Simultaneously determination of bisphenol a and uric acid by zinc/aluminum-layered double hydroxide 2(2,4-dichlorophenoxy) propionate paste electrode
The purpose of this study was to determine simultaneously of bisphenol A and uric acid byzinc/aluminium-layered double hydroxide 2(2,4-dichlorophenoxy)propionate paste electrode. Themorphology of the electrode materials was performed by using scanning electron microscopy and transmission electro...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2020
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=6671 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:6671 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
|
spellingShingle |
Nurul Syahida Mat Aris Simultaneously determination of bisphenol a and uric acid by zinc/aluminum-layered double hydroxide 2(2,4-dichlorophenoxy) propionate paste electrode |
description |
The purpose of this study was to determine simultaneously of bisphenol A and uric acid byzinc/aluminium-layered double hydroxide 2(2,4-dichlorophenoxy)propionate paste electrode. Themorphology of the electrode materials was performed by using scanning electron microscopy and transmission electron microscopy. The electrochemical performance of modified pasteelectrode was studied by using cyclic voltammetry, square wave voltammetry, electrochemicalimpedance spectroscopy and chronocoulometry. Special importance effecting sensitivity andselectivity of the modified electrode must evaluated via optimization conditions which includeeffect of modifier composition percentage (15%), types of supporting electrolyte (PBS), pH ofelectrolyte (6.0) and square wave voltammetry parameters that encompassed of frequency(180Hz), pulse size (80mV) and step increment (7mV). The square wave voltammetry studies at anapplied potential of -0.30 V to + 1.0V, showed fast response within 1 second and detectedat high sensitivity. The modified sensor had showed a linear range from 5.0 M to 0.7 mM withdetection limit of 0.871 M and 0.795 M for bisphenol A and uric acid, respectively. Themodified sensors also exhibited good anti-interferences towards nitrate, chloride, sulphate, captopril, phthaldialdehyde, aspartic acid, glycine and fructose. In conclusion,the modified electrodes have been developed are able to detect bisphenol A and uricacid. By implication, the electrodes have been developed can be used as a suitable alternative forthe determination of bisphenol A and uric acid because it has characteristics suchas high sensitivity, reproducibility, repeatability and stability. |
format |
thesis |
qualification_name |
|
qualification_level |
Master's degree |
author |
Nurul Syahida Mat Aris |
author_facet |
Nurul Syahida Mat Aris |
author_sort |
Nurul Syahida Mat Aris |
title |
Simultaneously determination of bisphenol a and uric acid by zinc/aluminum-layered double hydroxide 2(2,4-dichlorophenoxy) propionate paste electrode |
title_short |
Simultaneously determination of bisphenol a and uric acid by zinc/aluminum-layered double hydroxide 2(2,4-dichlorophenoxy) propionate paste electrode |
title_full |
Simultaneously determination of bisphenol a and uric acid by zinc/aluminum-layered double hydroxide 2(2,4-dichlorophenoxy) propionate paste electrode |
title_fullStr |
Simultaneously determination of bisphenol a and uric acid by zinc/aluminum-layered double hydroxide 2(2,4-dichlorophenoxy) propionate paste electrode |
title_full_unstemmed |
Simultaneously determination of bisphenol a and uric acid by zinc/aluminum-layered double hydroxide 2(2,4-dichlorophenoxy) propionate paste electrode |
title_sort |
simultaneously determination of bisphenol a and uric acid by zinc/aluminum-layered double hydroxide 2(2,4-dichlorophenoxy) propionate paste electrode |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2020 |
url |
https://ir.upsi.edu.my/detailsg.php?det=6671 |
_version_ |
1747833288686305280 |
spelling |
