Mathematical models based on difference and differential equations for dengue disease mapping in Bandung Indonesia

This study aimed to introduce a new alternative mathematical model for the discrete space-timecompartment models. The study focuses on the development of three new models. The first model is astochastic model which considers the age-structure based on the difference equation, also known asthe ASDE m...

Full description

Saved in:
Bibliographic Details
Main Author: Farah Kristiani
Format: thesis
Language:eng
Published: 2019
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=5446
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:5446
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic RC Internal medicine
spellingShingle RC Internal medicine
Farah Kristiani
Mathematical models based on difference and differential equations for dengue disease mapping in Bandung Indonesia
description This study aimed to introduce a new alternative mathematical model for the discrete space-timecompartment models. The study focuses on the development of three new models. The first model is astochastic model which considers the age-structure based on the difference equation, also known asthe ASDE model to estimate the relative risk of dengue disease transmission. This model takes intoaccount the spatial correlation in determining the newly infective number of dengue caseswhich can be applied to juveniles and adults by using different birth and death probabilities.The second model is the OBDE model which is based on the development of O blood-type differentialequation. Lastly, the third model is the WADE model, which is also known asWolbachia-Aedes mosquito differential equation. The basic reproduction numbers (R0) of OBDE andWADE models as the threshold of dengue disease transmission are determined, while thestability of the models are analyzed. Results indicate that the ASDE model yielded the bestresult when it was applied to the juvenile group. Meanwhile, OBDE model analysis shows thatthe OBDE model was stable for free and endemic states. Additionally, this supports the fact that Oblood-type individuals have higher probability to be infected by dengue disease compared to thenon-O blood-type people. On the other hand, the analysis of WADE model shows that this model wasonly stable in the free-state. Based on the form of basic reproduction number of WADE model, theminimum number of Wolbachia-Aedes mosquitoes that must be released in a particular area to reachthe free-state condition can be determined. In conclusion, the ASDE model offers better resultsin estimating the relative risks, especially for the juvenile group. In addition, theother two models with the space-time variables are applied to support the real condition.The implication of the study reveals that the ASDE model can determine the risk areas that need tobe treated by the authorities with dengue vaccine as prevention to juveniles as recommendedby ASDE model and also to O blood-type people as suggested by OBDE model. Another treatmentis by releasing the Wolbachia-Aedes mosquitoes in a certain number as determined by WADE model.
format thesis
qualification_name
qualification_level Doctorate
author Farah Kristiani
author_facet Farah Kristiani
author_sort Farah Kristiani
title Mathematical models based on difference and differential equations for dengue disease mapping in Bandung Indonesia
title_short Mathematical models based on difference and differential equations for dengue disease mapping in Bandung Indonesia
title_full Mathematical models based on difference and differential equations for dengue disease mapping in Bandung Indonesia
