Reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller
The study aimed to investigate the reinforcement of plasticized poly(lactic acid) (PLA)with titanium dioxide (TiO2) nanofiller. In this research, solvent casting andthermocompression methods are adopted to prepare PLA nanocomposites withdifferent percentages of TiO2 at 0.5, 2.0, 3.5, 5.0, and 7.0 %?...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2021
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=5708 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:5708 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
QC Physics |
spellingShingle |
QC Physics Nur Ain Syafiqah Sudin Reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller |
description |
The study aimed to investigate the reinforcement of plasticized poly(lactic acid) (PLA)with titanium dioxide (TiO2) nanofiller. In this research, solvent casting andthermocompression methods are adopted to prepare PLA nanocomposites withdifferent percentages of TiO2 at 0.5, 2.0, 3.5, 5.0, and 7.0 %?w/w that dispersed in PLAsolution using a mechanical mixer and ultrasonication technique. The composites werecharacterized using dynamic mechanical analysis (DMA), differential scanningcalorimetry (DSC), thermogravimetric analysis (TGA), and scanning electronmicroscopy (SEM). Results showed that tributyl citrate (TBC) plasticizer reduced thebrittle failure and increased the flexibility of PLA whilst TiO2 nanofiller improved thecrystallization of PLA composites as evidenced in DSC results at slow scanning rate.The presence of 3.5 %?w/w TiO2 in plasticized PLA increased the glass transitiontemperature (Tg) from 41.75 C to 42.22 C indicating restricted mobility of polymerchains. The storage modulus improved from 2.36 GPa to 2.85 GPa due to the gooddispersion of TiO2 in the polymer matrix, as proven in SEM results. Thermal analysisproved that the crystallinity of PLA increased with the addition of TBC and TiO2 from24.98 % to 36.57 % at optimum loading of 7.0 %w/w and 3.5 %?w/w, respectively.However, agglomeration of nanoparticles was formed at higher filler loading(>3.5 %?w/w), which reduced its properties. TiO2 was distributed uniformly throughoutthe polymer matrix, acted as a reinforcement agent that improved the thermomechanicalproperties and thermal stability of the composites. In conclusion, the incorporation ofplasticizer and nanofiller increased flexibility, improved thermomechanical properties,thermal behavior, and thermal stability of the PLA nanocomposites at optimum7.0 %w/w TBC and 3.5 %?w/w TiO2. The implication of the study is that modificationof PLA in the acquirement of improved flexibility, toughness and strength has potentialin the packaging industry due to PLA biodegradability and compostability. |
format |
thesis |
qualification_name |
|
qualification_level |
Master's degree |
author |
Nur Ain Syafiqah Sudin |
author_facet |
Nur Ain Syafiqah Sudin |
author_sort |
Nur Ain Syafiqah Sudin |
title |
Reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller |
title_short |
Reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller |
title_full |
Reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller |
title_fullStr |
Reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller |
title_full_unstemmed |
Reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller |
title_sort |
reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2021 |
url |
https://ir.upsi.edu.my/detailsg.php?det=5708 |
_version_ |
1747833221967511552 |
spelling |
oai:ir.upsi.edu.my:57082021-03-25 Reinforcement of plasticized poly (lactic acid) with titanium dioxide nanofiller 2021 Nur Ain Syafiqah Sudin QC Physics The study aimed to investigate the reinforcement of plasticized poly(lactic acid) (PLA)with titanium dioxide (TiO2) nanofiller. In this research, solvent casting andthermocompression methods are adopted to prepare PLA nanocomposites withdifferent percentages of TiO2 at 0.5, 2.0, 3.5, 5.0, and 7.0 %?w/w that dispersed in PLAsolution using a mechanical mixer and ultrasonication technique. The composites werecharacterized using dynamic mechanical analysis (DMA), differential scanningcalorimetry (DSC), thermogravimetric analysis (TGA), and scanning electronmicroscopy (SEM). Results showed that tributyl citrate (TBC) plasticizer reduced thebrittle failure and increased the flexibility of PLA whilst TiO2 nanofiller improved thecrystallization of PLA composites as evidenced in DSC results at slow scanning rate.The presence of 3.5 %?w/w TiO2 in plasticized PLA increased the glass transitiontemperature (Tg) from 41.75 C to 42.22 C indicating restricted mobility of polymerchains. The storage modulus improved from 2.36 GPa to 2.85 GPa due to the gooddispersion of TiO2 in the polymer matrix, as proven in SEM results. Thermal analysisproved that the crystallinity of PLA increased with the addition of TBC and TiO2 from24.98 % to 36.57 % at optimum loading of 7.0 %w/w and 3.5 %?w/w, respectively.However, agglomeration of nanoparticles was formed at higher filler loading(>3.5 %?w/w), which reduced its properties. TiO2 was distributed uniformly throughoutthe polymer matrix, acted as a reinforcement agent that improved the thermomechanicalproperties and thermal stability of the composites. In conclusion, the incorporation ofplasticizer and nanofiller increased flexibility, improved thermomechanical properties,thermal behavior, and thermal stability of the PLA nanocomposites at optimum7.0 %w/w TBC and 3.5 %?w/w TiO2. The implication of the study is that modificationof PLA in the acquirement of improved flexibility, toughness and strength has potentialin the packaging industry due to PLA biodegradability and compostability. 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=5708 https://ir.upsi.edu.my/detailsg.php?det=5708 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abdelwahab, M. A., Flynn, A., Chiou, B. S., Imam, S., Orts, W & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. PolymerDegradation and Stability, 97(9), 1822-1828.Adeosun, S. O., Lawal, G. I., Balogun, S. A & Akpan, E. I. (2012). Review of green polymernanocomposites. Journal of Minerals and Materials Characterization and Engineering, 11(04), 385.Ahmed, J. & Varshney, S. K. (2011). Polylactideschemistry, properties and green packagingtechnology: a review. International Journal of Food Properties, 14(1), 37-58.Ahmed, J., Varshney, S. K., Auras, R & Hwang, S. W. (2010). Thermal and rheological properties of L?polylactide/polyethylene glycol/silicate nanocomposites films. Journal of FoodScience, 75(8), N97-N108.Alberton, J., Martelli, S. M., Fakhouri, F. M & Soldi, V. (2014). Mechanical andmoisture barrier properties of titanium dioxide nanoparticles and halloysite nanotubesreinforced polylactic acid (PLA). In IOP Conference Series: Materials Science and Engineering (Vol.64, No. 1, p. 012010). IOP Publishing.Ali, F. B., Awale, R. J., Fakhruldin, H & Anuar, H. (2016). Plasticizing poly (lactic acid) usingepoxidized palm oil for environmental friendly packaging material. Malaysian Journal of AnalyticalSciences, 20(5), 1153-1158.Ali, F., Chang, Y. W., Kang, S. C & Yoon, J. Y. (2009). Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin,62(1), 91-98.Amass, W., Amass, A & Tighe, B. (1998). A review of biodegradable polymers: uses, currentdevelopments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymerinternational, 47(2), 89-144.Anderson K. S., Schreck K. M & Hillmyer M. A. (2008). Toughening Polylactide, PolymerRevision. 48, 85-108.Anuar, H., Razali, M. S., Saidin, H. A., Hisham, A. F. B., Apandi, S. N. E. Z. M & Ali,F. (2016). Tensile properties of durian skin fibre reinforced plasticized polylactic acid biocomposites. International Journal of Engineering Materials and Manufacture, 1(1),16-20.Anuar, H., Izzati, A. N. F., Inani, S. S. N., Ezzati, M. S. N., Salimah, A. S. M., Ali, F., et al(2017). Impregnation of Cinnamon Essential Oil into Plasticised Polylactic Acid Biocomposite Filmfor Active Food Packaging. Journal of PackagingTechnology and Research, 1(3), 149-156.Arjmandi, R., Hassan, A., Haafiz, M. M., Zakaria, Z & Inuwa, I. M. (2014).Characterization of polylactic acid/microcrystalline cellulose/montmorillonitehybrid composites. Malays J Anal Sci, 18, 642-650.Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., et al(2013). Multifunctional nanostructured PLA materials for packaging and tissueengineering. Progress in Polymer Science, 38(10-11), 1720-1747.Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., et al (2015).Processing and characterization of plasticized PLA/PHB blends forbiodegradable multiphase systems. eXPRESS Polymer Letters, Vol 9(7), 583-596.Arrieta, M.P., Samper, M.D., Aldas, M & Lpez, J. (2017). On the use of PLA-PHBBlends for Sustainable Food Packaging Applications. Materials, 10, 1008.Arrieta, M. P., Fortunati, E., Dominici, F., Lpez, J & Kenny, J. M. (2015).Bionanocomposite films based on plasticized PLAPHB/cellulose nanocrystalblends. Carbohydrate polymers, 121, 265-275.Arrieta, M. P., Castro-Lopez, M. D. M., Ray?n, E., Barral-Losada, L. F., L?pez-Vilari?o, J. M., L?pez, J., et al (2014a). Plasticized poly (lactic acid)poly(hydroxybutyrate)(PLAPHB) blends incorporated with catechin intended foractive food-packaging applications. Journal of agricultural and foodchemistry, 62(41), 10170-10180.Arrieta, M. P., Fortunati, E., Dominici, F., Rayn, E., Lpez, J & Kenny, J. M. (2014b).Multifunctional PLAPHB/cellulose nanocrystal films: Processing, structuraland thermal properties. Carbohydrate polymers, 107, 16-24.Arrieta, M. P., Fortunati, E., Dominici, F., Rayn, E., Lpez, J & Kenny, J. M. (2014c).PLA-PHB/cellulose based films: Mechanical, barrier and disintegrationproperties. Polymer Degradation and Stability, 107, 139-149.Asadi, G. & Mousavi, S. M. (2006). Application of nanotechnology in food packaging.In 13th World Congress of Food Science & Technology 2006 (pp. 739-739).Athanasiou K. A., Niederauer G. G & Agrawal C. M. (1996). Sterilization, toxicity,biocompatibility and clinical applications of polylactic acid/polyglycolic acidcopolymers. Biomaterials. 17, 93-102.Auras, R., Harte, B & Selke, S. (2004). An overview of polylactides as packagingmaterials. Macromolecular bioscience, 4(9), 835-864.Avella, M., Buzarovska, A., Errico, M. E., Gentile, G & Grozdanov, A. (2009). Ecochallengesof bio-based polymer composites. Materials, 2(3), 911-925.Averous, L. & Le Digabel, F. (2006). Properties of biocomposites based onlignocellulosic fillers. Carbohydrate polymers, 66(4), 480-493.Averous, L. & Boquillon, N. (2004). Biocomposites based on plasticized starch:thermal and mechanical behaviours. Carbohydrate polymers, 56(2), 111-122.Averous, L., Fringant, C & Moro, L. (2001). Starch?based biodegradable materialssuitable for thermoforming packaging. Starch?Strke, 53(8), 368-371.Awale, R. J., Ali, F. B., Azmi, A. S., Puad, N. I. M., Anuar, H & Hassan, A. (2018).Enhanced flexibility of biodegradable polylactic acid/starch blends usingepoxidized palm oil as plasticizer. Polymers, 10(9), 977.Azizi Samir, M. A. S., Alloin, F & Dufresne, A. (2005). Review of recent research intocellulosic whiskers, their properties and their application in nanocompositefield. Biomacromolecules, 6(2), 612-626.Baek, N., Kim, Y. T., Marcy, J. E., Duncan, S. E & OKeefe, S. F. (2018). Physicalproperties of nanocomposite polylactic acid films prepared with oleic acidmodified titanium dioxide. Food Packaging and Shelf Life, 17, 30-38.Baiardo M., Frisoni G., Scandola M., Rimelen M., Lips D., Ruffieux K., et al (2003).Thermal and mechanical properties of plasticized poly(L lactic acid). Journal ofApplied Polymer Science. 90(7), 1731-1738.Bajpai, P. K., Singh, I & Madaan, J. (2014). Development and characterization of PLAbasedgreen composites: A review. Journal of Thermoplastic CompositeMaterials, 27(1), 52-81.Balakrishnan, H., Masoumi, I., Yussuf, A. A., Imran, M., Hassan, A & Wahit, M. U.(2012). Ethylene copolymer toughened polylactic acidnanocomposites. Polymer-Plastics Technology and Engineering, 51(1), 19-27.Barrau, S., Vanmansart, C., Moreau, M., Addad. A., Stoclet, G., Lefebvre, J., et al(2011). Crystallization behaviour of carbon nanotube-polylactidenanocomposites. Macromolecules. 44(16), 6496-6502.Behnajady, M. A., Eskandarloo, H., Modirshahla, N & Shokri, M. (2011). Investigationof the effect of solgel synthesis variables on structural and photocatalyticproperties of TiO2 nanoparticles. Desalination, 278(1-3), 10-17.Bodros, E., Pillin, I., Montrelay, N & Baley, C. (2007). Could biopolymers reinforcedby randomly scattered flax fibre be used in structural applications?. CompositesScience and Technology, 67(3-4), 462-470.Bogaert, J. C. & Coszach, P. (2000). Poly (lactic acids): a potential solution to plasticwaste dilemma. Macromolecular symposia (Vol. 153, No. 1, pp. 287-303).Weinheim: WILEY?VCH Verlag.Bordes, P., Pollet, E & Avrous, L. (2009). Nano-biocomposites: biodegradablepolyester/nanoclay systems. Progress in Polymer Science, 34(2), 125-155.Bouapao, L., Tsuji, H., Tashiro, K., Zhang, J & Hanesaka, M. (2009). Crystallization,spherulite growth, and structure of blends of crystalline and amorphous poly(lactide) s. Polymer, 50(16), 4007-4017.Brody, A. L (2007). Case studies on nanotechnologies for food packaging. Foodtechnology, 07:102-107.Buasri, A., Buranasing, G., Piemjaiswang, R., Yousatit, S & Loryuenyong, V. (2014).Effect of titanium dioxide nanoparticles on mechanical and thermal properties ofpoly (lactic acid) and poly (butylene succinate) blends. Advances in Science andTechnology (Vol. 96, pp. 33-38). Trans Tech Publications.Burgos, N., Tolaguera, D., Fiori, S & Jimnez, A. (2014). Synthesis andcharacterization of lactic acid oligomers: Evaluation of performance as poly(lactic acid) plasticizers. Journal of Polymers and the Environment, 22(2), 227-235.Buzarovska, A (2013). PLA nanocomposites with functionalized TiO2 nanoparticles.Polymer-Plastics Technology and Engineering, 52(3), 280-286.Buzarovska, A. & Grozdanov, A. (2012). Biodegradable poly(L-lactic acid)/TiO2nanocomposites: thermal properties and degradation. Journal of Applied PolymerScience. 