oai:ir.upsi.edu.my:66712022-02-08 Simultaneously determination of bisphenol a and uric acid by zinc/aluminum-layered double hydroxide 2(2,4-dichlorophenoxy) propionate paste electrode 2020 Nurul Syahida Mat Aris The purpose of this study was to determine simultaneously of bisphenol A and uric acid byzinc/aluminium-layered double hydroxide 2(2,4-dichlorophenoxy)propionate paste electrode. Themorphology of the electrode materials was performed by using scanning electron microscopy and transmission electron microscopy. The electrochemical performance of modified pasteelectrode was studied by using cyclic voltammetry, square wave voltammetry, electrochemicalimpedance spectroscopy and chronocoulometry. Special importance effecting sensitivity andselectivity of the modified electrode must evaluated via optimization conditions which includeeffect of modifier composition percentage (15%), types of supporting electrolyte (PBS), pH ofelectrolyte (6.0) and square wave voltammetry parameters that encompassed of frequency(180Hz), pulse size (80mV) and step increment (7mV). The square wave voltammetry studies at anapplied potential of -0.30 V to + 1.0V, showed fast response within 1 second and detectedat high sensitivity. The modified sensor had showed a linear range from 5.0 M to 0.7 mM withdetection limit of 0.871 M and 0.795 M for bisphenol A and uric acid, respectively. Themodified sensors also exhibited good anti-interferences towards nitrate, chloride, sulphate, captopril, phthaldialdehyde, aspartic acid, glycine and fructose. In conclusion,the modified electrodes have been developed are able to detect bisphenol A and uricacid. By implication, the electrodes have been developed can be used as a suitable alternative forthe determination of bisphenol A and uric acid because it has characteristics suchas high sensitivity, reproducibility, repeatability and stability. 2020 thesis https://ir.upsi.edu.my/detailsg.php?det=6671 https://ir.upsi.edu.my/detailsg.php?det=6671 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik A.Bulger, H., & E.Johns, H. (1941). The determination of Plasma Uric Acid.J.Biol.Chem, 140.Abdelwahab, A. A., & Shim, Y. B. (2015). Simultaneous determination of ascorbic acid, dopamine,uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Aunanoclusters. Sensors and Actuators, B: Chemical, 221, 659665.Adams, R. N. (1958). Carbon Paste Electrodes. Analytical Chemistry, 30, 15761576.Ahmad, M. S., Isa, I., Hashim, N., Si, S. M., & Saidin, M. I. (2018). A highlysensitive sensor of paracetamol based on zinc-layered hydroxide- L -phenylalanate-modified multiwalled carbon nanotube paste electrode.Ahmad, M. S., Isa, I. M., Hashim, N., Rosmi, M. S., & Mustafar, S. (2018).Electrochemical detection of hydroquinone by square wave voltammetry using a Zn layeredhydroxide-ferulate (ZLH-F) modified MWCNT paste electrode. International Journal ofElectrochemical Science, 13, 373383.Alderman, M., & Aiyer, K. J. V. (2006). Uric acid: role in cardiovascular disease and effects oflosartan. Current Medical Research and Opinion, 20, 369379.Ali, G. A. M., Aruni, S., Manaf, A., & Divyashree, A. (2016). Superiorsupercapacitive performance in porous nanocarbons. Journal of Energy Chemistry.Allard, P. (2014). Bisphenol A. Biomarkers in Toxicology. Elsevier Inc.Amiri-Aref, M., Raoof, J. B., & Ojani, R. (2016). Utilization of a bioactive anthocyanin for the fabrication of a novel carbon nanotube-basedelectrochemical sensor and its electrocatalytic properties for selectivedetermination of l-dopa in the presence of uric acid. Ionics, 22, 125134.Anson, F. C., & Osteryoung, R. A. (1983). Chronocoulometry: A convenient, rapid and reliabletechnique for detection and determination of adsorbed reactants. Journal of ChemicalEducation, 60, 293.Arvand, M., Ansari, R., & Heydari, L. (2011). Electrocatalytic oxidation anddifferential pulse voltammetric determination of sulfamethoxazole using carbon nanotube pasteelectrode. Materials Science and Engineering C, 31, 18191825.Arvand, M., & Hassannezhad, M. (2014). Magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. Materials Science andengineering C, 36, 160167.Arvand, M., & Hassannezhad, M. (2015). Square wave voltammetric determination ofuric acid and diclofenac on multi-walled carbon nanotubes decorated with magnetic core-shell Fe3O4@SiO2 nanoparticles as an enhanced sensing interface. Ionics, 21,32453256.Ashkenani, H., & Taher, M. A. (2012). Selective voltammetric determination of Cu(II)based on multiwalled carbon nanotube and nano-porous Cu-ion imprinted polymer. Journal ofElectroanalytical Chemistry, 683, 8087.Baig, N., & Sajid, M. (2017). Applications of layered