title_fullStr Mathematical models based on difference and differential equations for dengue disease mapping in Bandung Indonesia
title_full_unstemmed Mathematical models based on difference and differential equations for dengue disease mapping in Bandung Indonesia
title_sort mathematical models based on difference and differential equations for dengue disease mapping in bandung indonesia
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2019
url https://ir.upsi.edu.my/detailsg.php?det=5446
_version_ 1747833196645449728
spelling oai:ir.upsi.edu.my:54462020-12-21 Mathematical models based on difference and differential equations for dengue disease mapping in Bandung Indonesia 2019 Farah Kristiani RC Internal medicine This study aimed to introduce a new alternative mathematical model for the discrete space-timecompartment models. The study focuses on the development of three new models. The first model is astochastic model which considers the age-structure based on the difference equation, also known asthe ASDE model to estimate the relative risk of dengue disease transmission. This model takes intoaccount the spatial correlation in determining the newly infective number of dengue caseswhich can be applied to juveniles and adults by using different birth and death probabilities.The second model is the OBDE model which is based on the development of O blood-type differentialequation. Lastly, the third model is the WADE model, which is also known asWolbachia-Aedes mosquito differential equation. The basic reproduction numbers (R0) of OBDE andWADE models as the threshold of dengue disease transmission are determined, while thestability of the models are analyzed. Results indicate that the ASDE model yielded the bestresult when it was applied to the juvenile group. Meanwhile, OBDE model analysis shows thatthe OBDE model was stable for free and endemic states. Additionally, this supports the fact that Oblood-type individuals have higher probability to be infected by dengue disease compared to thenon-O blood-type people. On the other hand, the analysis of WADE model shows that this model wasonly stable in the free-state. Based on the form of basic reproduction number of WADE model, theminimum number of Wolbachia-Aedes mosquitoes that must be released in a particular area to reachthe free-state condition can be determined. In conclusion, the ASDE model offers better resultsin estimating the relative risks, especially for the juvenile group. In addition, theother two models with the space-time variables are applied to support the real condition.The implication of the study reveals that the ASDE model can determine the risk areas that need tobe treated by the authorities with dengue vaccine as prevention to juveniles as recommendedby ASDE model and also to O blood-type people as suggested by OBDE model. Another treatmentis by releasing the Wolbachia-Aedes mosquitoes in a certain number as determined by WADE model. 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=5446 https://ir.upsi.edu.my/detailsg.php?det=5446 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Addawe, J. & Lope, J. (2012). Analysis of Age-structured Malaria Transmission Model.Philippine Science Letters, 5(2), 169-186.Afizah, N. & Lee, HL. (2013). Wolbachia-based strategy for dengue control the way forward. DengueBulletin, 37, 107 - 115.Alexander, M. & Moghadas, S. (2005). Bifurcation Analysis of an SIRS Epidemic Modelwith Generalized Incidence. SIAM Journal on Applied Mathematics, 65(5), 1794-1816.Al-Zurfi, B., Fuad, M. D., Abdelqader, M. A., Baobaid, M. F., Elnajeh, M., Ghazi, H., et al (2015).Knowledge, Attitude And Practice Of Dengue Fever And Heath Education Programme