The development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density

This study aimed to develop an optical stiffness calibration system using threemethods. The used methods were Boltzmann statistics (BS), equipartition theorem (ET) and powerspectrum density (PSD) analysis. This study consisted of two phases; system development phase andtesting phase. System developm...

Full description

Saved in:
Bibliographic Details
Main Author: Muhammad Yunus Hamid
Format: thesis
Language:eng
Published: 2018
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=5008
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:5008
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QA76 Computer software
spellingShingle QA76 Computer software
Muhammad Yunus Hamid
The development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density
description This study aimed to develop an optical stiffness calibration system using threemethods. The used methods were Boltzmann statistics (BS), equipartition theorem (ET) and powerspectrum density (PSD) analysis. This study consisted of two phases; system development phase andtesting phase. System development phase involved hardware and software components. Testing phaseinvolved actual experimental optical stiffness calibration. The finding of the study was acalibration system consisting hardware and software parts. The hardware part was an opticaltweezers that was equipped with quadrant photodiode (QPD) and piezostage. The software part was acustom made software which was constructed on LabVIEW 2012 platform, namely OSCal. This studyshowed the conversion factor (used in ET and BS methods) and optical stiffness depends on trappinglaser power. In conclusion, this study successfully developed the aimed system with comparableoptical stiffness between each method and other reference studies. The implication of this study isthat the time spent for calibration for optical tweezers procedure can be shortened so that otherresearcher can focus more on the intended applications of the optical tweezers.
format thesis
qualification_name
qualification_level Master's degree
author Muhammad Yunus Hamid
author_facet Muhammad Yunus Hamid
author_sort Muhammad Yunus Hamid
title The development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density
title_short The development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density
title_full The development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density
title_fullStr The development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density
title_full_unstemmed The development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density
title_sort development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2018
url https://ir.upsi.edu.my/detailsg.php?det=5008
_version_ 1747833158137544704
spelling oai:ir.upsi.edu.my:50082020-07-16 The development of optical stiffness calibration software base on equipartition theorem, boltzman statistics and power spectrum density 2018 Muhammad Yunus Hamid QA76 Computer software This study aimed to develop an optical stiffness calibration system using threemethods. The used methods were Boltzmann statistics (BS), equipartition theorem (ET) and powerspectrum density (PSD) analysis. This study consisted of two phases; system development phase andtesting phase. System development phase involved hardware and software components. Testing phaseinvolved actual experimental optical stiffness calibration. The finding of the study was acalibration system consisting hardware and software parts. The hardware part was an opticaltweezers that was equipped with quadrant photodiode (QPD) and piezostage. The software part was acustom made software which was constructed on LabVIEW 2012 platform, namely OSCal. This studyshowed the conversion factor (used in ET and BS methods) and optical stiffness depends on trappinglaser power. In conclusion, this study successfully developed the aimed system with comparableoptical stiffness between each method and other reference studies. The implication of this study isthat the time spent for calibration for optical tweezers procedure can be shortened so that otherresearcher can focus more on the intended applications of the optical tweezers. 2018 thesis https://ir.upsi.edu.my/detailsg.php?det=5008 https://ir.upsi.edu.my/detailsg.php?det=5008 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Amamou, H., Ferhat, B., & Bois, A. (2013). Calculation of the Voigt Function in theRegion of Very Small Values of the Parameter a Where the Calculation Is Notoriously Difficult.American Journal of Analytical Chemistry, 4(12), 725- 731.Ashkin, A. (1970). Pressure, Acceleration and trapping of particles by radiation. Phys Rev Lett,(24), 156-159.Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the rayoptics regime. Biophysical Journal, 61(2), 569-82.Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-beamgradient force optical trap for dielectric particles. Opt Lett, 11(5), 288.Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review ofScientific Instruments, 75(3), 594-612.BiOPT lab. (2017). Power spectrum. Retrieved January 25, 2017, fromhttp://biopt.ub.edu/force-detection/brownianBoukellal, Y., & Ducourtieux, S. (2015). Development of a position sensor based on a four quadrantstructured optic fiber bundle. Measurement Science and Technology, 26(1), 15201.Bradley, M. (2007). Curve Fitting in Raman and IR Spectroscopy: Basic Theory of Line Shapes andApplications. Application Note: 50733, 0-3. Retrieved fromhttp://thermo.fr/eThermo/CMA/PDFs/Product/productPDF_57565.PDFBrouhard, G., Schek, H., & Hunt, A. (2003). Advanced optical tweezers for the study of cellular andmolecular biomechanics. IEEE Transactions on Biomedical Engineering, 50(1), 121-125.Brown, A. J. (2006). Spectral curve fitting for automatic hyperspectral data analysis.IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1601-1607.Brown, R. (1828). A brief account of microscopical observations made in the months of June, Julyand August 1827, on the particles contained in the pollen of plants; and on the generalexistence of active molecules in organic and inorganicbodies. Philosophical Magazine Series 2, 4(21), 161-173.Castberg, R. C. (2008). Characterisation and calibration of Optical tweezers.University of Oslo.Cogliati, S., Verhoef, W., Kraft, S., Sabater, N., Alonso, L., Vicent, J., … Colombo,R. (2015). Retrieval of sun-induced fluorescence using advanced spectral fitting methods. RemoteSensing of Environment, 169, 344-357.DDBST. (2007). Liquid Dynamic Viscosity. Retrieved May 5, 2017, fromhttp://ddbonline.ddbst.com/VogelCalculation/VogelCalculationCGI.exeDholakia, K., & Zemánek, P. (2010). Colloquium: Gripped by light: Optical binding.Reviews of Modern Physics, 82(2), 1767-1791.Dieckmann, K., Spreeuw, R., Weidemüller, M., & Walraven, J. (1998). Two- dimensionalmagneto-optical trap as a source of slow atoms. Physical Review A, 58(5), 3891-3895.Dodd, J. G., DeNoyer, L. K., Calmers, J. M., & Griffiths, P. G. (2006). Curve-Fitting: ModelingSpectra. Handbook of Vibrational Spectroscopy, 3, 2215-2223.Eom, N., Stevens, V., Wedding, A. B., Sedev, R., & Connor, J. N. (2014). Probing fluid flow usingthe force measurement capability of optical trapping. Advanced Powder Technology, 25(4), 1249-1253.Florin, E.-L., Pralle, a., Stelzer, E. H. K., & Hörber, J. K. H. (1998). Photonic force microscopecalibration by thermal noise analysis. Applied Physics A: Materials Science & Processing, 66(7),S75-S78.Flyvbjerg, H. (2004). spectrum analysis for optical tweezers . Rev . Sci ., (April), 594-612.Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1998). Opticalalignment and spinning of laser-trapped microscopic particles. Nature, 394(October), 348-350.Gao, A., Qin, W., Liu, W., & Cai, C. (2009). Lorentzian function curve fitting of longitudinal modeof pulsed laser based on LabVIEW. Proceedings of SPIE, 7522, 75226J.Gennerich, A. (Ed.). (2017). Optical tweezers. (1st ed.). Humana Press.Gier, D. (1997). Optical tweezers in colloid and interface science. Inc, Curr Opin Colloid, (2),264-270.He, H., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1995). Direct Observation of Transfer ofAngular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity. PhysicalReview Letters, 75(5), 826-829.Herrera-Gomez, A. (2011). A double Lorentzian shape for asymmetric photoelectronpeaks, 1-8.Horst, A. van der, & Forde, N. R. (2010). Power spectral analysis for optical trapstiffness calibration from high-speed camera position detection with limited bandwidth. OpticsExpress, 18(8), 7670-7677.Huisstede, J., van der Werf, K., Bennink, M., & Subramaniam, V. (2005). Force detection in opticaltweezers using backscattered light. Optics Express, 13(4), 1113-1123.James, J. F. (2001). A Student’s Guide to Fourier Transforms. Design (Third Edit).Cambridge University Press.Jullien, T., Roulleau, P., Roche, B., Cavanna, A., Jin, Y., & Glattli, D. C. (2014).Quantum tomography of an electron. Nature, 514(7524), 603-7.Jurado, A., & Kiggins, J. (2010). Polystyrene Bead Size Behavior in Optical Trapping. Spring.Keen, S., Leach, J., Gibson, G., & Padgett, M. J. (2007). Comparison of a high-speed camera and aquadrant detector for measuring displacements in optical tweezers. Journal of Optics A: Pure andApplied Optics, 9, S264-S266.Kotsifaki, D. G., Makropoulou, M., & Serafetinides, A. A. (2013). Efficient and low cost multipleoptical trap, based on interference. Optik, 124(7), 617-621.MacDonald, M. P., Spalding, G. C., & Dholakia, K. (2003). Letters To Nature.Nature, 426(November), 421-424.Maier, B. (2005). Using laser tweezers to measure twitching motility in Neisseria.Current Opinion in Microbiology, 8(3), 344-349.Mas, J., Farré, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding optical trappingphenomena: A simulation for undergraduates. IEEE Transactions on Education, 54(1), 133-140.Meng, J., Liu, C., Zheng, J., Lin, R., & Song, L. (2014). Comparative study of