123:2187-2193.Cagri, A., Ustunol, Z & Ryser, E. T. (2004). Antimicrobial edible films andcoatings. Journal of food protection, 67(4), 833-848.Campoccia, D., Visai, L., Ren, F., Cangini, I., Rizzi, M., Poggi, A., et al (2015).Bacterial adhesion to poly?(d, l) lactic acid blended with vitamin E: Towardgentle anti?infective biomaterials. Journal of Biomedical Materials ResearchPart A, 103(4), 1447-1458.Cao, X., Dong, H & Li, C. M. (2007). New nanocomposite materials reinforced withflax cellulose nanocrystals in waterbornepolyurethane. Biomacromolecules, 8(3), 899-904.Cargnello, M., Gordon, T. R & Murray, C. B. (2014). Solution-phase synthesis oftitanium dioxide nanoparticles and nanocrystals. Chemical reviews, 114(19),9319-9345.Castro-Aguirre, E., Iiguez-Franco, F., Samsudin, H., Fang, X & Auras, R. (2016). Poly(lactic acid)Mass production, processing, industrial applications, and end oflife. Advanced drug delivery reviews, 107, 333-366.Cha, D. S. & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: areview. Critical reviews in food science and nutrition, 44(4), 223-237.Chandra, R. & Rustgi, R. (1998). Biodegradable polymers. Progress in polymerscience, 23, 1273-1335.Chang, J. H., An, Y. U., Cho, D & Giannelis, E. P. (2003). Poly (lactic acid)nanocomposites: comparison of their properties with montmorillonite and syntheticmica (II). Polymer, 44(13), 3715-3720.Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., et al (2008).Applications and implications of nanotechnologies for the food sector. Food additives andcontaminants, 25(3), 241-258.Chen, C. C., Chueh, J. Y., Tseng, H., Huang, H. M & Lee, S. Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends.Biomaterials, 24(7), 1167-1173.Chen, C., Lv, G., Pan, C., Song, M., Wu, C., Guo, D., et al (2007). Poly (lacticacid)(PLA) based nanocompositesa novel way of drug- releasing.Biomedical materials, 2(4), L1.Chen, L. & Dou, Q. (2019). Influence of the combination of nucleating agent andplasticizer on the non-isothermal crystallization kinetics and activation energies of poly (lacticacid). Journal of Thermal Analysis and Calorimetry, 1-22.Chen, X. & Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications,and applications. Chemical reviews, 107(7), 2891-2959.Chen, Y., Yao, X., Gu, Q & Pan, Z. (2013). Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites. Journal of Polymer Engineering, 33(2),163-171.Chieng, B., Ibrahim, N., Yunus, W & Hussein, M. (2014a). Poly (lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphenenanoplatelets. Polymers, 6(1), 93-104.Chieng, B., Ibrahim, N., Then, Y & Loo, Y. (2014b). Epoxidized vegetable oilsplasticized poly (lactic acid) biocomposites: mechanical, thermal andmorphology properties. Molecules, 19(10), 16024-16038.Chow, W. S., Leu, Y. Y & Ishak, Z. M. (2014). Poly (lactic acid) nanocomposites with improvedimpact and thermal properties. Journal of Composite Materials, 48(2), 155-163.Clarinval, A. M, & Halleux, J. (2005). Classification of biodegradable polymers. In Biodegradablepolymers for industrial applications (pp. 3-31). Woodhead Publishing.Cohn, D. & Salomon, A. H. (2005). Designing biodegradable multiblock PCL/PLA thermoplasticelastomers. Biomaterials, 26(15), 2297-2305.Conte, A., Longano, D., Costa, C., Ditaranto, N., Ancona, A., Cioffi, N., et al (2013). A novelpreservation technique applied to fiordilatte cheese. Innovative foodscience & emerging technologies, 19, 158-165.Costa, R. G., Brichi, G. S., Ribeiro, C & Mattoso, L. H. (2016). Nanocomposite fibersof poly (lactic acid)/titanium dioxide prepared by solution blowspinning. Polymer Bulletin, 73(11), 2973-2985.Costa, R. G., Ribeiro, C & Mattoso, L. H. (2013). Study of the effect of rutile/anataseTiO2 nanoparticles synthesized by hydrothermal route in electrospun PVA/TiO2nanocomposites. Journal of Applied Polymer Science, 127(6), 4463-4469.Costa, R. G., Ribeiro, C & Mattoso, L. H. (2010). Morphological and photocatalyticproperties of PVA/TiO2 nanocomposite fibers produced by electrospinning.Journal of nanoscience and nanotechnology, 10(8), 5144-5152.Courgneau, C., Domenek, S., Guinault, A., Avrous, L & Ducruet, V. (2011). Analysisof the structure-properties relationships of different multiphase systems based onplasticized poly (lactic acid). Journal of Polymers and the Environment, 19(2),362-371.Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R & Kumar, A.(2015). Nanotechnology in agro-food: from field to plate. Food ResearchInternational, 69, 381-400.De Azeredo, H. M (2009). Nanocomposites for food packaging applications. Foodresearch international, 42(9), 1240-1253.Di Gioia, L., Cuq, B & Guilbert, S. (1999). Thermal properties of corn gluten meal andits proteic components. International journal of biologicalmacromolecules, 24(4), 341-350.Di Lorenzo, M. L (2005). Crystallization behavior of poly (L-lactic acid). EuropeanPolymer Journal, 41(3), 569-575.Di Maio, L., Scarfato, P., Milana, M. R., Feliciani, R., Denaro, M., Padula, G., et al(2014). Bionanocomposite polylactic acid/organoclay films: Functionalproperties and measurement of total and lactic acid specific migration. PackagingTechnology and Science, 27(7), 535-547.Dil, E. J., Virgilio, N & Favis, B. D. (2016). The effect of the interfacial assembly ofnano-silica in poly (lactic acid)/poly (butylene adipate-co-terephthalate) blendson morphology, rheology and mechanical properties. European PolymerJournal, 85, 635-646.Dorgan, J. R., Lehermeier, H & Mang, M. (2000). Thermal and rheological propertiesof commercial-grade poly (lactic acid). Journal of Polymers and theEnvironment, 8(1), 1-9.Doyle, M. E (2006). Nanotechnology: a brief literature review. Food Research Institute,UW-Madison.Duncan, T. V (2011). Applications of nanotechnology in food packaging and foodsafety: barrier materials, antimicrobials and sensors. Journal of colloid andinterface science, 363(1), 1-24.Ebadi-Dehaghani, H., Barikani, M., Khonakdar, H. A & Jafari, S. H. (2015).Microstructure and non-isothermal crystallization behavior of PP/PLA/clayhybrid nanocomposites. Journal of Thermal Analysis and Calorimetry, 121(3),1321-1332.Eguiburu, J. L., Iruin, J. J., Fernandez-Berridi, M. J & San Roman, J. (1998). Blends ofamorphous and crystalline polylactides with poly (methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer, 39(26), 6891-6897.Fam, L., Gerschenson, L & Goyanes, S. (2009). Starch-vegetable fibre composites toprotect food products. Carbohydrate polymers, 75(2), 230-235.Fan, C., Plaxco, K. W & Heeger, A. J. (2002). High-efficiency fluorescence quenchingof conjugated polymers by proteins. Journal of the American ChemicalSociety, 124(20), 5642-5643.Farah, S., Anderson, D. G & Langer, R. (2016). Physical and mechanical properties ofPLA, and their functions in widespread applicationsA comprehensivereview. Advanced drug delivery reviews, 107, 367-392.Fenollar, O., Garca, D., Snchez, L., Lpez, J & Balart, R. (2009). Optimization of thecuring conditions of PVC plastisols based on the use of an epoxidized fatty acidester plasticizer. European Polymer Journal, 45(9), 2674-2684.Finkenstadt V. L., Liu C. K., Cooke P. H., Liu L. S & Willett J. L. (2008). MechanicalProperty Characterization of Plasticized Sugar Beet Pulp and Poly(Lactic Acid)Green Composites Using Acoustic Emission and Confocal Microscopy. Journalof Polymers and the Environment. 