Among Students OfAlam Shah Science School, Cheras, Malaysia. Malaysian Journal of Public Health Medicine, 15(2), 69- 74.Anderson, R. & May, R. (1991). Infectious Diseases of Humans, Dynamics and Control.Oxford University Press.Aregay, M., Lawson, A. B., Faes, C. & Kirby, R. S. (2015). Bayesian Multi-scaleModeling for Aggregated Disease Mapping Data. Statistical Methods in Medical Research,1-20. doi:10.1177/0962280215607546Attikah, N. (2018, January 3). Vaksin Demam Berdarah Dengue Pertama di Dunia. Retrieved from MEETDOCTOR: https://meetdoctor.com/article/vaksin- demam-berdarah-dengue-pertama-di-duniaBakare, E. (2015). On the Qualitative Behaviour of a Human-Mosquito Model for Malariawith Multiple Vector Control Strategies. International Journal of Ecological Economics andStatistics, 36(2), 96 - 113.Bandung, G. (2008). Technical Material Spatial Plan of Urban Bandung Area in the Year 2011-2031.Bandung: Bandung Government. Retrieved March 2016, fromhttps://www.slideshare.net/joihot/dokumen-rtrw-kota-bandung-tahun-2011- 2031Bandung, H. (2011). Health Profile of Bandung Municipality in 2011. Bandung: BandungGovernment.Bandung, H. (2012). Health Profile of Bandung Municipality in 2012. Bandung: BandungGovernment.Bartlett, M. (1964). The Relevance of Stochastic Models for Large-ScaleEpidemiological Phenomena. Journal of the Royal Statistical Society, XXXIII, 2-8.Barua, S., El-Basyouny , K. & Tazul , M. (2015). Effects of Spatial Correlation inRandom Parameters Collision Count-data Models. Analytic Methods inAccident Research, 5-6, 2842.Barua, S., El-Basyouny, K. & Tazul, M. (2014). A Full Bayesian Multivariate Count Data Model ofCollision Severity with Spatial Correlation. Analytic Methods in Accident Research, 3-4, 2843.Bauer, C., Wakefield, J., Rue, H., Self., E., Fong, Z. & Wang, Y. (2016). Bayesian PenalizedSpline Models for the Analysis of Spatio?temporal Count Data. Statistics in Medicine,35(11), 1848-1865.Beinner, M. A., Morais, . A., Reis, I. A., Reis, E. A. & Oliveira, S. R. (2015, April). The Useof a Board Game in Dengue Health Education in a Public School. Journal of Nursing UFPEon line, 9(4), 7304 - 7313.Bernardinelli, L., Clayton, D., Pascutto, C., Montomoli, C., Ghislandi, M. & Songini,M. (1995). Bayesian Analysis of Space-Time Variation in Disease Risk.Statistics in Medicine, 14, 2433 - 2443.Besag, J., York, J. & Mollie, A. (1991). Bayesian Image Restoration with TwoApplications in Spatial Statistics. Annals of the Institute of StatisticalMathematics, 43, 1-59.Bian, G., Xu, Y., Lu, P., Xie, Y. & Xi, Z. (2010). The Endosymbiotic BacteriumWolbachia Induces Resistance to Dengue Virus in Aedes Aegypti. PLoS Pathogen, 6(4), 1 -10.Bolstad, W. (2004). Introduction to Bayesian Statistics. New Jersey: John Wiley & Sons.Bowers, N., Gerber , H., Hickman, J., Jones, D. & Nesbitt, C. (1997). ActuarialMathematics (2nd ed.). The Society of Actuaries.Boyce, W. E. & DiPrima, R. C. (2012). Elementary Differential Equations (10th ed.).USA: John Wiley & Sons.Brauer, F. & Castillo-Chaves, C. (2013). Mathematical Models for Communicable Diseases. Philadelphia: Society for Industrial and Applied Mathematics (SIAM).Burattini, M., Chen, M., Chow, A., Coutinho, F., Goh, K. & Lopez, L. (2008). Modellingthe Control Strategies Against Dengue in Singapore. Cambridge Journal, Epidemiology andInfection, 136(03), 309-319.Chaikoolvatana, A., Singhasivanon, P., Haddawy, P. & Saengnill, W. (2013). GIS- basedsurveillance to support dengue control in Thailand, 20092011. Dengue Bulletin, 37, 123 - 140.Chang, A. Y., Parrales, M., Jimenez, J., Sobieszczyk, M., Hammer, S., Copenhaver, D. & Kulkarni,R. (2009). Combining Google Earth and GIS Mapping