methods to calibratethe stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers.Journal of Biomedical Opics, 3, 36003.MIT Department of Physics. (2014). Optical trapping. Retrieved September 10, 2016, fromhttp://web.mit.edu/8.13/www/JLExperiments/JLExp51.pdfMotoyama, E. M., Yu, G., Vishik, I. M., Vajk, O. P., Mang, P. K., & Greven, M. (2007). Spincorrelations in the electron-doped. Nature, 445(January), 11-14.Muhammad Yunus, H., Shahrul Kadri, A., Wan Nor Suhaila, W. A., & Yusof, M. (2016). SpatialDistribution of an Optically Trapped Bead in Water. BuletinOptik 2016, 2016(2), 29-36.National Instruments. (2015). Understanding FFTs and Windowing. (White Papers),(No. 4844), 1-11. Retrieved from http://www.ni.com/white-paper/4844/en/Nemet, B. a, & Cronin-Golomb, M. (2003). Measuring microscopic viscosity with optical tweezers as aconfocal probe. Applied Optics, 42(10), 1820-32.Neuman, K. C., & Block, S. M. (2004). Optical trapping. The Review of Scientific Instruments,75(9), 2787-809.Ng, T. W., Tan, H. Y., & Foo, S. L. (2007). Small Gaussian laser beam diameter measurement using aquadrant photodiode. Optics and Laser Technology, 39(5), 1098-1100.Norregaard, K., Jauffred, L., Berg-Sørensen, K., & Oddershede, L. B. (2014). Optical manipulationof single molecules in the living cell. Physical Chemistry Chemical Physics: PCCP, 16(25),12614-24.Nørrelykke, S. F., & Flyvbjerg, H. (2010). Power spectrum analysis with least-squares fitting:Amplitude bias and its elimination, with application to optical tweezers and atomic forcemicroscope cantilevers. Review of Scientific Instruments, 81(7).Osterman, N. (2010). TweezPal - Optical tweezers analysis and calibration software.Computer Physics Communications, 181(11), 1911-1916.Pan, Y. (2012). Optical Trapping Force on a Plasmonic Substrate. KTH Information and CommunicationTechnology.Peyre, J. J., & Principi, G. (1972). Linear combination of lorentzian and gaussian profiles to fitresonance spectra. Nuclear Instruments and Methods, 101(3), 605-606.Pilát, Z., Jeek, J., Šerý, M., Trtílek, M., Nedbal, L., & Zemánek, P. (2013). Optical trapping ofmicroalgae at 735-1064 nm: Photodamage assessment. Journal of Photochemistry and Photobiology B:Biology, 121, 27-31.Polysciences, I. (2013). Polybead ® Polystyrene Microspheres [Technical Data Sheet 238]. RetrievedJune 3, 2017, from http://www.polysciences.com/skin/frontend/default/polysciences/pdf/TDS 238.pdfRadenovic, A. (2007). Optical Trapping. Advanced Bioengineering Methods Laboratory OpticalTrapping, 1-25.Ribeiro, M. (2004). Gaussian probability density functions: Properties and error characterization.Institute for Systems and Robotics, Technical Report, (February), 1-30. Retrieved fromhttp://hans.fugal.net/comps/papers/ribeiro_2004.pdfRice, A., & Fischer, R. (2010). Calibration of Optical Tweezers. Retrieved January 2,2016, from http://hank.uoregon.edu/experiments/Optical-Tweezers/Calibration of OpticalTweezers.pdfShaevitz, J. W. (2006). A Practical Guide to Optical Trapping. Retrieved May 23, 2017, fromhttp://genomics.princeton.edu/shaevitzlab/OT_Practicle_Guide.pdfShindel, M. M., Swan, J. W., & Furst, E. M. (2013). Calibration of an optical tweezermicrorheometer by sequential impulse response. Rheologica Acta, 52(5), 455- 465.Soler, J. M. (2008). Force calibration of a plurality of optical traps by video- based methods.University of Barcelona. Retrieved from Master Science ThesisStancik, A. L., & Brauns, E. B. (2008). A simple asymmetric lineshape for fitting infraredabsorption spectra. Vibrational Spectroscopy, 47(1), 66-69.Stevenson, D. J., Gunn-Moore, F., & Dholakia, K. (2015). Light forces the pace: opticalmanipulation for biophotonics. Journal of Biomedical Optics, 15(4), 41503.Svoboda, K., & Block, S. M. (1994). Biological applications of optical forces. Annu Rev BiophysBiomol Struct, (23), 247-85.Toli´c-Nørrelykke, I., Berg-Sørensen, K., & Flyvbjerg, H. (2004). MatLab program for precisioncalibration of optical tweezers. Computer Physics Communications, 159(3), 225-240.Tolic-Norrelykke, S. F., Schaffer, E., Howard, J., Pavone, F. S., Julicher, F., & Flyvbjerg, H.(2006). Calibration of optical tweezers with positional detection in the back focal plane. Reviewof Scientific Instruments, 77(10), 1-11.Weisstein, E. (n.d.). Full Width at Half Maximum. Retrieved June 14, 2016, fromhttp://mathworld.wolfram.com/FullWidthatHalfMaximum.htmlWestmoquette, M. S. (2007). Super star clusters, their environment, and the formation of galacticwinds. ProQuest Dissertations And Theses; Thesis (Ph.D.)--University of London. University ofLondon. Retrieved from http://adsabs.harvard.edu/abs/2007PhDT.......226WWoerdemann, M., Alpmann, C., Esseling, M., & Denz, C. (2013). Advanced optical trapping by complexbeam shaping. Laser & Photonics Reviews, 7(6), 839-854. http://doi.org/10.1002/lpor.201200058Xia, K., & Zhang, J.-Q. (2015). Tuning optical spectrum between Fano and Lorentzian line shapeswith phase control. Optics Communications, 354, 128-131.