Synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation

This research investigated the potential of biopolymer-additive films for foodpreservation. Three biopolymers, namely chitosan (CS), gelatin (GL) and methylcellulose (MC) wereused in this research. Ascorbic acid (AA), tannic acid (TA), banana leaf essential oil (BA), cloveessential oil (CL), turmeri...

Full description

Saved in:
Bibliographic Details
Main Author: Al Luqman Abdul Halim
Format: thesis
Language:eng
Published: 2018
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=5079
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:5079
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QP Physiology
spellingShingle QP Physiology
Al Luqman Abdul Halim
Synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation
description This research investigated the potential of biopolymer-additive films for foodpreservation. Three biopolymers, namely chitosan (CS), gelatin (GL) and methylcellulose (MC) wereused in this research. Ascorbic acid (AA), tannic acid (TA), banana leaf essential oil (BA), cloveessential oil (CL), turmeric extract (TU) and chamomile extract (CH) were used as natural additive.This research is divided into five main studies, namely synthesis, characterisation, antimicrobialactivity, food preservation and biodegradation. The main scientific instruments used in this studywere Fourier transform infrared (FTIR) spectrometer, scanning electron microscope (SEM), universaltesting machine, water vapour permeability (WVP) analyser, oxygen permeability (OP) analyser,ultraviolet-visible (UV-Vis) spectrophotometer and thermogravimetric analyser (TGA). The bacteriaused for antimicrobial activity were Staphylococcus aureus (Gram-positive) and Escherichia coli(Gram-negative). The preservation of food samples was conducted for 7 and 14 days at two differentsurrounding temperatures, namely 23-25C and 27-30 C. Cherry tomatoes (Solanum lycopersicum var.cerasiforme) and grapes (Vitis vinifera) were used as food samples in preservation studies.Research findings found that several natural additives havesuccessfully decreased the WVP value of GL-TA (1.73-1.28 g m-1 day-1 atm-1), CS- TU (1.44 -1.20 gm-1 day-1 atm-1) and MC-TA (1.27-1.18 g m-1 day-1 atm-1). With exception of incorporation of TAwith GL, the addition of natural additives reducedthe tensile strength (TS) of biopolymer films. Meanwhile, a contrast effect was obtained forelongation at break (EAB). Based on antimicrobial activity studies, the inhibition zone for CSagainst E. coli was increased from 10 to 25 mm following addition of TU, while the inhibition forCS against S. aureus was increased from 15 to 20 mm with BA treatment. All biopolymer filmsincorporated with natural additives were able to reduce the percentage of weight loss and browningindex of fruit samples. In conclusion, the addition of natural additives changed thephysicochemical characteristics of CS, GL, and MC films which favour to prolong the shelf-life offoods. In implication, the application of biopolymer-natural additive films as alternatives topetroleum-based films for food preservation could create a green andsustainable environment.
format thesis
qualification_name
qualification_level Master's degree
author Al Luqman Abdul Halim
author_facet Al Luqman Abdul Halim
author_sort Al Luqman Abdul Halim
title Synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation
title_short Synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation
title_full Synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation
title_fullStr Synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation
title_full_unstemmed Synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation
title_sort synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2018
url https://ir.upsi.edu.my/detailsg.php?det=5079
_version_ 1747833164513935360
spelling oai:ir.upsi.edu.my:50792020-08-07 Synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation 2018 Al Luqman Abdul Halim QP Physiology This research investigated the potential of biopolymer-additive films for foodpreservation. Three biopolymers, namely chitosan (CS), gelatin (GL) and methylcellulose (MC) wereused in this research. Ascorbic acid (AA), tannic acid (TA), banana leaf essential oil (BA), cloveessential oil (CL), turmeric extract (TU) and chamomile extract (CH) were used as natural additive.This research is divided into five main studies, namely synthesis, characterisation, antimicrobialactivity, food preservation and biodegradation. The main scientific instruments used in this studywere Fourier transform infrared (FTIR) spectrometer, scanning electron microscope (SEM), universaltesting machine, water vapour permeability (WVP) analyser, oxygen permeability (OP) analyser,ultraviolet-visible (UV-Vis) spectrophotometer and thermogravimetric analyser (TGA). The bacteriaused for antimicrobial activity were Staphylococcus aureus (Gram-positive) and Escherichia coli(Gram-negative). The preservation of food samples was conducted for 7 and 14 days at two differentsurrounding temperatures, namely 23-25C and 27-30 C. Cherry tomatoes (Solanum lycopersicum var.cerasiforme) and grapes (Vitis vinifera) were used