Technologies in a DengueSurveillance System for Developing Countries. International Journal of Health Geographics,8(49), 1 - 11.Chen, D., Moulin, B. & Wu, J. (2015). Introduction to Analyzing and Modeling Spatialand Temporal Dynamics of Infectious Diseases. In D. Chen, B. Moulin, & J.Wu, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases (pp. 1 -17). John Wiley & Sons, Inc. doi:10.1002/9781118630013Cochran, J. M. & Xu, Y. (2014). Age-structured Dengue Epidemic Model. Applicable Analysis: AnInternational Journal, 93(11), 2249 - 2276.Constenla, D. & Clark, S. (2016). Financing dengue vaccine introduction in the Americas:challenges and opportunities. Expert Review of Vaccines, 15(4), 547- 559.doi:10.1586/14760584.2016.1134329Cruz-Pacheco, G., Esteva, L., Montao-Hirose, J. A. & Vargas, C. (2005). Modelling the dynamics ofWest Nile Virus. Bulletin of Mathematical Biology , 67, 1157 1172.Cuong, H.Q., Hien, N.T., Duong , T.N., Phong , T.V., Cam, N.N., Farrar, J., et al(2011). Quantifying the Emergence of Dengue in Hanoi, Vietnam: 1998-2009. PLoS Neglected TropicalDiseases, 5(9).Daley, D. & Gani, J. (1999). Epidemiology Modelling : An Introduction. Cambridge University Press.Dickson, D. C., Hardy, M. R. & Waters, H. R. (2013). Actuarial Mathematics for Life ContingentRisks (2nd ed.). New York: Cambridge University Press.DIM. (2017, March 21). Menekan DBD secara Alami, Daya Adaptasi Bakteri Wolbachia Tinggi.Harian Kompas, p. 13.Ditlevsen, S. & Samson, A. (2013). Introduction to Stochastic Models in Biology. In B.J. Bachar M., Stochastic Biomathematical Models. Lecture Notes in Mathematics (pp.3 - 35). Berlin: Springer.Education, N. (2014). http://www.nature.com/scitable/content/aedes-aegypti-life-cycle-22400575. Retrieved 2014, from Scitable by Nature Education.Eisen, L. & Lozano-Fuentes, S. (2009). Use of Mapping and Spatial and Space-Time ModelingApproaches in Operational Control of Aedes aegypti and Dengue. PLOS Neglected TropicalDiseases, 3(4), 1 - 7.Esteva, L. & Vargas, C. (1998). Analysis of a Dengue Disease Transmission Model.Mathematical Biosciences, 150, 131-151.Fong, I. (2013). Emerging Infectious Diseases of the 21st Century, Challenges inInfectious Diseases. Toronto: Springer.Goicoa, T., Ugarte, M.D., Etxeberria, J. & Militino, A.F. (2016). Agespacetime CAR Models inBayesian. Statistics in Medicine, 35(14), 2391-2405.Gubler, D. J., Ooi, E. E., Vasudevan, S. & Farrar, J. (2014). Dengue and DengueHemorrhagic Fever (2nd ed.). Croydon: CABI.Jaweria, A., Naeem, F., Malik, M., Javaid, F., Ali, Q., Ahmad, S., et al (2016). Dengue Fever:Causes, Prevention and Recent Advances. Journal of Mosquito Research,6(29), 1-9.Jaya, I.M., Folmer, H., Nurani, B., Sudartianto & Soemartini (2014). ConditionalAutoregressive Model on Dengue Fever Disease Mapping In Bandung City. 2014 InternationalConference on Statistics and Mathematics (ICSM 2014). Surabaya.Jaya, I.M., Folmer, H., Ruchjana, B.N., Kristiani, F. & Andriyana, Y. (2017). Modeling ofInfectious Diseases: A Core Research Topic for the Next Hundred Years. InP. S. R. Jackson, Regional Research Frontiers - Vol. 2 (pp. 239 - 255). West Virginia, USA:Springer International Publisher.Johansson, M., Hombach, J. & Cummings, D. (2011). Models of the Impact of Dengue Vaccines: A Reviewof Current Research and Potential Approaches. Vaccine, 29, 5860 5868.Johansson, P. & Leander, J. (2010). Mathematical Modelling of Malaria - Methods for Simulation ofEpidemics. Chalmers University of Technology.Joubert, D. A. & ONeill, S. L. (2017). Comparison of Stable and Transient Wolbachia InfectionModels in Aedes aegypti to Block Dengue and West Nile Viruses. PLoS Negl Trop Dis , 11(1), 1-14.Jurnal