16(1), 19-26.Flory, P. J (1953). Principles of polymer chemistry. Cornell University Press.Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L. A., et al(2012). Microstructure and nonisothermal cold crystallization of PLA compositesbased on silver nanoparticles and nanocrystalline cellulose. Polymer degradationand stability, 97(10), 2027-2036.Foruzanmehr, M., Vuillaume, P. Y., Elkoun, S & Robert, M. (2016). Physical andmechanical properties of PLA composites reinforced by TiO2 grafted flaxfibers. Materials & Design, 106, 295-304.Fujishima, A., Rao, T. N & Tryk, D. A. (2000). Titanium dioxidephotocatalysis. Journal of photochemistry and photobiology C: Photochemistryreviews, 1(1), 1-21.Garlotta, D. (2001). A literature review of poly (lactic acid). Journal of Polymers andthe Environment, 9(2), 63-84.Ge H., Yang F., Hao Y., Wu G., Zhang H & Dong L. (2013). Thermal, mechanical, andrheological properties of plasticized poly(L-lactic acid). Journal of AppliedPolymer Science. 127(4), 2832-2839.Gil, N., Saska, M & Negulescu, I. (2006). Evaluation of the effects of biobasedplasticizers on the thermal and mechanical properties of poly (vinylchloride). Journal of applied polymer science, 102(2), 1366-1373.Guan, J. & Hanna, M. A. (2006). Selected morphological and functional properties ofextruded acetylated starchcellulose foams. Bioresource Technology, 97(14),1716-1726.Guigo, N., Vincent, L., Mija, A., Naegele, H & Sbirrazzuoli, N. (2009). Innovativegreen nanocomposites based on silicate clays/lignin/natural fibres. CompositesScience and Technology, 69(11-12), 1979-1984.Gumiero, M., Peressini, D., Pizzariello, A., Sensidoni, A., Iacumin, L., Comi, G., et al(2013). Effect of TiO2 photocatalytic activity in a HDPE-based food packagingon the structural and microbiological stability of a short-ripened cheese. Foodchemistry, 138(2-3), 1633-1640.Gurunathan, T., Mohanty, S & Nayak, S. K. (2015). A review of the recentdevelopments in biocomposites based on natural fibres and their applicationperspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25.Gutierrez?Villarreal, M. H. & Rodrguez?Velazquez, J. (2007). The effect of citrateesters as plasticizers on the thermal and mechanical properties of poly (methylmethacrylate). Journal of applied polymer science, 105(4), 2370-2375.Han, Q., Wang, Y., Shao, C., Zheng, G., Li, Q & Shen, C. (2014). Nonisothermalcrystallization kinetics of biodegradable poly(lactic acid)/zincphenylphosphonate composites. Journal of Composite Matter. 48(22), 2737-2746.Harte, I., Birkinshaw, C., Jones, E., Kennedy, J & DeBarra, E. (2012). The effect ofcitrate ester plasticizers on the thermal and mechanical properties of poly(DLlactide).Journal of Applied Polymer Science. 1-7.Hartmann, M. H (1998). High molecular weight polylactic acid polymers. Biopolymersfrom renewable resources (pp. 367-411). Springer, Berlin, Heidelberg.Henton, D. E., Gruber, P., Lunt, J & Randall, J. (2005). Polylactic acidtechnology. Natural fibers, biopolymers, and biocomposites, 16, 527-577.Huang, H. D., Ren, P. G., Xu, J. Z., Xu, L., Zhong, G. J., Hsiao, B. S., et al (2014).Improved barrier properties of poly (lactic acid) with randomly dispersedgraphene oxide nanosheets. Journal of Membrane Science, 464, 110-118.Huang, Z. M., Zhang, Y. Z., Kotaki, M & Ramakrishna, S. (2003). A review on polymernanofibers by electrospinning and their applications innanocomposites. Composites science and technology, 63(15), 2223-2253.Heydari, A., Alemzadeh, I & Vossoughi, M. (2013). Functional properties ofbiodegradable corn starch nanocomposites for food packagingapplications. Materials & Design, 50, 954-961.Huski?, M. & ?igon, M. (2007). PMMA/MMT nanocomposites prepared by one-stepin situ intercalative solution polymerization. European Polymer Journal, 43(12),4891-4897.Immergut, E. H. & Mark, H. F. (1965). Principles of plasticization. Plasticization andplasticizer processes, 48, 1-26.Imre, B. & Puknszky, B. (2013). Compatibilization in bio-based and biodegradablepolymer blends. European polymer journal, 49(6), 1215-1233.Ingrao, C., Tricase, C., Cholewa-Wjcik, A., Kawecka, A., Rana, R & Siracusa, V.(2015). Polylactic acid trays for fresh-food packaging: A Carbon Footprintassessment. Science of the Total Environment, 537, 385-398.Jacobsen, S. & Fritz, H. G. (1996). Filling of poly (lactic acid) with nativestarch. Polymer Engineering & Science, 36(22), 2799-2804.Jacobsen, S., Fritz, H. G., Dege, P., Dubois, P. H & Jrme, R. (1999). Polylactide(PLA)a new way of production. Polymer Engineering & Science, 39(7), 1311-1319.Jacobsen, S. & Fritz, H. G. (1999). Plasticizing polylactidethe effect of differentplasticizers on the mechanical properties. Polymer Engineering & Science, 39(7),1303-1310.Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M & Desobry, S. (2010).Poly-lactic acid: production, applications, nanocomposites, and releasestudies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571.Jorda-Beneyto, M., Ortuo, N., Devis, A., Aucejo, S., Puerto, M., Gutirrez-Praena, D.,et al (2014). Use of nanoclay platelets in food packaging materials: technical andcytotoxicity approach. Food Additives & Contaminants: Part A, 31(3), 354-363.Kang, H., Li, Y., Gong, M., Guo, Y., Guo, Z., Fang, Q., et al (2018). Anenvironmentally sustainable plasticizer toughened polylactide. RSC advances,8(21), 11643-11651.Kelnar, I., Kratochvl, J., Kaprlkov, L., Zhigunov, A & Nevoralov, M. (2017).Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofillerlocalization on structure and properties. Journal of the mechanical behavior ofbiomedical materials, 71, 271-278.Kerry, J. P., Ogrady, M. N & Hogan, S. A. (2006). Past, current and potentialutilisation of active and intelligent packaging systems for meat and muscle-basedproducts: A review. Meat science, 74(1), 113-130.Khanam, P. N. & AlMaadeed, M. A. (2014). Improvement of ternary recycled polymerblend reinforced with date palm fibre. Materials & Design, 60, 532-539.Kim, H. S., Park, B. H., Choi, J. H & Yoon, J. S. (2008). Mechanical properties andthermal stability of poly (L?lactide)/calcium carbonate composites. Journal ofapplied polymer science, 109(5), 3087-3092.Kobashi, K., Villmow, T., Andres, T & Ptschke, P. (2008). Liquid sensing of meltprocessedpoly (lactic acid)/multi-walled carbon nanotube compositefilms. Sensors and Actuators B: Chemical, 134(2), 787-795.Kratochvl, J. & Kelnar, I. (2017). Non-isothermal kinetics of cold crystallization inmulticomponent PLA/thermoplastic polyurethane/nanofiller system. Journal ofThermal Analysis and Calorimetry, 130(2), 1043-1052.Kumar, R., Singh, T & Singh, H. (2015). Natural