double hydroxides basedelectrochemical sensors for determination of environmental pollutants: A review. Trends inEnvironmental Analytical Chemistry. Elsevier.Bansod, B. K., Kumar, T., Thakur, R., Rana, S., & Singh, I. (2017). A review onvarious electrochemical techniques for heavy metal ions detection with different sensing platforms.Biosensors and Bioelectronics, 94, 443455.Bard, A. J., & Faulkner, L. R. (2000). Electrochemical Methods: Fundamentals and Applications. JohnWiley & Sons, Inc (2nd ed.).Barker, G. C., & I.L.Jenkins. (1952). Square-Wave Polarography.Bates, F., & del Valle, M. (2015). Voltammetric sensor for theophylline using solgel immobilizedmolecularly imprinted polymer particles. Microchimica Acta, 182, 933942.Beitollahi, H., Hamzavi, M., Torkzadeh-Mahani, M., Shanesaz, M., & Maleh, H. K. (2015). A NovelStrategy for Simultaneous Determination of Dopamine and Uric Acid Using a Carbon PasteElectrode Modified with CdTe Quantum Dots. Electroanalysis, 27, 524533.Beitollahi, H., Karimi-Maleh, H., & Khabazzadeh, H. (2008). Nanomolar andselective determination of epinephrine in the presence of norepinephrine using carbonpaste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N-phenyl-hydrazinecarbothioamide.Analytical Chemistry, 80, 98489851.Ben Messaoud, N., Ghica, M. E., Dridi, C., Ben Ali, M., & Brett, C. M. A. (2017). Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modifiedelectrode for the sensitive detection of bisphenol A. Sensors and Actuators, B: Chemical,253, 513522.Bernama. (2012). BPA Milk Bottle Bpa Milk Bottles Banned In Malaysia, 58.Bi, X., Zhang, H., & Dou, L. (2014). Layered double hydroxide-based nanocarriers for drugdelivery. Pharmaceutics, 6, 298332.Biesheuvel, P. . M., & Dykstra, J. E. (2018). The difference between Faradaic andNonfaradaic processes in Electrochemistry. Physics and Chemistry, 110.Bouabi, Y. E. L., Farahi, A., Labjar, N., Hajjaji, S. El, Bakasse, M., & Mhammedi, M.A. El. (2016). Square wave voltammetric determination of paracetamol atchitosan modified carbon paste electrode : Application in natural water samples ,commercial tablets and human urines. Materials Science & Engineering C, 58, 7077.Braungardt, C. B. (2015). Evaluation of Analytical Instrumentation. Part XXVI:Instrumentation for Voltammetry. Analytical Methods, 7, 12491260.Brownson, D. a. C., & Banks, C. E. (2014). The Handbook of GrapheneElectrochemistry.Bruna, F., Celis, R., Pavlovic, I., Barriga, C., Cornejo, J., & Ulibarri, M. A. (2009). Layereddouble hydroxides as adsorbents and carriers of the herbicide (4-chloro- 2-methylphenoxy)aceticacid (MCPA): Systems Mg-Al, Mg-Fe and Mg-Al-Fe. Journal of Hazardous Materials, 168,14761481.Cao, X., Corriveau, J., & Popovic, S. (2009). Survey of Bisphenol A in Canned Drink Products.Journal of Agricultural and Food Chemistry, 57, 13071311.Cao, X. L., Dufresne, G., Belisle, S., Clement, G., Falicki, M., Beraldin, F., &Rulibikiye, A. (2008). Levels of bisphenol A in canned liquid infant formula productsin Canada and dietary intake estimates. Journal of Agricultural and Food Chemistry, 56,79197924.CDC. (2014). National Health and Nutrition Examination Survey. Retrieved July 28, 2018, fromhttps://wwwn.cdc.gov/Nchs/Nhanes/2009-2010/EPH_F.htmChao, M., Ma, X., & Li, X. (2012). Graphene-modified electrode for the selectivedetermination of uric acid under coexistence of dopamine and ascorbic acid. InternationalJournal of Electrochemical Science, 7, 22012213.Chen, A., & Shah, B. (2013). Electrochemical sensing and biosensing based on square wavevoltammetry. Analytical Methods, 5, 21582173.Chen, H., Zhang, Z., Cai, R., Rao, W., & Long, F. (2014). Molecularly imprintedelectrochemical sensor based on nickel nanoparticles-graphene nanocomposites modified electrodefor determination of tetrabromobisphenol A. Electrochimica Acta, 117, 385392.Chen, Z., Tang, C., Zeng, Y., Liu, H., Yin, Z., & Li, L. (2014). Determination ofBisphenol A Using an Electrochemical Sensor Based on a Molecularly Imprinted Polymer-ModifiedMultiwalled Carbon Nanotube Paste Electrode. Analytical Letters, 47, 9961014.Chitravathi, S., & Munichandraiah, N. (2015). Simultaneous Determination ofCatecholamines in Presence of Uric Acid and Ascorbic Acid at a Highly SensitiveElectrochemically Activated Carbon Paste