Optical trapping of organic solvents in the form of microdroplets in water

This research aimed to develop a procedure to optically trap organic solvents in the form ofmicrodroplet and to evaluate its optical stiffness based on the corner frequency,??. The selected organic solvents were 1,2-dichlorobenzene, acetonitrile, chloroform, ethanol,ethyl acetate and toluene. Microd...

Full description

Saved in:
Bibliographic Details
Main Author: Mohd Farid Mohamad Yusof
Format: thesis
Language:eng
Published: 2020
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=6256
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:6256
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QC Physics
spellingShingle QC Physics
Mohd Farid Mohamad Yusof
Optical trapping of organic solvents in the form of microdroplets in water
description This research aimed to develop a procedure to optically trap organic solvents in the form ofmicrodroplet and to evaluate its optical stiffness based on the corner frequency,??. The selected organic solvents were 1,2-dichlorobenzene, acetonitrile, chloroform, ethanol,ethyl acetate and toluene. Microdroplets in water solution were prepared by ultrasonication for 2minutes. Microdroplets in the range of 2 to 3 m in diameter were then trapped by using 915 nmlaser at power densities of 6.3, 7.4 and 8.4 MW/cm with laser spot size 1.1 m. A quadrantphotodiode (QPD) was used to collect the scattered light from the single trapped microdroplet. Thesignal was analysed using custom made software named OSCal to determine ?? of the opticaltrap. The results showed that 1,2-dichlorobenzene, chloroform and toluene formed stablemicrodroplets in water. Thus, these microdroplets can be optical trapped. The optical stiffnessas judged by ?? is within 1 to 10 pN/m. To conclude, only solvent with very low water solubilitycan form microdroplet solution and ?? depends on the laser power density, type of solvent andmicrodroplet size. This research implies that it can provide the information needed by otherresearchers in choosi g the suitable organic solvent for applications requiringan optical trapping technique.
format thesis
qualification_name
qualification_level Master's degree
author Mohd Farid Mohamad Yusof
author_facet Mohd Farid Mohamad Yusof
author_sort Mohd Farid Mohamad Yusof
title Optical trapping of organic solvents in the form of microdroplets in water
title_short Optical trapping of organic solvents in the form of microdroplets in water
title_full Optical trapping of organic solvents in the form of microdroplets in water
title_fullStr Optical trapping of organic solvents in the form of microdroplets in water
title_full_unstemmed Optical trapping of organic solvents in the form of microdroplets in water
title_sort optical trapping of organic solvents in the form of microdroplets in water
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2020
url https://ir.upsi.edu.my/detailsg.php?det=6256
_version_ 1747833250664939520
spelling oai:ir.upsi.edu.my:62562021-09-15 Optical trapping of organic solvents in the form of microdroplets in water 2020 Mohd Farid Mohamad Yusof QC Physics This research aimed to develop a procedure to optically trap organic solvents in the form ofmicrodroplet and to evaluate its optical stiffness based on the corner frequency,??. The selected organic solvents were 1,2-dichlorobenzene, acetonitrile, chloroform, ethanol,ethyl acetate and toluene. Microdroplets in water solution were prepared by ultrasonication for 2minutes. Microdroplets in the range of 2 to 3 m in diameter were then trapped by using 915 nmlaser at power densities of 6.3, 7.4 and 8.4 MW/cm with laser spot size 1.1 m. A quadrantphotodiode (QPD) was used to collect the scattered light from the single trapped microdroplet. Thesignal was analysed using custom made software named OSCal to determine ?? of the opticaltrap. The results showed that 1,2-dichlorobenzene, chloroform and toluene formed stablemicrodroplets in water. Thus, these microdroplets can be optical trapped. The optical stiffnessas judged by ?? is within 1 to 10 pN/m. To conclude, only solvent with very low water solubilitycan form microdroplet solution and ?? depends on the laser power density, type of solvent andmicrodroplet size. This research implies that it can provide the information needed by otherresearchers in choosi g the suitable organic solvent for applications requiringan optical trapping technique. 