fibers polymeric composites withparticulate fillersA review report. Int. J. Adv. Eng. Res. Appl, 1, 22-29.Kumar, V., Tyagi, L & Sinha, S. (2011). Wood flourreinforced plastic composites: areview. Reviews in chemical engineering, 27(5-6), 253-264.Kuswandi, B. & Moradi, M. (2019). Improvement of Food Packaging Based onFunctional Nanomaterial. Nanotechnology: Applications in Energy, Drug andFood (pp. 309-344). Springer, Cham.Kuswandi, B (2017). Environmental friendly food nano-packaging. EnvironmentalChemistry Letters, 15(2), 205-221.Labrecque, L.V., Kumar, R.A., Dave, V., Gross, R.A & McCarthy, S.P. (1997). Citrateesters as plasticizers for poly(lactic acid). Journal of Applied Polymer Science.66(8), 1507-1513.Lagarn, J. M (2011). Polylactic acid (PLA) nanocomposites for food packagingapplications. Multifunctional and Nanoreinforced Polymers for FoodPackaging (pp. 485-497). Woodhead Publishing.Lai, J. C. H., Rahman, M. & Hamdan, S. (2015). Physical, mechanical, and thermalanalysis of polylactic acid/fumed silica/clay (1.28 E)nanocomposites. International Journal of Polymer Science, 2015.Lee, J. H., Park, T. G., Park, H. S., Lee, D. S., Lee, Y. K., Yoon, S. C., et al (2003).Thermal and mechanical characteristics of poly (L-lactic acid) nanocompositescaffold. Biomaterials, 24(16), 2773-2778.Lee, S. H. & Wang, S. (2006). Biodegradable polymers/bamboo fiber biocompositewith bio-based coupling agent. Composites Part A: Applied Science andManufacturing, 37(1), 80-91.Lei, Wu. C., Zhang, M. Q., Rong, M. Z & Friedrich, K. (2005). Silica nanoparticlesfilled polypropylene: effects of particle surface treatment, matrix ductility andparticle species on mechanical performances of the composites. CompositesScience and Technology. 65(3-4), 635-645.Lei, Y., Wu, Q., Yao, F & Xu, Y. (2007). Preparation and properties of recycledHDPE/natural fiber composites. Composites Part A: applied science andmanufacturing, 38(7), 1664-1674.Li, C., Dou, Q., Bai, Z & Lu, Q. (2015). Non-isothermal crystallization behaviors andspherulitic morphology of poly (lactic acid) nucleated by a novel nucleatingagent. Journal of Thermal Analysis and Calorimetry, 122(1), 407-417.Li, J., He, Y & Inoue, Y. (2003). Thermal and mechanical properties of biodegradableblends of poly (L?lactic acid) and lignin. Polymer International, 52(6), 949-955.Li, J., Luo, X & Lin, X. (2013). Preparation and characterization of hollow glassmicrosphere reinforced poly (butylene succinate) composites. Materials &Design, 46, 902-909.Li, S. D. & Huang, L. (2008). Pharmacokinetics and biodistribution ofnanoparticles. Molecular pharmaceutics, 5(4), 496-504.Lim, L. T., Auras, R & Rubino, M. (2008). Processing technologies for poly (lacticacid). Progress in polymer science, 33(8), 820-852.Lim, L. T., Cink, K & Vanyo, T. (2010). Processing of poly (lactic acid). Poly (LacticAcid) Synthesis, Structures, Properties, Processing, and Applications, 189-215.Liu, D., Zhong, T., Chang, P. R., Li, K & Wu, Q. (2010). Starch composites reinforcedby bamboo cellulosic crystals. Bioresource technology, 101(7), 2529-2536.Liu, H. & Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). Journal of polymer science part B: Polymer Physics, 49(15), 1051-1083.Ljungberg, N., Colombini, D & Wessln, B. (2005). Plasticization of poly (lactic acid)with oligomeric malonate esteramides: Dynamic mechanical and thermal filmproperties. Journal of Applied Polymer Science, 96(4), 992-1002.Ljungberg, N. & Wesslen, B. (2003). Tributyl citrate oligomers as plasticizers for poly(lactic acid): thermo-mechanical film properties and aging. Polymer, 44(25),7679-7688.Ljungberg N. & Wessln B. (2002). The effects of plasticizers on the dynamicmechanical and thermal propertiesof poly(lactic acid). Journal of AppliedScience. 86, 1227-1234.Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R & Fernandez, A. (2012). Metallicbasedmicro and nanocomposites in food contact materials and active foodpackaging. Trends in Food Science & Technology, 24(1), 19-29.Lopez-Rubio, A., Almenar, E., Hernandez-Muoz, P., Lagarn, J. M., Catal, R &Gavara, R. (2004). Overview of active polymer-based packaging technologies forfood applications. Food Reviews International, 20(4), 357-387.Lunt, J (1998). Large-scale production, properties and commercial applications ofpolylactic acid polymers. Polymer degradation and stability, 59(1-3), 145-152.Maiti, P., Yamada, K., Okamoto, M., Ueda, K & Okamoto, K. (2002). Newpolylactide/layered silicate nanocomposites: role of organoclays. Chemistry ofmaterials, 14(11), 4654-4661.Maiza, M., Benaniba, M. T., Quintard, G & Massardier-Nageotte, V. (2015). Biobasedadditive plasticizing Polylactic acid (PLA). Polimeros, 25(6), 581-590.Majdzadeh-Ardakani, K. & Sadeghi-Ardakani, S. (2010). Experimental InvestigationOf Mechanical Properties Of Starch/Natural Rubber/ClayNanocomposites. Digest Journal of Nanomaterials & Biostructures(DJNB), 5(2).Man, C., Zhang, C., Liu, Y., Wang, W., Ren, W., Jiang, L., et al (2012). Poly (lacticacid)/titanium dioxide composites: preparation and performance under ultravioletirradiation. Polymer degradation and stability, 97(6), 856-862.Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K & Mahanti, N. K. (2019). Applicationof biodegradable polymers in food packaging industry: a comprehensivereview. Journal of Packaging Technology and Research, 3(1), 77-96.Marra, A., Silvestre, C., Kujundziski, A. P., Chamovska, D & Duraccio, D. (2017).Preparation and characterization of nanocomposites based on PLA and TiO2nanoparticles functionalized with fluorocarbons. Polymer Bulletin, 74(8), 3027-3041.Mathur, M. & Hira, M. A. (2008). Specialty Fibres-IV: Poly Lactic AcidFibres. Man-Made Textiles in India, 51(7).Mehta, R., Kumar, V., Bhunia, H & Upadhyay, S. N. (2005). Synthesis of poly (lacticacid): a review. Journal of Macromolecular Science, Part C: PolymerReviews, 45(4), 325-349.Mekonnen, T., Mussone, P., Khalil, H & Bressler, D. (2013). Progress in bio-basedplastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43),13379-13398.Mhlanga, N. & Ray, S. S. (2014). Characterisation and thermal properties of titaniumdioxide nanoparticles-containing biodegradable polylactide compositessynthesized by solgel method. Journal of nanoscience andnanotechnology, 14(6), 4269-4277.Mihindukulasuriya, S. D. F. & Lim, L. T. (2014). Nanotechnology development in foodpackaging: A review. Trends in Food Science & Technology, 40(2), 149-167.Miller, G. & Senjen, R. (2008). Out of the Laboratory and onto our Plates:Nanotechnology in Food & Agriculture. A report prepared for Friends of theEarth Australia. Friends of the Earth Europe and Friends of the Earth UnitedStates and supported by Friends of the Earth Germany. Friends of the EarthAustralia Nanotechnology Project, Australia.Mo, S. D. & Ching, W. Y. (1995). Electronic and optical properties of three phases oftitanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51(19),13023.Mohanty, A. K., Misra, M. A & Hinrichsen, G. I. (2000). Biofibres, biodegradablepolymers and biocomposites: An overview. Macromolecular materials andEngineering, 276(1), 1-24.Mustapa, I. R., Czajka, M., Chandran, S., Daud, N., Kong, I & Shanks, R. A. (2016).Crystallization Behavior Of Plasticized Poly (Lactic Acid)-HempNanocomposites. Polymers Research Journal, 10(4), 199.Mustapa, I. R. & Shanks, R. A. (2014). Multiple melting behavior of poly (lactic acid)-hemp-silica composites using modulated-temperature differential scanningcalorimetry. Journal of Polymer Engineering, 34(9), 895-903.Mustapa, I. R., Chandran, S., Shanks, R. A & Kong, I. (2014). Non-isothermalCrystallization of Poly (lactic acid)-Hemp-Silica Nanocomposites Plasticizedwith Tributyl Citrate. In 37th Annual Condensed Matter and Materials Meeting(pp. 33-36). Australian Institute of Physics.Mustapa, I. R., Shanks, R. A & Kong, I. (2013a). Melting behaviour and dynamicmechanical properties of Poly (lactic acid)-hemp-nanosilica composites. AsianTransactions on Basic and Applied Sciences, 3(2), 29-37.Mustapa, I., Shanks, R & Kong, I. (2013b). Poly (lactic acid)-hemp-nanosilica hybridcomposites: thermomechanical, thermal behavior and morphological properties.International Journal of Advanced Science and Engineering Technology, 3(1),192-199.Mustapa, I. R. & Shanks, R. A. (2012). Dynamic Mechanical Properties and MeltingBehaviour of Poly (Lactic Acid)HempNanosilica Hybrid Composites. In Proc.15th European Conference on Composite Materials.Nafchi, A. M., Nassiri, R., Sheibani, S., Ariffin, F & Karim, A. A. (2013). Preparationand characterization of bionanocomposite films filled with nanorod-rich zincoxide. Carbohydrate polymers, 96(1), 233-239.Nagarajan, V., Mohanty, A. K & Misra, M. (2016). Perspective on Polylactic Acid(PLA) based Sustainable Materials for Durable Applications: Focus onToughness and Heat Resistance. ACS Sustainable Chemistry and Engineering, 4,28992916.Nair, L. S. & Laurencin, C. T. (2007). Biodegradable polymers asbiomaterials. Progress in polymer science, 32(8-9), 762-798.Nampoothiri, K. M., Nair, N. R & John, R. P. (2010). An overview of the recentdevelopments in polylactide (PLA) research. Bioresource technology, 101(22),8493-8501.Nomai, J., Suksut, B & Schlarb, A. K. (2015). Crystallization behavior of poly (lacticacid)/titanium dioxide nanocomposites. KMUTNB International Journal ofApplied Science and Technology, 8, 251-258.Ohkita, T. & Lee, S. H. (2006). Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites. Journal of applied polymerscience, 100(4), 3009-3017.Ojijo, V., Sinha Ray, S & Sadiku, R. (2012a). Effect of nanoclay loading on the thermaland mechanical properties of biodegradable polylactide/poly [(butylenesuccinate)-co-adipate] blend composites. ACS applied materials &interfaces, 4(5), 2395-2405.Ojijo, V., Sinha Ray, S & Sadiku, R. (2012b). Role of specific interfacial area incontrolling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate]. ACS applied materials & interfaces, 4(12),6690-6701.Ozkoc, G. & Kemaloglu, S. (2009). Morphology, biodegradability, mechanical, andthermal properties of nanocomposite films based on PLA and plasticizedPLA. Journal of Applied Polymer Science, 114(4), 2481-2487.Pan, H., Xu, D., Liu, Q., Ren, H. Q & Zhou, M. (2014). Preparation and characterizationof corn starch-nanodiamond composite films. Applied Mechanics andMaterials (Vol. 469, pp. 156-161). Trans Tech Publications.Pandey, J. K., Chu, W. S., Lee, C. S & Ahn, S. H. (2007). Preparation characterizationand performance evaluation of nanocomposites from natural fiber reinforcedbiodegradable polymer matrix for automotive applications. InternationalSymposium on Polymers and the Environment: Emerging Technology andScience, BioEnvironmental Polymer Society (BEPS).Papageorgiu, GZ., Achilias, DS., Nanaki, S., Beslikas, T & Bikiaris, D. (2010). PLAnanocomposites: effect of filler type on non-isothermal crystallization.Thermochim Acta.;511:12938.Park, E. S., Kim, M. N & Yoon, J. S. (2002). Grafting of polycaprolactone onto poly(ethylene?co?vinyl alcohol) and application to polyethylene?based bioerodableblends. Journal of Polymer Science Part B: Polymer Physics, 40(22), 2561-2569.Paul, M. A., Delcourt, C., Alexandre, M., Dege, P., Monteverde, F., Rulmont, A., etal (2005). (Plasticized) polylactide/(organo?) clay nanocomposites by in situintercalative polymerization. Macromolecular Chemistry and physics, 206(4),484-498.Paul, M. A., Alexandre, M., Dege, P., Calberg, C., Jrme, R & Dubois, P. (2003).Exfoliated Polylactide/Clay Nanocomposites by In?Situ CoordinationInsertionPolymerization. Macromolecular rapid communications, 24(9), 561-566.Petersen, K., Nielsen, P. V., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H.,et al (1999). Potential of biobased materials for food packaging. Trends in foodscience & technology, 10(2), 52-68.Phetwarotai, W., Potiyaraj, P & Aht?Ong, D. (2012). Characteristics of biodegradablepolylactide/gelatinized starch films: Effects of starch, plasticizer, andcompatibilizer. Journal of Applied Polymer Science, 126(S1), E162-E172.Pillai, S. K., Ray, S. S., Scriba, M., Ojijo, V & Hato, M. J. (2013). Morphological andthermal properties of photodegradable biocomposite films. Journal of AppliedPolymer Science, 129(1), 362-370.Pillin, I., Montrelay, N., Bourmaud, A & Grohens, Y. (2008). Effect of thermomechanicalcycles on the physico-chemical properties of poly (lactic acid).Polymer Degradation and Stability, 93(2), 321-328.Pluta M. & Galeski A. (2002). Crystalline and supermolecular structure of polylactidein relation to the crystallization method. Journal of Applied Polymer Science.86(6), 1386-1395.Pluta, M., Galeski, A., Alexandre, M., Paul, M. A & Dubois, P. (2002).Polylactide/montmorillonite nanocomposites and microcomposites prepared bymelt blending: structure and some physical properties. Journal of AppliedPolymer Science, 86(6), 1497-1506.Pogodina, N. V., Cercl, C., Avrous, L., Thomann, R., Bouquey, M & Muller, R.(2008). Processing and characterization of biodegradable polymernanocomposites: detection of dispersion state. Rheologica Acta, 47(5-6), 543-553.Qin, Y., Yang, J., Yuan, M., Xue, J., Chao, J., Wu, Y., et al (2014). Mechanical, barrier,and thermal properties of poly (lactic acid)/poly (trimethylene carbonate)/talccomposite films. Journal of Applied Polymer Science, 131(6).Raquez, J. M., Habibi, Y., Murariu, M & Dubois, P. (2013). Polylactide (PLA)-basednanocomposites. Progress in Polymer Science, 38(10-11), 1504-1542.Rasal R. M. & Hirt D. E. (2008) Toughness decrease of PLA-PHBHHx blend filmsupon surface-confined photopolymerization. Journal of Biomedical MaterialsResearch Part-A. 88(4), 1079-1086.Ratanakamnuan, U. & Aht?Ong, D. (2006). Preparation and characterization of lowdensitypolyethylene/banana starch films containing compatibilizer andphotosensitizer. Journal of applied polymer science, 100(4), 2717-2724.Ray, S. S. & Bousmina, M. (2006). Biodegradable polymer/layered silicatenanocomposites. In Polymer Nanocomposites (pp. 57-129). WoodheadPublishing.Ray, S. S. & Bousmina, M. (2005). Biodegradable polymers