as food samples in preservation studies.Research findings found that several natural additives havesuccessfully decreased the WVP value of GL-TA (1.73-1.28 g m-1 day-1 atm-1), CS- TU (1.44 -1.20 gm-1 day-1 atm-1) and MC-TA (1.27-1.18 g m-1 day-1 atm-1). With exception of incorporation of TAwith GL, the addition of natural additives reducedthe tensile strength (TS) of biopolymer films. Meanwhile, a contrast effect was obtained forelongation at break (EAB). Based on antimicrobial activity studies, the inhibition zone for CSagainst E. coli was increased from 10 to 25 mm following addition of TU, while the inhibition forCS against S. aureus was increased from 15 to 20 mm with BA treatment. All biopolymer filmsincorporated with natural additives were able to reduce the percentage of weight loss and browningindex of fruit samples. In conclusion, the addition of natural additives changed thephysicochemical characteristics of CS, GL, and MC films which favour to prolong the shelf-life offoods. In implication, the application of biopolymer-natural additive films as alternatives topetroleum-based films for food preservation could create a green andsustainable environment. 2018 thesis https://ir.upsi.edu.my/detailsg.php?det=5079 https://ir.upsi.edu.my/detailsg.php?det=5079 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abdulmumeen, H. a, Risikat, A. N., & Sururah, A. R. (2012). Food: Its preservatives,additives and applications. International Journal of Clinical and Biological Sciences, 1, 36-47.Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico- mechanical andantimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated withessential oils. Food Hydrocolloids, 28(1), 189- 199.Ahmed, S., & Ikram, S. (2015). Silver Nanoparticles: One Pot Green Synthesis UsingTerminalia arjuna Extract for Biological Application. Journal of Nanomedicine& Nanotechnology, 6(4), 1-6.Ahmed, S., & Ikram, S. (2016). Journal of Photochemistry & Photobiology , B: Biology Chitosan andgelatin based biodegradable packaging fi lms with UV- light protection. Journal of Photochemistry &Photobiology , B : Biology, 163, 115-124.Adinew, B. (2013). GC-MS and FT-IR analysis of constituents of essential oil from Cinnamon barkgrowing in South-west of Ethiopia. International Journal of Herbal Medicine, 1(6), 22-31.Aewsiri, T., Benjakul, S., Visessanguan, W., Wierenga, P. A., & Gruppen, H. (2010).Antioxidative activity and emulsifying properties of cuttlefish skin gelatin- tannic acid complexas influenced by types of interaction. Innovative Food Science and Emerging Technologies, 11,712-720.Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martinez-Bustos, F., González- Nuñez, R., &Grosso, C. R. F. (2012). Functional properties of gelatin-based films containing Yucca schidigeraextract produced via casting, extrusion and blown extrusion processes: A preliminary study. Journalof Food Engineering, 113, 33-40.Anvari, M., & Chung, D. (2016). Dynamic rheological and structural characterization of fishgelatin-gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60, 516-524.Aider, M. (2010). Chitosan application for active bio-based films production and potential in thefood industry. Food Science and Technology, 43(6), 837-842.Alparslan, Y., Baygar, Tuba, Baygar, Taçnur, Hasanhocaoglu, H., & Metin, C. (2014). Effects ofgelatin-based edible films enriched with laurel essential oil onthe quality of rainbow trout (Oncorhynchus mykiss) fillets during refrigeratedstorage. Food Technology and Biotechnology, 52(3), 325-333.Altiok, D., Altiok, E., & Tihminlioglu, F. (2010). Physical, antibacterial andantioxidant properties of chitosan films incorporated with thyme oil for potential wound healingapplications. Journal of Materials Science: Materials in Medicine, 21, 2227-2236.Aljawish, A., Muniglia, L., Klouj, A, Jasniewski, J., Scher, J., & Desobry, S. (2016).Characterization of films based on enzymatically modified chitosan derivatives with phenolcompounds. Food Hydrocolloids, 60, 551-558.Arancibia, M. Y., Alemán, A., Calvo, M. M., López-caballero, M. E., Montero, P., & Gómez-guillén,M. C. (2014). Food Hydrocolloids Antimicrobial and antioxidant chitosan solutions enriched withactive shrimp (Litopenaeus vannamei) waste materials. Food Hydrocolloids, 35, 710-717.Ariaii, P., Tavakolipour, H., Rezai, M., & Rad, A. H. E. (2014). Properties and antimicrobialactivity of edible methylcellulose based film incorporated with Pimpinella affinis oil. EuropeanJournal of Experimental Biology, 4(1), 670- 676.Ashwin Kumar, A., Karthick. K, & Arumugam, K. P. (2011). Properties of biodegradable polymers anddegradation for sustainable development. International Journal of Chemical Engineering andApplications, 2(3), 164- 167.ASTM. (1995), Standard Test Method for Water Vapor Transmission Rate Through Plastic Film andSheeting Using a Modulated Infrared Sensor, American Society for Testing and Materials,Philadelphia, Pa.ASTM. (1980). Standard test method for water vapor transmission of materials.ASTM Book of Standards, E96-80. American Society for Testing and Materials, Philadelphia, PA.Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatingsfor active food packaging. Trends in Food Science & Technology, 48, 51-62.Avila-sosa, R., Palou, E., & López-malo, A. (2016). Chapter 15- Essential Oils Added to EdibleFilms. In Essential Oils in Food Preservation, Flavor and Safety, Academic Press, 149-154.Badii, F., & Howell, N. K. (2006). Fish gelatin: Structure, gelling properties and interaction withegg albumen proteins. Food Hydrocolloids, 20, 630-640.Bahram, S., Rezaei, M., Soltani, M., Kamali, A., Ojagh, S. M., & Abdollahi, M. (2013). Whey proteinconcentrate edible film activated with cinnamon essentialoil. Journal of Food Processing and Preservation, 38(3), 1251-1258.Barbin, D. F., Valous, N., A., Dias, A. P., Camisa, J., Hirooka, E. Y., & Yamashita, F.(2015). VIS-NIR spectroscopy as a process analytical technology for compositional characterizationof film biopolymers and correlation with their mechanical properties. Materials Science andEngineering: C, 56, 274-279.Barone, J. R., Schmidt, W. F. (2006). Nonfood application of proteinaceous renewable materials.Journal of Chemical Education, 83, 1003-1009.Bastos, D. da S., Araújo, K. G. de L., & Leão, M. H. M. da R. (2009). Ascorbic acid retaining usinga new calcium alginate-Capsul based edible film. Journal of Microencapsulation, 26(2), 97-103.Ben-Jonathan, N., Hugo, E. R., & Brandebourg, T. D. (2009). Molecular and Cellular EndocrinologyEffects of bisphenol A on adipokine release from human adipose tissue: Implications for themetabolic syndrome. Molecular and Cellular Endocrinology. 304, 49-54.Benbettaïeb, N., Karbowiak, T., Brachais, C., & Debeaufort, F. (2015). Coupling tyrosol , quercetinor ferulic acid and electron beam irradiation to cross-link chitosan - gelatin films: A structure- function approach, European Polymer Journal, 67, 113-127.Bilbao-sainz, C., Bras, J., Williams, T., Sénechal, T., & Orts, W. (2011). HPMC reinforced withdifferent cellulose nano-particles. Carbohydrate Polymers, 86(4), 1549-1557.Blanco-Fernandez, B., Rial-Hermida, M. I., Alvarez-Lorenzo, C., & Concheiro, A. (2013). Ediblechitosan/acetylated monoglyceride films for prolonged release of vitamin e and antioxidantactivity. Journal of Applied Polymer Science, 129(2), 626-635.Bott, J., Strmer, A., Franz, R. (2014). A model study into the migration potential ofnanoparticles from plastics nanocomposites for food contact. Food Packaging and Shelf Life, 2,73-80.Brody, A. L., Bugusu, B., Han, J. H., Sand, C. K., & McHugh, T. H. (2008).Innovative Food Packaging Solutions. Journal of Food Science, 73, 107-116.Broek, L. A. M. Van Den, Knoop, R. J. I., Kappen, F. H. J., & Boeriu, C. G. (2015).Chitosan films and blends for packaging material. Carbohydrate Polymers, 116, 237-242.Cao, N., Yang, X., & Fu, Y. (2009). Effects of various plasticizers on mechanical and water vaporbarrier properties of gelatin films. Food Hydrocolloids, 23(3), 729- 735.Castro-Mayorga, J. L., Martínez-Abad, A., Fabra, M. F., Lagarón, J. M., Ocio, M. J.,& Sánchez, G. (2016). Chapter 32- Silver-Based Antibacterial and Virucide Biopolymers: Usage andPotential in Antimicrobial Packaging. In J. Barros-Velázquez (Ed.), Antimicrobial Food Packaging. Academic Press, 407-416.Castilho, L.R., Mitchell, D.A., Freire, D.M.G., 2009. Production ofpolyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-statefermentation. Bioresource Technology, 100, 5996- 6009.Chen, G., Zhang, B., Zhao, J., & Chen, H. (2014). Food Hydrocolloids Development andcharacterization of food packaging fi lm from cellulose sulfate. Food Hydrocolloids, 35, 476-483.Chen, H., Hu, X., Chen, E., Wu, S., McClements, D. J., Liu, S., Li, B., & Li, Y. (2016).Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions.Food Hydrocolloids, 61, 662-671Cian, R. E., Salgado, P. R., Drago, S. R., González, R. J., & Mauri, A. N. (2014).Development of naturally activated edible films with antioxidant properties prepared from redseaweed Porphyra columbina biopolymers. Food Chemistry, 146, 6-14.Cha, D. S., & Chinnan, M. S., (2004). Biopolymer-based antimicrobial packaging: a review. CriticalReviews in Food Science and Nutrition, 44, 223-237.Chinnam, P. R., Mantravadia, R., Jimeneza, J. C., Dikin, D. A., Wunder, S. L. (2015).Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol,POSS-PEG. Carbohydrate Polymers, 136, 19-29.Clarke, D., Molinaro, S., Tyuftin, A., Bolton, D., Fanning, S., Kerry, J. P. (2016).Incorporation of commercially-derived antimicrobials into gelatin-based films and assessment oftheir antimicrobial activity and impact on physical film properties. Food Control, 64, 202-211.Corcoran, P. L., Norris, T., Ceccanese, T., Walzak, M. J., Helm, P. A., & Marvin, C.H. (2015). Hidden plastics of Lake Ontario, Canada and their potential preservation in the sedimentrecord. Environmental Pollution, 204, 17-25.Debeaufort., F., & Voilley, A. (2009). Lipid-based edible films and coatings.Embuscado ME Huber KC eds. Edible Films and Coatings for Food. Springer Science Business Media,LLC, New York, NY.De’Nobili, M. D., Soria, M., Martinefski, M. R., Tripodi, V. P., Fissore, E. N., & Rojas, A. M.(2016). Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid forantioxidant food preservation. Journal of Food Engineering, 175, 1-7.Desobry, S., & Arab-Tehrany, E. (2014). Diffusion Barrier Layers for Edible Food Packaging.Comprehensive Materials Processing, 4, 499-518.Dicastillo, C. L. De, Rodríguez, F., Guarda, A., & Galotto, M. J. (2016). Antioxidantfilms based on cross-linked methyl cellulose and native Chilean berry for foodpackaging applications. Carbohydrate Polymers, 136, 1052-1060.Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives forchitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182.Elsabee, M. Z. & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. MaterialsScience and Engineering: C, 33, 1819-1841.El-Hefian, E. A., Elagannoudi, E. S., Mainal, A., & Yahaya, A. H. (2010).Characterization of chitosan in acetic acid: Rheological and thermal studies.Turkish Journal of Chemistry, 34,47-56.El-Sayed, S., Mahmoud, K. H., Fatah, A. A., & Hassen, A. (2011). DSC, TGA and dielectric propertiesof carboxymethyl cellulose/polyvinyl alcohol blends. Physica B, 406, 4068-4076.Espitia, P. J. P., Avena-Bustillos, R. J, Du, W-X., Teofilo, R. F., Soares, N. F. F., McHugh, T. H.(2014). Optimal antimicrobial formulation and physical- mechanical properties of edible films basedon aca´ and pectin for food preservation. Food packaging and shelf life, 2, 38-49.European Commission, DG Environment (2011). Plastic waste in the environment - Final Report.FAO & WHO. (2002). Global forum of food safety regulators. Marrakech, Morocco: World HealthOrganisation.Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulicacid andα-tocopherol antioxidants on properties of sodium caseinate edible films. FoodHydrocolloids, 25(6), 1441-1447.Fabra, M. F., Lagarón, J. M., Ocio, M. J., & Sánchez, G. (2016). Silver-Based Antibacterial andVirucide Biopolymers: Usage and Potential in Antimicrobial Packaging, 407-416.Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2014). Biopolymers for food packagingapplications. Smart Polymers and their Applications, 476-509.FAO & WHO. (2002). Global forum of food safety regulators. Marrakech, Morocco: World HealthOrganisation.Franeker, J. A. V., Blaize, C., Danielsen, J., Fairclough, K., Gollan, J., Guse, N., Hansen, P-L.,Heubeck, M., Jensen, J-K., Guillou, G. L., Olsen, B., Olsen K-O., Pedersen, J., Stienen, E. W. M.,Turner, D. M. (2011). Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in theNorth Sea. Environmental Pollution. 159, 2609-2615.Eça, K. L., Sartori, T., & Menegalli, F. C. (2014). Films and edible coatingscontaining antioxidants - a review. Brazilian Journal Food Technology, 17, 98-112.Galloway, T., Cipelli, R., Guralnik, J., Ferrucci, L., Bandinelli, S., & Corsi, A. M.(2010). Results from the InCHIANTI Adult Population Study. Environmental Health Perspectives.118(11), 1603-1609.Garrigos, M.C., Marin, M.L, Canto, A. & Sanchez, A. (2004) Determination of residual styrenemonomer in polystyrene granules by gas chromatography-mass spectrometry. Journal of ChromatographyA 1061:211-216.Genskowsky, E., Puentea, L. A., Perez-Alvarez, J.A., Fernandez-Lopez, J., Mun oz, L. A., &Viuda-Martos, M. (2015). Assessment of antibacterial and antioxidant properties of chitosan ediblefilms incorporated with maqui berry (Aristotelia chilensis). LWT- Food Science and Technology, 64,1057-1062.Gómez-Estaca, J., Gimenez, B., Montero, P., & Gomez-Guillen, M. C. (2009).Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or acommercial fish gelatin. Journal of Food Engineering, 92(1), 78-85.Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., &Montero, P. (2009). Fish gelatin: A renewable material for developing active biodegradable films.Trends in Food Science and Technology, 20, 3-16.González-Rivera, J., Duce, C., Falconier, D., Ferrari, C., Ghezzi, L., Piras, A., & Tine,M. R. (2015). Coaxial microwave assisted hydrodistillation of essential oils from five differentherbs (lavender, rosemary, sage, fennel seeds and clove buds): Chemical composition and thermalanalysis. Innovative Food Science and Emerging Technologies, 33, 308-318.Goy, R. C., Morais, S. T. B., & Assis, O. B. G. (2016). Evaluation of the antimicrobial activity ofchitosan and its quaternized derivative on E. Coli andS. aureus growth. Brazilian Journal of Pharmacognosy, 26(1), 122-127.Grasel, F. S., Ferrão, M. F., & Wolf, C. R. (2016). Development of methodology for identificationthe nature of the polyphenolic extracts by FTIR associated with multivariate analysis.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 94-101.Günlü, A., & Koyun, E. (2013). Effects of Vacuum Packaging and Wrapping with Chitosan Based EdibleFilm on the Extension of the Shelf Life of Sea Bass (Dicentrarchus labrax) Fillets in Cold Storage(4°C). Food Bioprocess Technology, 6, 1713-1719.Ha, T. T., Padua, G. W. (2001). Effect of extrusion processing on properties of zein- fatty acidssheets. American Society of Agricultural Engineers, 44(5), 1223-1228.Han, J. H., & Floros, J. D. (1997). Casting Antimicrobial Packaging Films andMeasuring Their Physical Properties and Antimicrobial Activity. Journal of Plastic Film andSheeting, 13, 287-298.Harris, D., & Taylor, N. (2004). The Beginner’s Guide to Preserving. Bellingham: Homestead Harvest.Hauck, B. W., & Huber, G. R. (1989). Single screw versus twin screw extrusion.Cereal Food World, 24, 930-939.Hernandez-Izquierdo, V.M, Krochta, J.M. (2008). Thermoplastic processing of proteins for filmformation-A review. Journal of Food Science, 73, 30-39.Higueras, L., López-Carballo, G, Cerisuelo, J. P., Gavara, R., Hernández-Munoz, P. (2013).Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorptioncapacity for carvacrol. Carbohydrate Polymers, 97, 262- 268.Hoque, M. S., Benjakul, S., & Prodpran, T. (2011). Properties of film from cuttlefish (Sepiapharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. FoodHydrocolloids, 25(5), 1085-1097.Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobialproperties of chitosan. International Journal of Biological Macromolecules, 85, 467-475.Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Bio-based composite ediblefilms containing Origanum vulgare L. essential oil. Industrial Crops and Products, 67, 403-413.Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication ofbio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. FoodHydrocolloids, 44, 172-182.Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional propertiesof fish gelatin-chitosan blend edible films. Food Chemistry, 136(3- 4), 1490-1495.Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2016). Development of bioactive fishgelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chemistry, 194,1266-1274.Hu, B. (2014). Chapter 13- Biopolymer-based lightweight materials for packaging applications. InYang et al., Lightweight materials from biopolymers and biofibers. ACS Symposium Series. 239-255Iturriaga, L., Olabarrieta, I., & Marañón, I. M. De. (2012). International Journal ofFood Microbiology Antimicrobial assays of natural extracts and their inhibitoryeffect against Listeria innocua and fi sh spoilage bacteria , after incorporationinto biopolymer edible fi lms. International Journal of Food Microbiology, 158(1), 58-64.Janjarasskul, T., & Krochta, J-M. (2010). Edible Packaging Materials. Annual Review of Food Scienceand Technology, 1, 415-448.Jeya Shakila, R., Jeevithan, E., Varatharajakumar, A., Jeyasekaran, G., & Sukumar,D. (2012). Comparison of the properties of multi-composite fish gelatin films with that ofmammalian gelatin films. Food Chemistry, 135(4), 2260-2267.Kadam, S. U., Pankaj, S. K., Tiwari, B. K., Cullen, P. J., & Donnell, C. P. O. (2015).Development of biopolymer-based gelatin and casein films incorporating brown seaweed Ascophyllumnodosum extract. Food Packaging and Shelf Life, 6, 68- 74.Khalifa, I., Barakat, H., El-Mansy, H. A., & Soliman, S. A. (2017). Preserving Apple (Malusdomestica var. Anna) Fruit Bioactive Substances Using Olive Wastes Extract-Chitosan Film Coating.Information Processing in Agriculture, 4, 90- 99.Kim, K. W., Min, B. J., Kim, Y. T., Kimmel, R. M., Cooksey, K., & Park, S. I. (2011). Antimicrobialactivity against foodborne pathogens of chitosan biopolymer films of different molecular weights.LWT-Food Science and Technology, 44, 565-569.Kim, Y. J. I. N., Lee, H. M. O. K., & Park, O. K. (1995). Processabilities and MechanicalProperties of Surlyn-Treated Starch / LDPE Blends, Polymer Engineering and Science, 35(20),1652-1657.Kowalczyk, D. (2016). Biopolymer/candelilla wax emulsion films as carriers of ascorbic acid Acomparative study. Food Hydrocolloids, 52, 543-553.Kowalczyk, D., & Baraniak, B. (2014). Effect of candelilla wax on functional properties ofbiopolymer emulsion films e a comparative study. Food Hydrocolloids, 41, 195-209.Kowalczyk, D., & Biendl, M. (2016). Physicochemical and antioxidant properties of biopolymer /candelilla wax emulsion films containing hop extract − A comparative study. Food Hydrocolloids, 60,384-392.Krishna, M., Nindo, C. I., & Min, S. C. (2012). Development of fish gelatin edible films usingextrusion and compression molding. Journal of Food Engineering, 108(2), 337-344.Kwon, S-J, Chang, Y., & Han, J. (2017). Oregano essential oil-based natural antimicrobial packagingfilm to inactivate Salmonella enterica and yeasts/molds in the atmosphere surrounding cherrytomatoes. Food Microbiology, 65,114-121.Lacroix, M., 2009. Mechanical and permeability properties of edible filmsandcoatings for food and pharmaceutical applications. In: Milda, E.E., Kerry, C.H.(Eds.), EdibleFilms and Coatings for Food Applications. Springer Science+ Business Media, New York, pp. 347-366.Lagos, M. J. B. (2013). Development of bioactive edible films and coatings with antioxidant andantimicrobial properties for food use (doctoral dissertation). Universitat Politècnica De València,Valencia, Spain.Lang, I. A., Galloway, T. S., Scarlett, A., Henley, W. E., Depledge, M., & Wallace, R.B. (2008). Association of Urinary Bisphenol A Concentration With Medical Disorders and LaboratoryAbnormalities in Adults. Journal of the American Medical Association. 