2020 thesis https://ir.upsi.edu.my/detailsg.php?det=6256 https://ir.upsi.edu.my/detailsg.php?det=6256 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure.Physical Review Letters, 24(4), 2427.Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the rayoptics regime. Biophysical Journal, 61(2), 569582.Ashkin, A., & Dziedzic, J. M. (1975). Optical Levitation of Liquid Drops by Radiation Pressure.Science, 187(4181), 10731075.Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of asingle-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5),288290.Berg-Srensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers.Review of Scientific Instruments, 75(3), 594612.Blzquez-Castro, A. (2019). Optical tweezers: Phototoxicity and thermal stress in cells andbiomolecules. Micromachines, 10(8), 142.Castberg, R. C. (2008). Characterisation and calibration of Optical tweezers.University of Oslo.Crick, A. J., Theron, M., Tiffert, T., Lew, V. L., Cicuta, P., & Rayner, J. C. (2014). Quantitationof malaria parasite-erythrocyte cell-cell interactions using optical tweezers. BiophysicalJournal, 107(4), 846853.Deltoro, D., & Smith, D. E. (2014). Accurate measurement of force and displacement with opticaltweezers using DNA molecules as metrology standards. Applied Physics Letters, 104(14), 15.Dols-Perez, A., Marin, V., Amador, G. J., Kieffer, R., Tam, D., & Aubin-Tam, M. E. (2019).Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform forNanomanipulation and Mechanical Characterization. ACS Applied Materials and Interfaces, 11(37),3362033627.Ericsson, M., Hanstorp, D., Hagberg, P., & Enger, J. (2000). Sorting Out BacterialViability with Optical Tweezers, 182(19), 55515555.Ferrari, E., Emiliani, V., Cojoc, D., Garbin, V., & Zahid, M. (2005). Biological samplesmicro-manipulation by means of optical tweezers. Microelectronic Engineering,79, 575581.Friddin, M. S., Bolognesi, G., Salehi-Reyhani, A., Ces, O., & Elani, Y. (2019). Direct manipulationof liquid ordered lipid membrane domains using optical traps. Communications Chemistry,2(1), 17.Grier, D. G. (2003). A revolution in optical manipulation. Nature, 424(6950), 810816. Hamid, M.Y. (2017). The Development of Optical Stiffness Calibration Software Based onEquipartition Theorem, Boltzmann Statistics and Power SpectrumDensity. Universiti Pendidikan Sultan Idris.Hegner, M., Gerber, C., Arntz, Y., Zhang, J., Bertoncini, P., Husale, S., Lang, H. P., Grange, W. (2003). Biological single molecule applications and advanced biosensing. Journal ofChromatography Library, 68(C), 241263.Juodkazis, S., Shikata, M., Takahashi, T., Matsuo, S., & Misawa, H. (1999). Fast optical switchingby a laser-manipulated microdroplet of liquid crystal. Applied Physics Letters, 74(24), 36273629.Keloth, A., Anderson, O., Risbridger, D., & Paterson, L. (2018). Single cell isolation usingoptical tweezers. Micromachines, 9(9), 121.Kulin, S., Kishore, R., Helmerson, K., & Locascio, L. (2003). Optical manipulation and fusion ofliposomes as microreactors. Langmuir, 19(20), 82068210.MIT Department of Physics. (2014). Optical trapping. Retrieved fromhttp://web.mit.edu/8.13/www/JLExperiments/JLExp51.pdfMohamad Yusof, M. F., Ayop, S. K., & Hamid, M. Y. (2019). Optical Fiber Laser Technology. (A. H.Ali & Z. Zakaria, Eds.). Penerbit UTHM.Mondal, D., Bandyopadhyay, S. N., & Goswami, D. (2019). Elucidating optical