and their layered silicatenanocomposites: in greening the 21st century materials world. Progress inmaterials science, 50(8), 962-1079.Ren, Z., Dong, L & Yang, Y. (2006). Dynamic mechanical and thermal properties ofplasticized poly (lactic acid). Journal of Applied Polymer Science, 101(3), 1583-1590.Rhim, J. W., Mohanty, A. K., Singh, S. P & Ng, P. K. (2006). Effect of the processingmethods on the performance of polylactide films: Thermocompression versussolvent casting. Journal of applied polymer science, 101(6), 3736-3742.Rhim, J. W., Park, H. M & Ha, C. S. (2013). Bio-nanocomposites for food packagingapplications. Progress in polymer science, 38(10-11), 1629-1652.Rhim, J. W., Hong, S. I & Ha, C. S. (2009). Tensile, water vapor barrier andantimicrobial properties of PLA/nanoclay composite films. LWT-Food Scienceand Technology, 42(2), 612-617.Righetti, M. C., Cinelli, P., Mallegni, N., Massa, C. A., Bronco, S., Stbler, A., et al(2019). Thermal, Mechanical, and Rheological Properties of BiocompositesMade of Poly (lactic acid) and Potato Pulp Powder. International journal ofmolecular sciences, 20(3), 675.Rostami, A., Nazockdast, H & Karimi, M. (2016). Graphene induced microstructuralchanges of PLA/MWCNT biodegradable nanocomposites: rheological,morphological, thermal and electrical properties. RSC Advances, 6(55), 49747-49759.Rydz, J., Musio?, M., Zawidlak-W?grzy?ska, B & Sikorska, W. (2018). Present andfuture of biodegradable polymers for food packaging applications. Biopolymersfor Food Design (pp. 431-467). Academic Press.Samadi, S., Moradkhani, M., Beheshti, H., Irani, M & Aliabadi, M. (2018). Fabricationof chitosan/poly (lactic acid)/graphene oxide/TiO2 composite nanofibrousscaffolds for sustained delivery of doxorubicin and treatment of lungcancer. International journal of biological macromolecules, 110, 416-424.Scheirs, J., Camino, G & Tumiatti, W. (2001). Overview of water evolution during thethermal degradation of cellulose. European Polymer Journal, 37(5), 933-942.Sejidov, F. T., Mansoori, Y & Goodarzi, N. (2005). Esterification reaction using solidheterogeneous acid catalysts under solvent-less condition. Journal of MolecularCatalysis A: Chemical, 240(1-2), 186-190.Sears, J. K. & Darby, J. R. (1982). Mechanism of plasticizer action. The Technology ofPlasticizers, 35-77.Shankar, S. & Rhim, J. W. (2018). Bionanocomposite films for food packagingapplications. Reference module in food science, 1-10.Shankar, S. & Rhim, J. W. (2016). Polymer nanocomposites for food packagingapplications. Functional and physical properties of polymer nanocomposites, 29.Shi, N. & Dou, Q. (2015). Non-isothermal cold crystallization kinetics of poly (lacticacid)/poly (butylene adipate-co-terephthalate)/treated calcium carbonatecomposites. Journal of Thermal Analysis and Calorimetry, 119(1), 635-642.Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S & Mller, C.M. O. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers,92(1), 19-22.Shtarkman, B. P. & Razinskaya, I. N. (1983). Plasticization mechanism and structureof polymers. Acta polymerica, 34(8), 514-520.Shyang, C. W. & Kuen, L. S. (2008). Flexural, morphological and thermal propertiesof poly (lactic acid)/organo-montmorillonite nanocomposites. Polymers andPolymer Composites, 16(4), 263-270.Silverajah, V. S., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W & Hassan, H. A.(2012). Mechanical, thermal and morphological properties of poly (lacticacid)/epoxidized palm olein blend. Molecules, 17(10), 11729-11747.Silvestre, C., Duraccio, D & Cimmino, S. (2011). Food packaging based on polymernanomaterials. Progress in polymer science, 36(12), 1766-1782.Singh, S., Maspoch, M. L & Oksman, K. (2019). Crystallization of triethyl?citrateplasticizedpoly (lactic acid) induced by chitin nanocrystals. Journal of AppliedPolymer Science, 136(36), 47936.Singla, R. K., Maiti, S. N & Ghosh, A. K. (2016). Mechanical, morphological, andsolid-state viscoelastic responses of poly (lactic acid)/ethylene-co-vinyl-acetatesuper-tough blend reinforced with halloysite nanotubes. Journal of MaterialsScience, 51(22), 10278-10292.Sinha J., K., PandeyD., Rutot P.D & Dubois P. (2003). Biodegradation of poly (-caprolactone)/starch blends and composites in composting and cultureenvironment: the effect of compatibilization on the inherent biodegradability ofthe host polymer. Carbohydrates Research. 338, 1759-1769.Sinha Ray, S., Okamoto, K., Yamada, K & Okamoto, M. (2002a). Novel porousceramic material via burning of polylactide/layered silicate nanocomposite. NanoLetters, 2(4), 423-425.Sinha Ray, S., Yamada, K., Okamoto, M & Ueda, K. (2002b). Polylactide-layeredsilicate nanocomposite: a novel biodegradable material. Nano Letters, 2(10),1093-1096.Sinha Ray, S., Maiti, P., Okamoto, M., Yamada, K & Ueda, K. (2002c). Newpolylactide/layered silicate nanocomposites. 1. Preparation, characterization, andproperties. Macromolecules, 35(8), 3104-3110.Smijs, T. G. & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles insunscreens: focus on their safety and effectiveness. Nanotechnology, science andapplications, 4, 95.Siracusa, V., Rocculi, P., Romani, S & Dalla Rosa, M. (2008). Biodegradable polymersfor food packaging: a review. Trends in Food Science & Technology, 19(12),634-643.Snejdrova, E. & Dittrich, M. (2012). Pharmaceutical applications of plasticizedpolymers. Recent advances in plasticizers. IntechOpen.Sdergrd, A. & Stolt, M. (2002). Properties of lactic acid based polymers and theircorrelation with composition. Progress in polymer science, 27(6), 1123-1163.Song, M., Pan, C., Li, J., Wang, X & Gu, Z. (2006). Electrochemical study onsynergistic effect of the blending of nano TiO2 and PLA polymer on theinteraction of antitumor drug with DNA. Electroanalysis: An InternationalJournal Devoted to Fundamental and Practical Aspects ofElectroanalysis, 18(19? 20), 1995-2000.Sorrentino, A., Gorrasi, G & Vittoria, V. (2007). Potential perspectives of bionanocompositesfor food packaging applications. Trends in food science &technology, 18(2), 84-95.Sothornvit, R. & Krochta, J. M. (2005). Plasticizers in edible films and coatings.In Innovations in food packaging (pp. 403-433). Academic Press.Sothornvit, R. & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of-lactoglobulin films. Journal of Food Engineering, 50(3), 149-155.Sozer, N. & Kokini, J. L. (2009). Nanotechnology and its applications in the foodsector. Trends in biotechnology, 27(2), 82-89.Sullivan, E. M., Karimineghlani, P., Naraghi, M., Gerhardt, R. A & Kalaitzidou, K.