300(11), 1303-1310.Lim, T. P., Chye, F. Y., Sulaiman, M. R., Suki, N. M., & Lee, J. S. (2016). A structural modelingon food safety knowledge, attitude, and behaviour among Bum Bum Island community of Semporna,Sabah. Food Control, 60, 241-246.Lin, S. (2012). Development of Edible Packaging for Selected Food Processing Applications. The OhioState University.Liu, F., Antoniou, J., Li, Y., Ma, J., & Zhong, F. (2015). Effect of sodium acetate and dryingtemperature on physicochemical and thermomechanical properties of gelatin films. FoodHydrocolloids, 45, 140-149.Liu, K., Yuan, C., Chen, Y., Li, H., & Liu, J. (2014). Scientia Horticulturae Combined effects ofascorbic acid and chitosan on the quality maintenance and shelf life of plums. ScientiaHorticulturae, 176, 45-53.Liu, L. (2006). Bioplastics in food packaging: innovative technologies for biodegradable packaging.San Jose State University.Liu, W., Misra, M., Askeland, P., Drzal, L.T., Mohanty, A.K. (2005). ‘Green’ Composites from SoyBased Plastic and Pineapple Leaf Fiber: Fabrication and Properties Evaluation. Polymer, 46,2710-2721.López-de-Dicastillo, C., Gómez-Estaca, J., Catalá, R., Gavara, R., & Hernández- Munóz, P. (2012).Active antioxidant packaging films: development and effect on lipid stability of brined sardines.Food Chemistry, 131(4), 1376-1384.López-mata, M. A., Ruiz-cruz, S., Silva-beltrán, N. P., Ornelas-paz, J. D. J., Zamudio- flores, P.B., & Burruel-ibarra, S. E. (2013). Physicochemical, Antimicrobial and Antioxidant Properties ofChitosan Films Incorporated with Carvacrol. Molecules, 18(11), 13735-13753.Luo, Y., Pan, X., Ling, Y., Wang, X., & Sun, R. (2014). Facile fabrication of chitosanactive film with xylan via direct immersion. Cellulose, 21(3), 1873-1883.Maobe, M. A.G., & Nyarango, Robert M. (2013). Fourier Transformer Infra-RedSpectrophotometer Analysis of Warburgia ugandensis Medicinal Herb Used for the Treatment ofDiabetes, Malaria and Pneumonia in Kisii Region, Southwest Kenya. Global Journal of Pharmacology,7, 61-68.Makarios-Laham, I., & Lee, T-C. (1995). Biodegradability of chitin- and chitosan- containing filmsin soil environment. Journal of Enviromnental Polymer Degradation, 3(1), 31-36.Makwana, S., Choudhary, R., Haddock, J., & Kohli, P. (2015). In-vitro antibacterial activity ofplant based phenolic compounds for food safety and preservation. LWT - Food Science and Technology,62, 935-939.Marcilla, A., Garia, S., Garcia-Queseda, J.C. (2004) Study of the migration of PVC plasticizers.Journal of Analytical and Applied Pyrolysis. 71, 457-463.Martins, J. T., Cerqueira, M. A., & Vicente, A. A. (2012). Influence of a-tocopherol onphysicochemical properties of chitosan-based films, Food Hydrocolloids, 27, 220-227.McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic Edible Films: ModifiedProcedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of FoodScience, 58(4), 899-903.Meeker, J. D., Sathyanarayana, S., & Swan, S. H. (2009). Phthalates and other additives inplastics: human exposure and associated health outcomes, 2097- 2113.Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: areview. Trends in Food Science and Technology, 81, 228-237.Moura, M. R. D., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso,L. H. C. (2008). Properties of novel hydroxypropyl methylcellulose films containing chitosannanoparticles. Journal of Food Science, 73(7). 31-37.Moradi, M., Tajik, H., Razavi Rohani, S.M., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., &Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zatariamultiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology, 46(2),477-484.Muratore, G. Del Nobile M A. Buanocore, G.G., Lanza, C.M., Asmundo, C.N. (2005). The Influence ofUsing Biodegradable Packaging films on The Quality Decay Kinetic of Plum Tomato. Journal of FoodEngineering, 67, 393-399.Noronha, C. M., De Carvalho, S. M., Lino, R. C., & Barreto, P. L. M. (2014).Characterization of antioxidant methylcellulose film incorporated withα-tocopherol nanocapsules. Food Chemistry, 159, 529-535.Noshirvani, N., Ghanbarzadeh, B., Gardrat, Rezaei, M. R., Hashemi, M., Coz, C. L.,& Coma, V. (2017). Cinnamon and ginger essential oils to improve antifungal, physical andmechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70. 36-45.Nur Hazirah, M.A.S.P., Isa, M.I.N., & Sarbon, N.M. (2016). Effect of xanthan gum on the physicaland mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and ShelfLife, 9, 55-63.Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation ofa novel biodegradable film made from chitosan and cinnamon essential oil with low affinity towardwater. Food Chemistry, 122(1), 161-166.Oehlmann, J., Schulte-oehlmann, U., Kloas, W., Jagnytsch, O., Lutz, I., Kresten, O. K.,Wollenberger, L., Santos, E. M., Paull, G. C., Look, K. J. W. V., Tyler, C.R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife A criticalanalysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions TheRoyal Society, 364, 2047-2062.Pantoja-Castroa, M. A., & González-Rodrígueza, H. (2011). Study by infrared spectroscopy andthermogravimetric analysis of tannins and tannic acid. Revista Latinoamericana de Química, 39(3),107-112.Pastor, C., Sánchez-gonzález, L., Chiralt, A., Cháfer, M., & González-martínez, C. (2013). Physicaland antioxidant properties of chitosan and methylcellulose based films containing resveratrol. FoodHydrocolloids, 30, 272-280.Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanicaland structural properties of chitosan films. Food Hydrocolloids, 36, 287-293.Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A., & Martucci, J. F. (2011).Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. FoodHydrocolloids, 25, 1372-1381.Pérez, C. D., DeNobili, M. D., Rizzo, S. A., Gerschenson, L. N., Descalzo, A. M., & Rojas, A. M.(2013). High methoxyl pectin-methyl cellulose films with antioxidant activity at a functional foodinterface. Journal of Food Engineering, 116(1), 162-169.Priya, S., D., Suriyaprabha, R., Yuvakkumar, R., & Rajendran, V. (2014). Chitosan- incorporateddifferent nanocomposite HPMC films for food preservation. Journal of Nanoparticle Research,16(2248), 1-16.Pushpadass, H. A., Marx, D. B, Wehling, R. L., & Hanna, M. A. (2009). Cereal Chemistry, 86, 44-51.Rahman S. M. (2007). Handbook of food preservation, 2nd edn. CRC Press: NewYork.Raj, B., Matche, R. S., & Jagadish, R. S. (2011). “Incorporation of ChemicalAntimicrobial Agents into Polymeric Films for Food Packaging,” inMultifunctional and Nanoreinforced Polymers for Food Packaging, edited by J-M. Lagarón, Woodhead Publishing, Cambridge, 368-420.Ramírez, C., Gallegos, I, Ihl, M., & Bifani, V. (2012). Study of contact angle, wettability andwater vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves (Ugni molinaeTurcz) extract. Journal of Food Engineering, 109, 424-429.Redl, A.,Morel, M. H., Bonicel, J., Vergnes, B., & Guilbert, S. (1999). Extrusion of wheat glutenplasticized with glycerol: influence of process conditions on flow behavior, rheologicalproperties, and molecular size distribution. Cereal Chemistry, 76(3), 361-370.Rhim, J. W., & Kim, Y. T. (2014). Biopolymer-Based Composite Packaging Materials withNanoparticles. Elsevier, 17, 413-442.Rhim, J.-W., Park, H.-M., Ha, C.-S., 2013. Bio-Nanocomposites for Food Packaging Applications.Progress in Polymer Science, 38, 1629-1652.Riaz, M. N. (2002). Extruder in Food Applications. CRC Press, Boca Raton, USA.Riyajan, S., Intharit, I., & Tangboriboonrat, P. (2013). Physical properties of themaleated sulphurprevulcanized natural rubber latex-g-cellulose fiber, Journal of Polymer Materials, 30, 159-174.Rossman, J. M. 2009. Edible films and coatings for food applications. In: Embuscado ME, Huber KC.Edible films and coatings for food applications. Springer Science Business Media, New York,367-390.Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J.A., & Fernández- López, J. (2013).In vitro antibacterial and antioxidant properties of chitosan edible films incorporated withThymusmoroderi or Thymus piperella essential oils. Food Control, 30, 386-392.Saiful, Saleha S., & Salman, (2013). Preparation and characterization edible film packaging fromcarrageenan. Proceedings of The 3rd Annual International Conference Syiah Kuala University (AICUnsyiah) 2013 In conjunction with The 2nd International Conference on Multidisciplinary Research(ICMR) 2013, 3(3), 44-50.Salgado, P. R., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P.(2013). Sunflower protein films incorporated with clove essential oil have potential applicationfor the preservation of fish patties. Food Hydrocolloids, 33(1), 74-84.Saggiorato, A.G., Gaio, I., Treichel, H., De Oliveira, D., Cichoski, A.J., & Cansian,R.L. (2012). Antifungal activity of basil essential oil (Ocimum basilicum L.):evaluation in vitro and on an Italian-type sausage surface. Food and Bioprocess Technology, 5,378-384.Science for Environment Policy. (2011). Plastic waste: ecological and human health impacts.Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans.Trends in Food Science & Technology, 10 (2), 37-51.Shariatinia, Z., & Fazli, M. (2015). Mechanical properties and antibacterial activities of novelnanobiocomposite films of chitosan and starch. Food Hydrocolloids, 46, 112-124.Shankar, S., & Rhim, J.-W. (2015). Amino acid mediated synthesis of silver nanoparticles andpreparation of antimicrobial agar/silver nanoparticles composite films. Carbohydrate Polymers, 130,353-363.Singh, R. K., & Khatri, O. P. (2012). A scanning electron microscope based new method fordetermining degree of substitution of sodium carboxymethyl cellulose. Journal of Microscopy,246(1), 43-52.Shekarabi, A. S., Oromiehie, A. R., Vaziri, A., Ardjmand, M., & Safekordi, A. A. (2014).Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films,Food Science & Nutrition, 821-827.Siracusa, V. (2016). Packaging Material in the Food Industry, 95-106.Silva-Weiss, A., Ihl, M., Sobral, P. J. A., Gómez-Guilln, M. C., & Bifani, V. (2013).Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods.Food Eng Rev, 5, 200-216.Siti Hajar, O. (2014). Bio-nanocomposite Materials for Food Packaging Applications: Types ofBiopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia, 2, 296-303.Skotti, E., Kountouri, S., Bouchagier, P., Tsitsigiannis, D. I., Polissiou, M., & Tarantilis, P. A.(2014). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy FTIR spectroscopicevaluation of changes in the cellular biochemical composition of the phytopathogenic fungusAlternaria alternata induced by extracts of some Greek medicinal and aromatic plants.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 463-472.Sobral, P. J. A., Menegalli, F. C., Hubinger, M. D., & Roques, M. A. (2001).Mechanical, water vapor barrier and thermal properties of gelatin based ediblefilms. Food Hydrocolloids, 15, 423-32.Socrates, G. (2001) Infrared and Raman Characteristics Group Frequencies, Tablesand Chart. 