field directed hierarchical self-assembly of homogenous versus heterogeneous nanoclusters withfemtosecond optical tweezers. PLoS ONE, 14(10), 114.Mondal, D., Dinda, S., Bandyopadhyay, S. N., & Goswami, D. (2019). Polarization induced control ofoptical trap potentials in binary liquids. Scientific Reports, 9(1), 111.Mondal, D., & Goswami, D. (2015). Controlling local temperature in water usingfemtosecond optical tweezer. Biomedical Optics Express, 6(9), 3190 - 3196.Nemet, B. a, & Cronin-Golomb, M. (2003). Measuring microscopic viscosity with opticaltweezers as a confocal probe. Applied Optics, 42(10), 18201832.Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of ScientificInstruments, 75(9), 27872809.Nrrelykke, S. F., & Flyvbjerg, H. (2010). Power spectrum analysis with least-squares fitting:Amplitude bias and its elimination, with application to optical tweezers and atomic forcemicroscope cantilevers. Review of Scientific Instruments, 81(7), 1 - 16.Onteduca, D. O. C., Runetti, G. I. B., Lio, F. R. D. E. L. L. O., Rmenise, M. A. N. A., Rauss, T.H. F. K., & Iminelli, C. A. C. (2019). Monitoring of individual bacteria using electro-photonictraps. Biomedical Optics Express, 10(7), 34633471.Osterman, N. (2010). TweezPal - Optical tweezers analysis and calibration software.Computer Physics Communications, 181(11), 19111916.Pan, Y. (2012). Optical Trapping Force on a Plasmonic Substrate. Albanova UniversityCenter.Paul, A., Padmapriya, P., & Natarajan, V. (2017). Diagnosis of malarial infection using change inproperties of optically trapped red blood cells. Biomedical Journal, 40(2), 101105.Power, R., Reid, J. P., Anand, S., McGloin, D., Almohamedi, A., Mistry, N. S., &Hudson, A. J. (2012). Observation of the binary coalescence and equilibration of micrometer-sizeddroplets of aqueous aerosol in a single-beam gradient-force optical trap. Journal ofPhysical Chemistry A, 116(35), 88738884.Radenovic, A. (2007). Optical Trapping. Advanced Bioengineering Methods LaboratoryOptical Trapping, 125.Ranaweera, A., & Bamieh, B. (2005). Modelling, identification, and control of aspherical particle trapped in an optical tweezer. International Journal of Robust and NonlinearControl, 15(16), 747768.Reiner, J. E., Crawford, A. M., Kishore, R. B., Goldner, L. S., Helmerson, K., & Gilson,M. K. (2006). Optically trapped aqueous droplets for single molecule studies.Applied Physics Letters, 89(1), 03.Samadi, A., Zhang, C., Chen, J., Reihani, S. N. S., & Chen, Z. (2015). Evaluating the toxic effectof an antimicrobial agent on single bacterial cells with optical tweezers. BiomedicalOptics Express, 6(1), 112.Sarshar, M., Wong, W. T., & Anvari, B. (2014). Comparative Study of Methods to Calibrate theStiffness of a Single-beam Gradient-force Optical Tweezers over Various Laser TrappingPowers. Journal of Biomedical Opics, 19(11), 113.Shindel, M. M., Swan, J. W., & Furst, E. M. (2013). Calibration of an optical tweezermicrorheometer by sequential impulse response. Rheologica Acta, 52(5), 455 465.Spesyvtseva, S. E. S., & Dholakia, K. (2016). Trapping in a Material World. ACSPhotonics, 3(5), 719736.Supian, F. L., Richardson, T. H., Nabok, A. V, Deasy, M., & Azmi, M. S. M. (2014). Nanoscalegrowth of CdS and PbS semiconductor within calix [ 4 ] arene Langmuir- Blodgett LBfilm for ion sensing application. Advanced Materials Research, 895, 520525.Taylor, M. A. (2017). Optimizing Phase to Enhance Optical Trap Stiffness. Scientific Reports, 7(1),110.Thomas M., N. (2011). Quantitative Understanding of Biosystems : An Introduction toBiophysics. Taylor & Francis Group.Tolic-Nrrelykke, I., Berg-Srensen, K., & Flyvbjerg, H. (2004). MatLab program for precisioncalibration of optical tweezers. Computer Physics Communications, 159(3), 225240.Wang, M. D., Yin, H., Landick, R., Gelles, J., & Block, S. M. (1997). Stretching DNAwith optical tweezers. Biophysical Journal, 72(3), 13351346.