Electrode. Journal of the Electrochemical Society,162, 163-172.Compans, R. W., & Cooper, M. D. (2008). Advances in Multiple Sclerosis and ExperimentalDemyelinating Diseases. Current Topics in Microbiology andImmunology , 318.Compton, R. G., Eduardo, L., & Ward, R. K. (2013). Understanding voltammetry:Simulation of Electrode Processes. Imperial college press.Cunha, S. C., Pena, A., & Fernandes, J. O. (2015). Dispersive liquid-liquidmicroextraction followed by microwave-assisted silylation and gaschromatography-mass spectrometry analysis for simultaneous tracequantification of bisphenol A and 13 ultraviolet filters in wastewaters. Journal of ChromatographyA, 1414, 1021.Deng, P., Xu, Z., & Feng, Y. (2013). Sensitive determination of bisphenol A in plastic products byderivative voltammetry using an acetylene black paste electrode coated with salicylaldehyde-modified chitosan. International Journal of Environmental AnalyticalChemistry, 93, 11161131.Dodds, D. C., & Lawson, W. (1938). Molecular structure in relation to oestrogenic activity .Compounds without a phenanthrene nucleus.Dogan-Topal, B., Ozkan, S. A., & Uslu, B. (2010). The Analytical Applications of SquareWave Voltammetry on Pharmaceutical Analysis. The Open Chemical and Biomedical Methods Journal, 3,5673.Du, L., Zhang, C., Wang, L., Liu, G., Zhang, Y., & Wang, S. (2014). Ultrasensitive time-resolvedmicroplate fluorescence immunoassay for bisphenol A using a system composed on goldnanoparticles and a europium(III)-labeled streptavidin tracer. Microchimica Acta, 182, 539545.Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey,J. L. (2018). A Practical Beginners Guide to Cyclic Voltammetry. Journal of ChemicalEducation, 95, 197206.Erden, P. E., & Kili, E. (2013). A review of enzymatic uric acid biosensors based on amperometricdetection. Talanta, 107, 312323.Estrela, P., Hammond, J. L., Carrara, S., Tkac, J., & Formisano, N. (2016).Electrochemical biosensors and nanobiosensors. Essays In Biochemistry, 60, 69 80.Fu, S., Fan, G., Yang, L., & Li, F. (2015). Non-enzymatic glucose sensor based on Au nanoparticlesdecorated ternary Ni-Al layered double hydroxide/single-walled carbon nanotubes/graphenenanocomposite. Electrochimica Acta, 152, 146154.G.C Barker, A.W. Gardner, M. J. W. (1973). A multi-mode polarograph.Electroanalytical Chemistry and Interracial Electrochemistry, 42, 2126.Galbn, J., Andreu, Y., Almenara, M. J., De Marcos, S., & Castillo, J. R. (2001).Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase.Talanta, 54, 847854.Gao, Yong, Cao, Y., Yang, D., Luo, X., Tang, Y., & Li, H. (2012). Sensitivity and selectivitydetermination of bisphenol A using SWCNT-CD conjugate modifiedglassy carbon electrode. Journal of Hazardous Materials, 199200, 111118.Gao, Yunqiao, Wang, M., Yang, X., Sun, Q., & Zhao, J. (2014). Rapid detection ofquinoline yellow in soft drinks using polypyrrole/single-walled carbon nanotubes composites modified glass carbon electrode. Journal of Electroanalytical Chemistry, 735, 8489.Ghiaci, M., Rezaei, B., & Arshadi, M. (2009). Characterization of modified carbon pasteelectrode by using Salen Schiff base ligand immobilized on SiO2-Al2O3as a highly sensitivesensor for anodic stripping voltammetric determination of copper(II). Sensors and Actuators,B: Chemical, 139, 494500.Ghoreishi, S. M., Behpour, M., Ghoreishi, F. S., & Mousavi, S. (2017). Voltammetric determinationof tryptophan in the presence of uric acid and dopamine using carbon paste electrodemodified with multi-walled carbon nanotubes. Arabian Journal of Chemistry, 10, 1546-1552.Gooding, J. J., Praig, V. G., & Hall, E. A. H. (1998). Platinum-Catalyzed EnzymeElectrodes Immobilized on Gold Using Self-Assembled Layers. Analytical Chemistry, 70,23962402.Guo, W., Zhang, A., Zhang, X., Huang, C., Yang, D., & Jia, N. (2016). Multiwalled carbonnanotubes/gold nanocomposites-based electrochemiluminescent sensor for sensitive determination of bisphenol A. Analytical and Bioanalytical Chemistry, 408, 71737180.Habibi, B., Azhar, F. F., Fakkar, J., & Rezvani, Z. (2017). NiAl/layered doublehydroxide/Ag nanoparticle composite modified carbon-paste electrode as a renewableelectrode and novel electrochemical sensor for hydrogen peroxide. Analytical Methods, 9,19561964.Harrington, D. A. (2015). The