dosage form. Pharmaceutical Methods, 3, 40- 43. Sajid, M., Nazal, M. K., Mansha, M., Alsharaa, A., Sajid Jillani, S. M., & Basheer, C. (2016). Chemically modified electrode for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. Trends in Analytical Chemistry, 76 , 15-29. Salmanpour, S., Tavana, T., Pahlavan, A., Khalilzadeh, M. A., Ensafi, A. A., Karimi Maleh, H., et al. (2012). Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode. Material Science and Engineering C, 32, 1912-1918. Sanchez, J., Castillo, E., Corredor, P., & Agreda, J. (2011). Determination of Mercury by Anodic Stripping Voltammetry in Aqua Regia Extracts. Portugaliae Electrochimica Acta, 29(3), 197-210. Scholz, F. (2010). Electroanalytical methods. Berlin-Heidelberg: Springer. Settle, F. A. (1997). Handbook of Instrumental Techniques for Analytical Chemistry. New Jersey: Prentice Hall Inc. Shah, B. N., & Seth, A. K. (2010). Medicinal Plant as a Source of Anti-Pyretic Agents - A Review. Archives of Applied Science Research, 2(3), 188-195. Sharma, V. V., Gualandi, I., Vlamidis, Y., & Tonelli, D. (2017). Electrochemical behavior of reduced graphene oxide and multi-walled carbon nanotubes composites for catechol and dopamine oxidation. Electrochimica Acta, 246, 415- 423. Shi, P., Xue, R., Wei, Y., Lei, X., Ai, J., Wang, T., et al. (2017). Gold nanoparticles/tetraaminophenyl porphyrin functionalized multiwalled carbon nanotubes nanocomposites modified glassy carbon electrode for the simultaneous determination of p-acetaminophen and p-aminophenol. Arabian Journal of Chemistry (Article in Press). Skoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principle of Instrumental Analysis. USA: Thompson Brooks/Cole. Smith, H. S. (2009). Potential Analgesic Mechanisms of Acetaminophen. Pain Physician, 12, 269-280. Stewart, A. J., Hendry, J., & Dennany, L. (2015). Whole blood electrochemiluminescent detection of dopamine. Analytical Chemistry, 87, 11847-11853. Svancara, I., Vytras, K., Barek, J., & Zima, J. (2001). Carbon Paste Electrodes in Modern Electroanalysis. Critical Reviews in Analytical Chemistry, 31(4), 311- 345. Svancara, I., Vytras, K., Kalcher, K., & Walcarius, A. (2012). Electroanalysis with carbon paste electrode. Boca Raton: Taylor and Francis Group. Tajik, S., Taher, M. A., & Beitollahi, H. (2014). Application of a new ferrocene- derivative modified-graphene paste electrode for simultaneous determination of isoprotenol, acetaminophen and theophylline. Sensors and Actuators B: Chemical, 197, 228-236. Tehrani, R. M., Ghadimi, H., & Ab Ghani, S. (2013). Electrochemical studies of two diphenols isomers at graphene nanosheet-poly(4-vinylpyridine) composite modified electrode. Sensors and Actuators B: Chemical, 177, 612-619. Tehrani, R. M., & Ab Ghani, S. (2012). MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor. Biosensors and Bioelectronics, 38(1), 278-283. Tercier-Waeber, M. L., & Taillefert, M. (2008). Remote in situ voltammetric techniques to characterize the biogeochemical cycling of trace metals in aquatic systems. Journal of Environmental Monitoring, 10(1), 30-54. Thomas, A. L. (2016). Establishing Acceptance Criteria for Analytical Methods. The Science & Business of Biopharmaceuticals, 29(10), 1-5. Tsirlina, G. A. (2017). The role of supporting electrolyte in heterogeneous electron transfer. Journal of Solid State Electrochemistry, 21, 1833-1845. Tyagi, V. P. (2009). Essential Chemistry XII. New Delhi: Ratna Sagar Pte. Ltd. Ulker, E., & Kavanoz, M. (2016). Electrode Prepared with Combination of Different Conductive Polymers for Hydroquinone Determination in River Water. Acta Chimica Slovenica, 63, 47-54. Upan, J., Reanpang, P., Chailapakul, O., & Jakmunee, J. (2016). Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone. Talanta, 146, 766-771. Vytras, K., Svancara, I., & Metelka, R. (2009). Carbon paste electrodes in electroanalytical chemistry. Journal of the Serbian Chemical Society, 74(10), 1021-1033. Wanekaya, A. K., Elimelech, M., Zhu, L., Wang, X., Yang, N., Chailapakul, O., et al. (2011). Application of nanoscale carbon-based materials in heavy metal sensing and detection. The Analyst, 135(31), 4383-4386. Wang, C., Li, J., Shi, K., Wang, Q., Zhao, X., Xiong, Z., et al. (2016). Graphene coated by polydopamine/multi-walled carbon nanotubes modified electrode for highly selective detection of dopamine and uric acid in the presence of ascorbic acid. Journal of Electroanalytical Chemistry, 770, 56-61. Wang, F., Chi, C., Yu, B., & Ye, B. (2015). Simultaneous voltammetric determination of dopamine and uric acid based on Langmuir-Blodgett film of calixarene modified glassy carbon electrode. Sensors and Actuators B: Chemical, 221, 1586-1593. Wang, H., Zhang, S., Li, S., & Qu, J. (2018). Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta, 178, 188-194. Wang, J. (2006). Analytical Electrochemistry. New Jersey: John Wiley & Sons. Wang, J., Cui, L., Yin, H., Dong, J., & Ai, S. (2012). Determination of hydrogen peroxide based on calcined layered double hydroxide-modified glassy carbon electrode in flanored beverages. Journal of Solid State Electrochemistry, 16, 1545-1550. Wang, Q., Su, M., Chen, P., & Sun, H. (2014). Applicaation of ciprofloxacin as a fluorescence probe for the determination of acetaminophen in pharmaceutical tablet. World Journal of Pharmacy and Pharmaceutical Sciences, 4(1), 116-126. Wang, W., Gong, S., Sun, W., Li, G., Lu, Y., Yu, J., et al. (2016). Sensitive Electrochemical Detection of Dopamine With a Nitrogen-doped Graphene Modified Glassy Carbon Electrode. Croatia Chemica Acta, 89(3), 323-330. Wang, Z., Qian, Y., Wei, X., Zhang, Y., Wu, G., & Lu, X. (2017). An "on-off" Electrochemiluminescence Biosensor Based on Molecularly Imprinted Polymer and Recycling Amplifications for Determination of Dopamine. Electrochimica Acta, 250, 309-319. Wardani, N. I., Isa, I. M., Hashim, N., & Ab Ghani, S. (2014). Zinc layered hydroxide-2(3-chlorophenoxy)propionate modified multi-walled carbon nanotubes paste electrode for the determination of nano-molar levels copper(II). Sensors and Actuators B: Chemical, 198, 243-248. Wei, Y., Song, M., Yu, L., & Tang, X. (2017). Preparation of ZnO-Loaded Lignin- Based Carbon Fiber for the Electrocatalytic Oxidation of Hydroquinone. Catalysts, 7, 180-191. Xiao, F., Yang, L., Zhao, F., & Zeng, B. (2013). electrodeposition of auNi Alloy Nanoparticles on Mercapto Ionic Liquid-Graphite Composite Film and the Amperometric Determination of hydroquinone. Analytical and Bioanalytical Electrochemistry, 5(2), 154-165. Yanez-Sedano, P., Pingarron, J. M., Riu, J., & Rius, F. X. (2010). Electrochemical sensing based on carbon nanotubes. TrAC Trends in Analytical Chemistry, 29(9), 939-953. Yang, L., Li, X., Xiong, Y., Liu, X., Li, X., Wang, M., et al. (2014). The fabrication of a Co(II) complex and multi-walled carbon nanotubes modified glass carbon electrode, and its application for the determination of dopamine. Journal of Electroanalytical Chemistry, 731, 14-19. Yang, S., Li, G., Yin, Y., Yang, R., Li, J., & Qu, L. (2013). Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine. Journal of Electroanalytical Chemistry, 703, 45-51. Yin, H., Zhou, Y., Cui, L., Liu, X., Ai, S., & Zhu, L. (2011). Electrochemical oxidation behavior of bisphenol A at surfactant/layered double hydroxide modified glassy carbon electrode and its determination. Journal of Solid State Electrochemistry, 15, 167-173. Yuan, X., Yuan, D., Zeng, F., Zou, W., Tzorbatzoglou, F., Tsiakaras, P., et al. (2013). Preparation of graphitic mesoporous carbon for the simultaneous detection of hydroquinone and catechol. Applied Catalysis B: Environmental, 129, 367-374. Zhan, T., Song, Y., Li, X., & Hou, W. (2016). Electrochemical sensor for bisphenol A based on ionic liquid functionalized Zn-Al layered double hydroxide modified electrode. Materials Science and Engineering: C, 64, 354-361. Zhu, Q., Bao, J., Huo, D., Yang, M., Wu, H., Hou, C., et al. (2017). 3DGH-Fe based electrochemical sensor for the simultaneous determination of ascorbic acid, dopamine and uric acid. Journal of Electroanalytical Chemistry, 799, 459-467. Zhu, Z., Qu, L., Guo, Y., Zeng, Y., Sun, W., & Huang, X. (2010). Electrochemical detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic liquid electrode. Sensors and Actuators B: Chemical, 151, 146-152. Zima, J., Svancara, I., Barek, J., & Vytras, K. (2009). Recent Advances in Electroanalysis of Organic Compounds at Carbon Paste Electrodes. Critical Reviews in Analytical Chemistry, 39(3), 204-227. Zoski, C. G. (2007). Handbook of Electrochemistry. Oxford: Elsevier. |