Media. (2018, September 11). Tahun ini, 62 Puskesmas Kota BandungTerakreditasi, Jurnal Media. Retrieved January 2019, fromhttp://jurnalmedia.com/: http://jurnalmedia.com/tahun-ini-62-puskesmas-kota-bandung-terakreditasi/Kalayanarooj, S., Gibbons, R.V., Vaughn, D., Green, S., Nisalak, A., Jarman, R.G., et al (2007).Blood Group AB is Associated with Increased Risk for Severe Dengue Disease in SecondaryInfections. The Journal of Infectious Diseases, 195, 1014-1017.Karina, A., Sari, S., Sumardi, H. & Setiawati, E. (2015). Incidence of DengueHemorrhagic Fever Related to Annual Rainfall, Population Density, Larval Free Index andPrevention Program in Bandung 2008 to 2011. Althea Medical Journal, 2(3), 262 - 267.Karyanti, M.R., Uiterwaal, C.S.P.M., Kusriastuti, R., Hadinegoro, S.R., Rovers, M.M., Heesterbeek,H., et al (2014). The Changing Incidence of Dengue Haemorrhagic Fever in Indonesia: a 45-yearRegistry-based Analysis. BMC Infect Dis., 14:412.Kelsall, J. & Wakefield, J. (2002). Modelling Spatial Variation in Disease Risk : A GeostatisticalApproach. Journal of the American Statistical Association, 97(459), 692-701.Kemenkes RI. (2017). Data dan Informasi Profil Kesehatan Indonesia 2016. Jakarta: KementrianKesehatan Republik Indonesia.Kermack, W. & McKendrick, A. (1927). A Contribution to the Mathematical Theory of Epidemics.Proceedings of the Royal Society of London, Series A, ContainingPapers of Mathematical and Physical Character, 115(772), pp. 700-721.Kermack, W. & McKendrick, A. (1932). A Contribution to the Mathematical Theory of Epidemics. II.The Problem of Endemicity. Proceedings of the Royal Society of London. Series A. ContainingPapers of Mathematical and Physical Character, 138(834), pp. 55-83.Khode, V., Kabbin, G. & Ruikar, K. (2013). Association of ABO Rh Blood Group with Dengue Fever andDengue Hemorrhagic Fever : A Case-Control Study. Journal of Applied Hematology, 4(4), 145-148.Kinanti, A. (2016, October 25). Vaksin DBD Masih Mahal, Belum Semua RS Menyediakan. Retrieved June 25, 2017, from Detik Health:https://health.detik.com/berita-detikhealth/d-3329213/vaksin-dbd-masih-mahal-belum-semua-rs-menyediakanKodaira, J. & Souza Passos, J. (2010). The Basic Reproduction Number in SIR Models: A Probabilistic Approach. Proceedings of the 9th Brazilian Conference on DynamicsControl and Their Applications, (pp. 226-231). Brazil.Koh, K., Grady, S. C. & Vojnovic, I. (2015). Using Simulated Data to Investigate the SpatialPatterns of Obesity Prevalence at the Census Tract Level in Metropolitan Detroit. AppliedGeography, 62, 19 - 28.Koiller, J., Silva, M., Souza, M., CodeCo, C., Iggidr, A. & Sallet , G. (2014). Aedes, Wolbachiaand Dengue. Tech. Rep., Escola de Matematica Aplicada.Lawson, A. (2006). Statistical Methods in Spatial Epidemiology. John Wiley and Sons Ltd.Lawson, A. (2013). Bayesian Disease Mapping, Hierarchical Modelling in SpatialEpidemiology (2nd ed.). CRC Press Taylor and Francis Group.Lawson, A. & Clark, A. (2002). Spatial Mixture Relative Risk Models Applied to DiseaseMapping. Statistics in Medicine, 21, 359-370.Lawson, A. & Williams, F. (2001). An Introductory Guide to Disease Mapping. John Wiley and SonsLtd.Lawson, A., Browne, W. & Rodeiro, C. (2003). Disease Mapping with WinBUGS and MLWin. John Wiley andSons Ltd.Lestari, K. (2007). Epidemiologi dan Pencegahan Demam Berdarah Dengue (DBD) di Indonesia. Farmaka,5(3), 12-29.Li, M.T., Jin, Z., Sun, G.Q. & Zhang. J. (2016). Modeling Direct and Indirect Disease Transmissionusing Multi-group Model. Journal of Mathematical Analysis and Applications, 446(2), 12921309.Li, M. & Muldowney, J. (1995). Global Stability for the SEIR Model in Epidemiology.Mathematical