rate-determining step in electrochemical impedancespectroscopy. Journal of Electroanalytical Chemistry, 737, 3036.Hashim, N, & Hussein, M. Z. (2012). Layed Double Hydroxide as a Potential Matrix for Controlled Release Formulation of Phenoxyherbicides Layered Double Hydroxide as a Potential Matrix for Controlled Release Formulation of Phenoxyherbicides, 2136.Hashim, Norhayati, Hussein, M. Z., Kamari, A., Mohamed, A., Rosmi, M. S., & Jaafar, A.M. (2012). Layered Double Hydroxide as a Potential Matrix for Controlled Release Formulation of Phenoxyherbicides. Jurnal Sains Dan Matematik, 4, 2236.Hashim, Norhayati, Sharif, S. N. M., Hussein, M. Z., Isa, I. M., Kamari, A., Mohamed,A., Mamat, M. (2016). Layered hydroxide anion exchanger and their applications relatedto pesticides: a brief review. Materials Research Innovations, (S).Heinze, J. (1984). Cyclic VoltammetryElectrochemical Spectroscopy. New AnalyticalMethods. Angewandte Chemie International Edition in English.Heyrovsk, J. (1924). The processes at the mercury dropping cathode. Trans. FaradaySoc., 19, 692702.Huang, N., Liu, M., Li, H., Zhang, Y., & Yao, S. (2015). Synergetic signalamplification based on electrochemical reduced graphene oxide-ferrocene derivativehybrid and gold nanoparticles as an ultra-sensitive detection platform for bisphenol A. AnalyticaChimica Acta, 853, 249257.Hussein, M. Z., Hashim, N., Yahaya, A. H., & Zainal, Z. (2010). Synthesis of anherbicides-inorganic nanohybrid compound by ion exchange-intercalation of3(2-chlorophenoxy)propionate into layered double hydroxide. Journal of ExperimentalNanoscience, 5, 548558.Hussein, Mohd Zobir, Rahman, N. S. S. A., Sarijo, S. H., & Zainal, Z. (2012).Herbicide-intercalated zinc layered hydroxide nanohybrid for a dual-guest controlledrelease formulation. International Journal of Molecular Sciences, 13, 73287342.Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 5658.Isa, Illyas M., Dahlan, S. N. A., Hashim, N., Ahmad, M., & Ghani, S. A. (2012).Electrochemical sensor for cobalt(ii) by modified carbon paste electrode withzn/al-2(3-chlorophenoxy)propionate nanocomposite. International Journal of ElectrochemicalScience, 7, 77977808.Isa, Illyas M., Saruddin, S., Hashim, N., Ahmad, M., & Ghani, S. A. (2016).Determination of hydrazine in various water samples by square wave voltammetry with zinc-layered hydroxide-3(4-methoxyphenyl) Propionate Nanocomposite Modified GlassyCarbon Electrode. International Journal of Electrochemical Science, 11, 46194631.Isa, Illyas M., Sohaimi, N. M., Hashim, N., Kamari, A., Mohamed, A., Ahmad, M., Suyanta. (2013). Determination of salicylate ion by potentiometric membrane electrode based on zinc aluminium layered double hydroxides-4(2,4- dichlorophenoxy)butyrate nanocomposites. International Journal of Electrochemical Science, 8, 21122121.Isa, Illyas Md, Sharif, S. N. M., Hashim, N., & Ghani, S. A. (2015). Amperometric determination ofnanomolar mercury(II) by layered double nanocomposite of zinc/aluminium hydroxide-3(4-methoxyphenyl)propionate modified single- walled carbon nanotube pasteelectrode. Ionics, 21, 29492958.J. He, M. Wei, B. Li, Y. Kang, D. G. E. & X. D. (2005). Layered double hydroxides.Developments in Clay Science, 119, 89119.J.Radej, I.Ruzic, D.Konrad, & M.Branica. (1973). Instrument for Characterization of Electrochemical Processes. Electroanalytical Chemistry and Interfacial Electrochemistry, 261280.Jadon, N., Jain, R., & Sharma, S. (2016). Recent Trends in Electrochemical Sensors for MultianalyteDetection. Talanta.Jiang, X., Ding, W., Luan, C., Ma, Q., & Guo, Z. (2013). Biosensor for bisphenol A leaching frombaby bottles using a glassy carbon electrode modified with DNAand single walled carbon nanotubes. Microchimica Acta, 180, 10211028.Jin, D., Seo, M. H., Huy, B. T., Pham, Q. T., Conte, M. L., Thangadurai, D., & Lee,Y. I. (2016). Quantitative determination of uric acid using CdTe nanoparticles as fluorescenceprobes. Biosensors and Bioelectronics, 77, 359365.Jin, M., Yang, F., Yang, I., Yin, Y., Jun Luo, J., Wang, H., & Yang, X.