3a. ed., John Wiley & Sons, Inc., USA pp: 125-142.Sogvar, O. B., Saba, M. K., & Emamifar, A. (2016). Postharvest Biology and Technology Aloe vera andascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit.Postharvest Biology and Technology, 114, 29-35.Song, X., & Cheng, L. (2014). Chitosan/kudzu starch/ascorbic acid films: Rheological, wetting,release, and antibacterial properties. African Journal of Agricultural Research, 9(52), 3816-3824.Suppakul, P., Boonlert, R., Buaphet, W., Sonkaew, P., & Luckanatinvong, V. (2016).Efficacy of superior antioxidant Indian gooseberry extract-incorporated edible Indian gooseberrypuree/methylcellulose composite films on enhancing the shelf life of roasted cashew nut. FoodControl, 69, 51-60.Tajkarimi, M. M., Ibrahima, S. A., & Cliver, D. O. (2010). Review: antimicrobial herb and spicecompounds in food. Food Control, 21(9), 1199-1218.Tajkarimi, M., & Ibrahim, S. A. (2011). Antimicrobial activity of ascorbic acid alone or incombination with lactic acid on Escherichia coli O157: H7 in laboratory medium and carrot juice.Food Control, 22(6), 801-804.Talsness, C. E., Andrade, A. J. M., Kuriyama, S. N., Taylor, J. A., Saal, F. S. (2009).Components of plastic: experimental studies in animals and relevance for human health.Philosophical Transactions of the Royal Society B, 364, 2079-2096.Tnase, E. E., Popa, V. I., Popa, M. E., Rp, M., & Popa, O. (2016). Biodegradation study of somefood packaging biopolymers based on PVA. Bulletin UASVM Animal Science and Biotechnologies, 73(1),1-5.Tian, S-P., Li, B-Q & Xu, Y. (2005). Effects of O2 and CO2 concentrations on physiology and qualityof litchi fruit in storage. Food Chemistry, 91, 659-663.Tharanathan, R.N. (2003). Biodegradable films and composite coatings: past, present and future.Trends in Food Science & Technology, 14, 71-78.Tulamandi, S., Rangarajan, V., Rizvi, S. S. H., Singhal, R. S., Chattopadhyay, S. K.,& Saha, N. C. (2016). A biodegradable and edible packaging film based on papaya puree, gelatin, anddefatted soy protein. Food Packaging and Shelf Life, 10, 60-71.Tunç¸ S., Duman, O., Polat, T. G. (2016). Effects of montmorillonite on properties ofmethylcellulose/carvacrol based active antimicrobial nanocomposites. Carbohydrate Polymers, 150,259-268.Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidantactivity of fish skin gelatin film incorporated with citrus essential oils. FoodChemistry, 134, 1571-1579.Tongnuanchan, P., Benjakul, S., Prodpran, T., Pisuchpen, S., & Osako, K. (2016).Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil andbasil essential oil with different surfactants. Food Hydrocolloids, 56, 93-107.United Nations, Department of Economic and Social Affairs, Population Division (2015). WorldPopulation Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No.ESA/P/WP.241.Uranga, J., Leceta, I., Etxabide, A., Guerrero, P., & De La Caba, K. (2016). Cross- linking of fishgelatins to develop sustainable films with enhanced properties. European Polymer Journal, 78,82-90.Viuda-Martos, M., Mohamady, M.A., Fernández-López, J., Abd ElRazik, K.A., Omer, E.A.,Pérez-Álvarez, J.A. et al. (2011). In vitro antioxidant and antibacterial activities of essentialoils obtained from Egyptian aromatic plants. Food Control, 22, 1715-1722.Wallace, M. (2005). Getting Started in Food Preservation Leader’s Guide.Washington, DC: Washington State University Extension.Wang, H., Hu, D., Ma, Q., & Wang, L. (2016). Physical and antioxidant properties of fl exible soyprotein isolate fi lms by incorporating chestnut ( Castanea mollissima ) bur extracts. LWT - FoodScience and Technology, 71, 33-39.Wang, S., Marcone, M. F., Barbut, S., & Lim, L. (2012). Fortification of dietary biopolymers-basedpackaging material with bioactive plant extracts. Food Research International, 49(1), 80-91.Wu, Y., Luo, X., Li, W., Song, R., Li, J., Li, Y., … Liu, S. (2016). Green and biodegradablecomposite films with novel antimicrobial performance based on cellulose. Food Chemistry, 197,250-256.Xiaolin, T., Dafeng, T., Zhongyan, W., & Fengkui, M. (2009). Synthesis and Evaluation ofChitosan-Vitamin C Complexes, Journal of Applied Polymer Science, 114, 2986-2991.Xie, Y-L., Zhou, H-M., & Qian, H-F. (2006). Effect of addition of peach gum on physicochemicalproperties of gelatin-based microcapsule. Journal of Food Biochemistry, 30(3), 302-312.Yanwong, S., & Threepopnatku, P. (2015). Effect of peppermint and citronella essential oils onproperties of fish skin gelatin edible films. IOP ConferenceSeries: Materials Science and Engineering, 87.Yuan, G., Chen, X., & Li, D. (2016). Chitosan films and coatings containing essentialoils: The antioxidant and antimicrobial activity, and application in food systems.Food Research International, 89, 117-128.Zhong, Q-P., & Xia, W-S. (2008). Physicochemical properties of edible and preservative films fromchitosan/cassava starch/gelatin blend plasticized with glycerol. Food Technology Biotechnology, 46,262-269.Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzustarch-chitosan composite films as a function of acid solventtypes. Carbohydrate Polymers, 84, 335-342.