Biosciences, 125(2), 155-164.Llagas, L.A. (2016). Mosquito Larvicidal Trap (MLT) as Surveillance and Control Tool for AedesMosquitoes. SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH, 47(4), 701 - 711.Ma, Z. & Li, J. (2009). Dynamical Modeling and Analysis of Epidemics. World ScientificPublishing Co. Pte. Ltd.Maharani, D. & Dewi, B.K. (2015, June 15). http://health.kompas.com/. Retrieved November 30, 2016, fromhttp://health.kompas.com/read/2015/06/15/191031123/Kasus.DBD.Akibatkan. Kerugian.EkonomiMariella, L. & Tarantino, M. (2010). Spatial Temporal Conditional Auto-Regressive Model: A NewAutoregressive Matrix. Austrian Journal of Statistics, 39(3), 223244.May, R.M. (2001). Stability and Complexity in Model Ecosystems. Princeton: Princeton UniversityPress.Mayera, S.V., Tesh, R.B. & Vasilakis, N. (2017). The Emergence of Arthropod-borne Viral Diseases:A Global Prospective on Dengue, Chikungunya and Zika Fevers. 166, 155-163.Mayo, C. (2016). Infectious Diseases. Retrieved May 15, 2017, from Mayo Clinic Web site. https://www.mayoclinic.org/diseases-conditions/infectious-diseases/symptoms-causes/syc-20351173Mbah, M., Durham, D., Medlock, J. & Galvani, A. (2014). Country and Age Specific Optimal Allocationof Dengue Vaccines. Journal of Theoretical Biology, 342, 15-22.McMeniman, C., Lane, R., Cass, B., Fong, A., Sidhu, M., Wang, Y.F., et al (2009). StableIntroduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes Aegypti. Science,323, 141 -144.Mohebbi, M., Wolfe, R. & Forbes, A. (2014). Disease Mapping and Regression with Count Data in thePresence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach. Int.J. Environ. Res. Public Health, 11, 883-902.Mulyatno, K., Yamanaka, A., Yotopranoto, S. & Konishi, E. (2012). VerticalTransmission of Dengue Virus in Aedes Aegypti Collected in Surabaya, Indonesia, during2008-2011. Japan Journal Infectious Disease, 65(3), 274-276.Munsyir, M. & Amiruddin, R. (2011). Mapping and Analysis of DHF cases in Bantaeng Residence, SouthSulawesi, 2009. Journal Medika, XXXVII, 380-386.Ndii, M., Hickson, R., Allingham, D. & Mercer, G. (2015). Modelling the Transmission Dynamics ofDengue in the Presence of Wolbachia. Mathematical Biosciences,262(2015), 157 - 166.Nishiura, H. (2006). Mathematical and Statistical Analyses of the Spread of Dengue.Dengue Bulletin, XXX, 51-67.Orsi, F.A., Angerami, R.N., Mazetto, B.M., Quaino, S.K., Santiago-Bassora, F., Castro, V., et al(2013). Reduced Thrombin Formation and Excessive Fibrinolysis are Associated with BleedingComplications in Patients with Dengue Fever: a case control Study Comparing Dengue FeverPatients with and without Bleeding Manifestations. BMC Infectious Diseases , 13(350), 1 - 10.Pawitan, J.A. (2011, April). Dengue Virus Infection: Predictors for Severe Dengue. The IndonesianJournal of Internal Medicine, 43(2), 129 - 135.Pearce, N. (2005). A Short Introduction to Epidemiology (2nd ed.). Wellington, New Zealand: Centrefor Public Health Research, Massey University Wellington Campus.Pongsumpun, P. (2008). Dengue Model with Age Structure and Two Different Serotypes. The3rd International Symposium on Biomedical Engineering (ISBME 2008), III, 401-405.Pongsumpun, P. (2009). Age Structured Model for Symptomatic and Asymptomatic Infections of Dengue Disease. International Journal of Modelling and Simulation(2), 199 - 205.Pongsumpun, P. (2012). Age Structural Model of Plasmodium Falciparum Malaria Transmission.Journal of Basic and Applied Scientific Research, VII, 6358- 6366.Pongsumpun, P. & Tang, I. (2003). Transmission of Dengue Hemorrhagic Fever in an Age StructuredPopulation. Mathematical and Computer Modelling, XXXVII, 