-F. (2012). Uric acid,hyperuricemia and vascular diseases. Frontiers in Bioscience, 17, 656.Jing, P., Zhang, X., Wu, Z., Bao, L., Xu, Y., Liang, C., & Cao, W. (2015).Electrochemical sensing of bisphenol A by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode. Talanta, 141, 41 46.Johnson, S., Saxena, P., & Sahu, R. (2015). Leaching of Bisphenol A from Baby Bottles.Proceedings of the National Academy of Sciences India Section B - Biological Sciences,85, 131135.Kalcher, J.?M., K., J., W., I., ., K., V., C., N., & Z., Y. (1995). Sensors basedon carbon paste in electrochemical analysis: A review with particular emphasis on the period19901993. Electroanalysis, 7, 5.Kalcher, K. (1990). Chemically modified carbon paste electrodes in voltammetric analysis.Electroanalysis, 2, 419433.Kalousek, M. (1946). A Study of Reversibility of Processes at The Dropping Mercury Electrode byChanging Discontinually The Polarising Voltage, 40, 149157.Kamil Reza, K., Singh, N., Yadav, S. K., Singh, M. K., & Biradar, A. M. (2014).Pearl shaped highly sensitive Mn3O4 nanocomposite interface for biosensor applications.Biosensors and Bioelectronics, 62, 4751.Karimi-Maleh, H., Tahernejad-Javazmi, F., Ensafi, A. A., Moradi, R., Mallakpour, S., & Beitollahi,H. (2014). A high sensitive biosensor based on FePt/CNTsnanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrodefor simultaneous determination of glutathione and piroxicam. Biosensors and Bioelectronics,60, 17.Kissinger, P. T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of ChemicalEducation, 60, 702.Koirala, K., Santos, J. H., Tan, A. L., Ali, M. A., & Mirza, A. H. (2016). Chemically modifiedcarbon paste electrode for the detection of lead, cadmium and zinc ions. Sensor Review, 36.Kong, X., Shi, S., Han, J., Zhu, F., Wei, M., & Duan, X. (2010). Preparation ofGlycy-l-Tyrosine intercalated layered double hydroxide film and its in vitro releasebehavior. Chemical Engineering Journal, 157, 598604.Kounaves, S. P. (1997). Voltammetric techniques: Handbook of InstrumentalTechniques for Analytical Chemistry.Krishnan, A.V, Permuth, S.F, Stathis, P, Feldman, D and Tokes, L. (1993). Bisphenol- Polycarbonate.L.Yajing, F.Lizheng, A.H.S. Muhammad, Z. Liu, W. Shi, S. C. (2013). Developmentand comparison of two competitive ELISAs for detection of bisphenol A in human urine.Analytical Methods, 5, 61066113.Laborda, E., Gonzlez, J., & Molina, . (2014). Recent advances on the theory of pulsetechniques: A mini review. Electrochemistry Communications, 43, 2530.Lakshmi, D., Whitcombe, M. J., Davis, F., Sharma, P. S., & Prasad, B. B. (2011).Electrochemical Detection of Uric Acid in Mixed and Clinical Samples: A Review.Electroanalysis, 23, 305320.Li, D., Ma, X., Wang, R., & Yu, Y. (2017). Determination of trace bisphenol A in environmental water by high-performance liquid chromatography using magnetic reduced grapheneoxide based solid-phase extraction coupled with dispersive liquidliquid microextraction. Analytical and Bioanalytical Chemistry, 409, 11651172.Li, G., & Miao, P. (2013). Electrochemical Analysis of Proteins and Cells. Springer. Li, H.,Wang, W., Lv, Q., Xi, G., Bai, H., & Zhang, Q. (2016). Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol A. Electrochemistry Communications, 68,104107.Li, J., Kuang, D., Feng, Y., Zhang, F., & Liu, M. (2011). Voltammetric determination of bisphenolA in food package by a glassy carbon electrode modified with carboxylated multi-walledcarbon nanotubes. Microchimica Acta, 17, 379386.Li, X. L., Li, G., Jiang, Y. Z., Kang, D., Jin, C. H., Shi, Q., Min, J. Z. (2015). Humannails metabolite analysis: A rapid and simple method for quantification of uric acid in humanfingernail by high-performance liquid chromatography with UV- detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1002,394398.Li, Y., Zhai, X., Liu, X., Wang, L., Liu, H., & Wang, H. (2016). Electrochemicaldetermination of bisphenol A at ordered mesoporous carbon modified nano- carbon ionicliquid paste electrode. Talanta, 148, 362369.Lin, Y., Liu, K., Liu, C., Yin, L., Kang, Q., Li, L., & Li, B. (2014). Electrochemical sensing ofbisphenol A based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite.Electrochimica Acta, 133, 492500.Lindquist, J. (1973). Carbon Paste Electrode with a Wide Anodic Potential Range.Analytical Chemistry, 45, 10061008.Lisdat, F., & Schfer, D. (2008). The use of electrochemical impedance spectroscopy for biosensing.Analytical and Bioanalytical Chemistry, 391, 15551567.Liu, Y., Liu, J., Tang, H., Liu, J., Xu, B., Yu, F., & Li, Y. (2015). Fabricationof highly sensitive and selective electrochemical sensor by using optimizedmolecularly imprinted polymers on multi-walled carbon nanotubes formetronidazole measurement. Sensors and Actuators, B: Chemical, 206, 647652.Lu, C., Li, J., Yang, Y., & Lin, J. M. (2010). Determination of bisphenol A based onchemiluminescence from gold(III)-peroxymonocarbonate. Talanta, 82, 15761580.Lu, Z., Wang, H., Naqvi, S. R., Fu, H., Zhao, Y., Song, H., & Christen, J. B. (2015). A point ofcare electrochemical impedance spectroscopy device. 