(2016). The effect of nanofiller geometry and compounding method on polylacticacid nanocomposite films. European Polymer Journal, 77, 31-42.Su, Z., Li, Q., Liu, Y., Hu, G. H & Wu, C. (2009). Multiple melting behavior of poly(lactic acid) filled with modified carbon black. Journal of Polymer Science PartB: Polymer Physics, 47(20), 1971-1980.Tang, X. Z., Kumar, P., Alavi, S & Sandeep, K. P. (2012). Recent advances inbiopolymers and biopolymer-based nanocomposites for food packagingmaterials. Critical reviews in food science and nutrition, 52(5), 426-442.Tang, X., Alavi, S & Herald, T. J. (2008). Barrier and mechanical properties of starchclaynanocomposite films. Cereal chemistry, 85(3), 433-439.Teixeira, E. D. M., Pasquini, D., Curvelo, A. A., Corradini, E., Belgacem, M. N &Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforcedthermoplastic cassava starch. Carbohydrate polymers, 78(3), 422-431.Tham, W. L., Mohd Ishak, Z. A & Chow, W. S. (2014). Mechanical and thermalproperties enhancement of poly (lactic acid)/halloysite nanocomposites bymaleic-anhydride functionalized rubber. Journal of Macromolecular Science,Part B, 53(3), 371-382.Thuy, N. T., Duc, V. M & Liem, N. T. (2018). Properties of poly (lactic acid) plasticizedby epoxidized rubber seed oil. Vietnam Journal of Chemistry, 56(2), 181-186.Tsuji, H., Takai, H & Saha, S.K. (2006). Isothermal and non-isothermal crystallizationbehaviour of poly(l-lactic acid): Effects of stereocomplex as nucleating agent.Polymer, 47(11), 3826-3837.Tsuji, H. & Yamada, T. (2003). Blends of aliphatic polyesters. VIII. Effects of poly (Llactide?co??caprolactone) on enzymatic hydrolysis of poly (L?lactide), poly (?caprolactone), and their blend films. Journal of applied polymer science, 87(3),412-419.Tsuji, H. & Ikada, Y. (2000). Properties and morphology of poly (L-lactide) 4. Effectsof structural parameters on long-term hydrolysis of poly (L-lactide) in phosphatebufferedsolution. Polymer Degradation and Stability, 67(1), 179-189.Visnen, T., Das, O & Tomppo, L. (2017). A review on new bio-based constituentsfor natural fiber-polymer composites. Journal of Cleaner Production, 149, 582-596.Vieira, M. G. A., da Silva, M. A., dos Santos, L. O & Beppu, M. M. (2011).Natural-based plasticizers and biopolymer films: A review. European PolymerJournal, 47(3), 254-263.Venugopal, J. & Ramakrishna, S. (2005). Applications of polymer nanofibers inbiomedicine and biotechnology. Applied biochemistry and biotechnology,125(3), 147-157.Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N & Debevere, J. (1999).Developments in the active packaging of foods. Trends in food science &technology, 10(3), 77-86.Vignon, M. R., Dupeyre, D & Garcia-Jaldon, C. (1996). Morphologicalcharacterization of steam-exploded hemp fibers and their utilization inpolypropylene-based composites. Bioresource Technology, 58(2), 203-215.Vink, E. T. & Davies, S. (2015). Life cycle inventory and impact assessment data for2014 Ingeo polylactide production. Industrial Biotechnology, 11(3), 167-180.Wang, G., Zhang, J & Murray, R. W. (2002). DNA binding of an ethidium intercalatorattached to a monolayer-protected gold cluster. Analytical chemistry, 74(17),4320-4327.Wang, L. F. & Rhim, J. W. (2016). Grapefruit seed extract incorporated antimicrobialLDPE and PLA films: Effect of type of polymer matrix. LWT, 74, 338-345.Wang, N., Zhang, X., Ma, X & Fang, J. (2008). Influence of carbon black on theproperties of plasticized poly(lactic acid) composites. Polymer Degradation andStability. 93(6), 1044-1052.Wen, X., Lin, Y., Han, C., Zhang, K., Ran, X., Li, Y., et al (2009). Thermomechanicaland optical properties of biodegradable poly(L-lactide)/silica nanocomposites bymelt compounding. Journal of Applied Polymer Science. 114(6), 3379-3388.Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., et al (2011). Selectivelocalization of nanofillers: effect on morphology and crystallization of PLA/PCLblends. Macromolecular Chemistry and Physics, 212(6), 613-626.Wu, W., Wu, G & Zhang, H. (2017). Effect of wood flour as nucleating agent on theisothermal crystallization of poly (lactic acid). Polymers for AdvancedTechnologies, 28(2), 252-260.Xiao, H., Lu, W & Yeh, J. T. (2009). Effect of plasticizer on the crystallization behaviorof poly (lactic acid). Journal of applied polymer science, 113(1), 112-121.Yamada, K., Ueda, K., Ray, S. S & Okamoto, M. (2002). Preparation and properties ofpolylactide/layered silicate nanocomposite. Kobunshi ronbunshu(Tokyo), 59(12), 760-766.Yam, K. L., Takhistov, P. T & Miltz, J. (2005). Intelligent packaging: concepts andapplications. Journal of food science, 70(1), R1-R10.Yang, C. S., Chang, C. H., Tsai, P. J., Chen, W. Y., Tseng, F. G & Lo, L. W. (2004).Nanoparticle-based in vivo investigation on blood brain barrier permeabilityfollowing ischemia and reperfusion. Analytical chemistry, 76(15), 4465-4471.Yasuniwa, M., Sakamo, K., Ono, Y & Kawahara, W. (2008). Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 49(7),1943-1951.Yasuniwa, M., Tsubakihara, S., Sugimoto, Y & Nakafuku, C. (2004). Thermal analysisof the double?melting behavior of poly (L?lactic acid). Journal of PolymerScience Part B: Polymer Physics, 42(1), 25-32.Yee, Y. Y., Ching, Y. C., Rozali, S., Hashim, N. A & Singh, R. (2016). Preparation andcharacterization of poly (lactic acid)-based composite reinforced with oil palmempty fruit bunch fiber and nanosilica. BioResources, 11(1), 2269-2286.Yu, F., Liu, T., Zhao, X., Yu, X., Lu, A & Wang, J. (2012). Effects of talc on themechanical and thermal properties of polylactide. Journal of Applied PolymerScience. 125 (S2), E99-E109.Yu, L., Dean, K & Li, L. (2006). Polymer blends and composites from renewableresources. Progress in polymer science, 31(6), 576-602.Zabihzadeh, S. M (2010). Water uptake and flexural properties of natural filler/HDPEcomposites. BioResources, 5(1), 316-232.Zhang, J., Lou, J., Ilias, S., Krishnamachari, P & Yan, J. (2008). Thermal properties ofpoly (lactic acid) fumed silica nanocomposites: experiments and moleculardynamics simulations. Polymer, 49(9), 2381-2386.Zhang, L., Xiong, C & Deng, X. (1996). Miscibility, crystallization and morphology ofpoly (-hydroxybutyrate)/poly (d, l-lactide) blends. Polymer, 37(2), 235-241.Zhang, M. & Thomas, N. L. (2011). Blending polylactic acid withpolyhydroxybutyrate: the effect on thermal, mechanical, and biodegradationproperties. Advances in Polymer Technology, 30(2), 67-79.Zhang, Q., Li, D., Zhang, H., Su, G & Li, G. (2018). Preparation and properties of poly(lactic acid)/sesbania gum/nano-TiO2 composites. Polymer Bulletin, 75(2), 623-635.Zhao, J. L., Pan, H. W., Yang, H. L., Bian, J. J., Zhang, H. L., Gao, G., et al (2019).Studies on Rheological, Thermal, and Mechanical Properties ofPolylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly (propylenecarbonate) Polyurethane Ternary Blends. Chinese Journal of Polymer Science,1-10.Zhao, Y. Q., Cheung, H. Y., Lau, K. T., Xu, C. L., Zhao, D. D & Li, H. L. (2010).Silkworm silk/poly (lactic acid) biocomposites: Dynamic mechanical, thermaland biodegradable properties. Polymer degradation and stability, 95(10), 1978-1987.Zhijun, Q., Xingxiang, Z., Ning, W & Jianming, F. (2009). Poly(1,3-butylene adipate)plasticized poly(lactic acid)/carbon black as electrical conductive polymercomposites. Polymer Composites. 30(11), 1576-1584.Zhuang, W., Zhang, J., Liu, J., Zhang, Q., Hu, B & Shen, J. (2008). Preparation andcharacterization of nano-TiO2/polylactide composites. Acta Mater. Compos.Sinica, 25, 8-11. |