949-961.Pongsumpun, P., & Tiensuwan, M. (2013). Application of log-linear models to dengue virus infectionpatients in Thailand. Model Assisted Statistics and Applications, 8, 275 287.doi:10.3233/MAS-130265Pongsumpun, P., Patanarapelert, K., Sriprom, M., Varamit, S. & Tang, I. (2004).Infection Risk to Travelers Going to Dengue Fever Endemic Regions. Southeast Asian J Trop MedPublic Health, 35(1), 155 - 159.Priadi, D., Noer, I. & Djuchaifah. (1991). Populasi dan Aktivitas Beberapa Jenis Nyamukdi Daerah Proyek PLTA Cirata. Buletin Penelitian Kesehatan, 19(3).Rasic, G., Endersby-Harshman, N., Tantowijoyo, W., Goundar, A., White, V., Yang, Q., et al (2015).Aedes aegypti Has Spatially Structured and Seasonally Stable Populations in Yogyakarta, Indonesia.Parasites & Vectors, 8(610), 1-12.Ratnadewi, Y. (2016, May 14). Pikiran Rakyat. Retrieved December 2016, fromhttp://www.pikiran-rakyat.com: http://www.pikiran-rakyat.com/bandung-raya/2016/05/14/persediaan-golongan-darah-di-pmi-kota-bandung-terbatas-369109Republic Indonesia, G. (2014, September 30). Regulations of Republic Indonesia No23. Local Government. Jakarta, Jakarta, Indonesia: Government of Republic Indonesia.Riebler, A., Srbye, S. H., Simpson, D. & Rue, H. (2016). An Intuitive Bayesian Spatial Model forDisease Mapping that Accounts for Scaling. Statistical Methods in Medical Research, 25(4), 1145 -1165.Rosenberg, R., Lindsey, N.P., Fischer, M., Gregory, C.J., Hinckley, A.F., Mead, P.S., et al(2018). Vital Signs: Trends in Reported Vectorborne Disease Cases United States andTerritories, 20042016. MMWR Morb Mortal Wkly Rep., 67(17), 496501.Ruan, S., Ma, W. & Hu, Z. (2012). Analysis of SIR Epidemic Models with Nonlinear Incidence Rate andTreatment. Mathematical Biosciences, 238, 12-20.Samat, N.A. & Ma'arof, S.H.M.I. (2013). Dengue Disease Mapping with Standardized Morbidity Ratioand Poisson-Gamma Model : An Analysis of Dengue Disease in Perak, Malaysia. World Academy ofScience, Engineering and Technology, International Journal of Mathematical and ComputationalSciences, 7(8), 1299- 1303.Samat, N.A. & Percy, D.F. (2012). Vector-borne Infectious Disease Mapping with StochasticDifference Equations : an Analysis of Dengue Disease in Malaysia. Journal of Applied Statistics,39(9), 2029-2046.Samat, N.A. & Percy, D.F. (2012). Dengue Disease Mapping in Malaysia based on Stochastic SIRModels in Human Populations. International Conference of Statistics in Science, Business andEngineering (ICSSBE), (pp. 1-5).Sari, E., Wahyuningsih, N.E., Murwani, R., Purdianingrum, J., Mubarak, M. & Budiharjo, A.(2018). Distribution of Blood Type among Dengue Hemorrhagic Fever Patients in Semarang City. IOPConf. Series: Journal of Physics 1025, 1- 5.Sativa, R. (2016, October 26). Vaksin Dengue Hadir di Indonesia, Begini Tanggapan Kemenkes. Retrieved June 25, 2017, from Detik Health:https://health.detik.com/berita-detikhealth/d-3330209/vaksin-dengue-hadir-di-indonesia-begini-tanggapan-kemenkesSemenza , J. & Menne, B. (2009). Climate Change and Infectious Diseases in Europe.The Lancet Infectious Diseases, 9(6), 365-375.Shepard, D., Suaya, J., Halstead, S., Nathan , M., Gubler, D. & Mahoney, R. (2004).Cost-effectiveness of a Pediatric Dengue Vaccine. Journal Vaccine, 22, 1275- 1280.Sjafaraenan, Alvionita, D., Agus, R. & Sabran , A. (2018). Gene distribution of ABO Blood-typeSystem on the Dengue Hemorrhagic Fever (DHF) Patients in the Working Area of Puskesmas BontoBangun, District of Rilau Ale, Bulukumba.IOP Conference Series: Journal of Physics: Conf. Series 979, 1-6.Skripal, I. (1996). ABO System of Blood Groups in People and Their Resistance to Certain InfectiousDiseases. Mikrobiolohichnyi Zhurnal, 58(2), 102 -108.Spiegelhalter, D., Best, N., Carlin, B. & Linde, A. (2002). Bayesian Measures of Model Complexityand Fit. Royal Statistical Society, 64(4), 583 - 639.Suaya, J.A., Shepard, D.S., Siquera, J.B., Martelli, C.T., Lum, L.C., Tan, L.H., et al (2009). Costof Dengue Cases in Eight Countries in The Americas and Asia : A Prospective Study. AmericanJournal of Tropical Medicine and Hygiene, 80(05), 846-855.Sungkar, S., Fadli, R. & Sukmaningsih, A. (2011). Trend of Dengue Hemorrhagic Fever in NorthJakarta. Journal of the Indonesian Medical Association, 61(10), 394- 399.Supriatna, A. (2009). Estimating the Basic Reproduction Number of DengueTransmission during 2002-2007 Outbreaks in Bandung, Indonesia. Dengue Bulletin, 33, 21-22.Supriatna, A. (2016). Human Population Rejection Behavior in Responding Wolbachia- infectedMosquito Release Program and Its Effect into Dengue Transmission: A Mathematical Modeling Approach. Social Sciences and Interdisciplinary Behavior Lumban Gaol et al. (Eds), 335 -342.Supriatna, A., Soewono, E. & Gils, S.v. (2008). A Two-age-classes DengueTransmission Model. Mathematical Biosciences, 216.Syarifah, N., Rusmatini, T., Djatie, T. & Huda, F. (2008). Ovitrap Ratio of Aedesaegypti Larvae Collected Inside and Outside Houses in a Community Survey to Prevent DengueOutbreak, Bandung, Indonesia, 2007. Proc ASEAN Congr Trop Med Parasitol, 3, 116 - 120.Tahir, Z., Hafeez, S. & Chaudhry, A. (2010). Spatial and Seasonal Variation of Dengue Fever inLahore 2008. Biomedica, 26, 166 - 172.Tango, T. (2010). Statistical Methods for Disease Clustering. London: Springer . Thunguturthi, S.,Reddy, K. & Kiran, B. (2013). Ratios of Age & Sex With Blood GroupPrevalences in Dengue Fever. Journal of Current Trends in Clinical Medicine& Laboratory Biochemistry, 1(2), 24 - 27.Trottier, H. & Philippe, P. (2000). Deterministic Modelling of Infectious Diseases :Theory and Methods. The Internet Journal of Infectious Diseases, 1(2).Updates, T. (2013). TrendsUpdates.com. Retrieved 2015, fromhttp://trendsupdates.com/dengue-epidemic-in-argentina-more-than-10000- affected/Vaughn, D.W., Green, S., Kalayanarooj, S., Innis, B.L., Nimmannitya, S., Suntayakorn,S., et al (1997). Dengue in the Early Febrile Phase: Viremia and Antibody es. TheJournal of Infectious Diseases, 322-330.Venkatesan, P., Srinivasan, R. & Dharuman, C. (2012). Bayesian Conditional AutoRegressive Model for Mapping Tuberculosis Prevalence in India. International Journal ofPharmaceutical Studies and Research, 3(1), 01-03.Wakefield, J. (2007). Disease Mapping and Spatial Regression with Count Data.Biostatistics, 8(2), 158-183.Wakefield, J. & Morris, S. (2001). The Bayesian Modeling of Disease Risk in Relation to a PointSource. Journal of the American Statistical Association, 1996(453), 77-91.Wan, H. & Cui, J. (2013). A Malaria Model with Two Delays. Discrete Dynamics in Nature and Society,2013, 1-8.WHO. (2009). Epidemiology, Burden of Disease and Transmission, Dengue, Guidelinesfor Diagnosis, Treatment, Prevention and Control. World Health Organization.WHO. (2012). Global Strategy for Dengue Prevention and Control. Geneva: WHO Press.WHO. (2016). Dengue vaccine: WHO position paper. Geneva: WHO.Widiyani, R. (2013, April). Empat Sekawan Penyebab DBD. Retrieved fromwww.kompas.com: http://health.kompas.com/read/2013/04/03/18534298/Empat.Sekawan.Penyebab.DBDWilder-Smith, A. & Massad, E. (2016). Age Specific Differences in Efficacy and Safety for theCYD-tetravalent Dengue Vaccine. Expert Review of Vaccines, 15(4), 437- 441.Young, J.W., Gibbons, R.V., Rothman, A.L., Tannitisupawong, D., Srikiatkhachorn, A., Jarman,R.G., et al (2013). Dengue severity and blood group. DengueBulletin, 37, 220 - 222.