2015 28th IEEE International System-on-ChipConference (SOCC), (5 mV), 240244.Magadi Puttaswamy Deepak, Magadi Puttaswamy Rajeeva, G. P. M. (2016). The SimultaneousElectrochemical Determination of Dopamine and Uric acid at Ni0.02Sn0.98O2Nanoparticles Modified Carbon Paste Electrode by Cyclic Voltammetric Technique. AnalyticalBioanalytical Electrochemistry, 10, 281 291.Maiolini, E., Ferri, E., Pitasi, A. L., Montoya, A., Di Giovanni, M., Errani, E., &Girotti, S. (2014). Bisphenol A determination in baby bottles bychemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassayand liquid chromatography tandem mass spectrometry. Analyst, 139, 318324.Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C., & Mollace, V. (2016). Regulationof uric acid metabolism and excretion. International Journal of Cardiology, 213, 814.Mamat, M., Kusrini, E., Yahaya, A. H., Hussein, M. Z., & Zainal, Z. (2013).Intercalation of anthranilate ion into zinc-aluminium-layered double hydroxide. InternationalJournal of Technology, 4, 7380.Manjunatha, J. G., Deraman, M., Basri, N. H., & Talib, I. A. (2018). Fabrication of poly (Solid RedA) modified carbon nano tube paste electrode and its application for simultaneous determinationof epinephrine, uric acid and ascorbic acid. Arabian Journal of Chemistry, 11, 149158.Marchand, P., Bichon, E., Deceuninck, Y., Boscher, C., Boquien, C.-Y., Le Bizec, B., Antignac, J. P. (2015). Determination of bisphenol A and relatedsubstitutes/analogues in human breast milk using gas chromatography-tandem massspectrometry. Analytical and Bioanalytical Chemistry, 407, 24852497.Maxwell, S. R. J., Thomason, H., Sandler, D., Leguen, C., Baxter, M. A., Thorpe, G.H. G., Barnett, A. H. (1997). Antioxidant status in patients withuncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. European Journalof Clinical Investigation, 27, 484490.Mazloum, M., Sabaghian, F., Khoshroo, A., & Naeimi, H. (2014). Simultaneous determinationof the concentrations of isoproterenol , uric acid , and folic acid in solution using a novelnanostructure ? based electrochemical sensor. Chinese Journal of Catalysis, 35, 565572.Merriman, T. R., Choi, H. K., & Dalbeth, N. (2014). The genetic basis of gout.Rheumatic Disease Clinics of North America, 40, 279290.Mirceski, V., Gulaboski, R., Lovric, M., Bogeski, I., Kappl, R., & Hoth, M. (2013).Square-Wave Voltammetry: A Review on the Recent Progress. Electroanalysis,25, 24112422.Mobin, S. M., Sanghavi, B. J., Srivastava, A. K., Mathur, P., & Lahiri, G. K. (2010).Biomimetic sensor for certain phenols employing a copper(II) complex.Analytical Chemistry, 82, 59835992.Mousty, C., & Prvot, V. (2013). Hybrid and biohybrid layered double hydroxides for electrochemicalanalysis. Analytical and Bioanalytical Chemistry, 405, 3513 3523.Murray, R.A., Ewing, A.G., Durst, R. A. (1987). Chemically Modified Electrodes: MolecularDesign for Electroanalysis. EAnalytical Chemistry, 58, 379390.N. Navid, S. Zahra, T. Masoumeh, G. M. (2015). Simultaneous Determination of AscorbicAcid, L-Dopa, Uric Acid, Insulin, and Acetylsalicylic Acid on Reactive Blue 19 and Multi-WallCarbon Nanotube Modified Glassy Carbon Electrode, 26, 713722.Nagles, E., Ibarra, L., Llanos, J. P., Hurtado, J., & Garcia-Beltrn, O. (2017).Development of a novel electrochemical sensor based on cobalt(II) complex useful in thedetection of dopamine in presence of ascorbic acid and uric acid. Journal of ElectroanalyticalChemistry, 788, 3843.Nakashima, N., & Shiraki, T. (2016). Specific Molecular Interaction and Recognition atSingle-Walled Carbon Nanotube Surfaces. Langmuir, 32, 1232312331.Naveen, M. H., Gurudatt, N. G., & Shim, Y. B. (2017). Applications of conducting polymercomposites to electrochemical sensors: A review. Applied Materials Today. Elsevier Ltd.Ndamanisha, J. C., & Guo, L. (2008). Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid- modified electrode.Biosensors and Bioelectronics, 23, 16801685.Ni, F., Wang, Y., Zhang, D., Gao, F., & Li, M. (2010). Electrochemical oxidation of epinephrineand uric acid at a layered double hydroxide film modified glassy carbon electrode and itsapplication. Electroanalysis, 22, 11301135.Nkosi, D., Pillay, J., Ozoemena, K. I., Nouneh, K., & Oyama, M. (2010).Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembledferrocenes and SWCNT layers. Physical Chemistry Chemical Physics, 12, 604613.Ntsendwana, B., Mamba, B. B., Sampath, S., & Arotiba, O. A. (2012).Electrochemical Detection of Bisphenol A Using Graphene- Modified Glassy Carbon Electrode.International Journal of Electrochemical Science, 7, 3501 3512. Retrieved fromwww.electrochemsci.orgNyhan, W. L. (1997). The recognition of Lesch-Nyhan syndrome as an inborn error ofpurine metabolism. Journal of Inherited Metabolic Disease, 20, 171178.ODea, J. J., Osteryoung, J., & Osteryoung, R. A. (1981). Theory of Square WaveVoltammetry for Kinetic Systems. Analytical Chemistry, 53, 695701.Olson, C., Adams, R. N. (1963). Carbon paste electrodes application to cathodicreductions and anodic stripping voltammetry. Analytica Chimica Acta, 29, 358 363.Olson, C., & Adams, R. N. (1960). Carbon paste electrodes application to anodicvoltammetry. Analytica Chimica Acta, 22, 582589.Osteryoung, J. G., & Osteryoung, R. A. (1985). Square Wave Voltammetry.Analytical Chemistry, 57, 101110.Pan, D., Gu, Y., Lan, H., Sun, Y., & Gao, H. (2015). Functional graphene-gold nano- compositefabricated electrochemical biosensor for direct and rapid detection of bisphenol A. AnalyticaChimica Acta, 853, 297302.Pandey, P., & Dahiya, M. (2016). Carbon nanotubes : Types , methods of preparation andapplications. International Journal of Pharmaceutical Science and Research, 1, 1521.Park, S.-M., & Yoo, J.-S. (2003). Electrochemical Impedance Spectroscopy for Better ElectrochemicalMeasurements. Analytical Chemistry, 75, 455A - 461A.Peng, J., Feng, Y., Han, X. X., & Gao, Z. N. (2016). Simultaneous determination of bisphenol A andhydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. MicrochimicaActa, 183, 22892296.Philippa D. Darbre. (2015). Endocrine Disruption and Human Health (1st ed.).Academic press.Poorahong, S., Thammakhet, C., Thavarungkul, P., Limbut, W., Numnuam, A., & Kanatharana,P. (2012). Amperometric sensor for detection of bisphenol A using a pencil graphite electrodemodified with polyaniline nanorods and multiwalled carbon nanotubes. Microchimica Acta, 176, 9199.Princeton. (1957). Square wave voltammetry Application Note S-7. In Princeton AppliedResearch, 15.Qureshi, A., Kang, W. P., Davidson, J. L., & Gurbuz, Y. (2009). Review on carbon- derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diamondand Related Materials, 18, 14011420.Ragavan, K. V., Rastogi, N. K., & Thakur, M. S. (2013). Sensors and biosensors for analysis ofbisphenol-A. TrAC - Trends in Analytical Chemistry, 52, 248260.Randles, J. E. . (1947). Kinetic of rapid electrode reactions. Discussions of theFaraday Society, 1, 1119.Raoof, J. B., Ojani, R., Baghayeri, M., & Ahmadi, F. (2012). Fabrication of a fast, simple andsensitive voltammetric sensor for the simultaneous determination of 4-aminohippuric acid anduric acid using a functionalized multi-walled carbonnanotube modified glassy carbon electrode. Analytical Methods, 4, 1825183Ribeiro, B., Botelho, E. C., Costa, M. L., & Bandeira, C. F. (2017). Carbon nanotubebuckypaper reinforced polymer composites: a review. Polmeros, 27, 247255.Rivas, G. A., Rubianes, M. D., Pedano, M. L., Ferreyra, N. F., Luque, G. L.,Rodrguez, M. C., & Miscoria, S. A. (2007). Carbon nanotubes paste electrodes. A new alternative for the development of electrochemical sensors. Electroanalysis, 19,823831.Roberts, S. W. (1890). On the History of Uric Acid in the Urine, with Reference to the Formationof Uric Acid Concretions and Deposits. Medico-Chirurgical Transactions.Ruiz, G. A., & Felice, C. J. (2015). Electrochemical-fractal model versus randles model: A discussion about diffusion process. International Journal of ElectrochemicalScience, 10, 84848496.Rusling, J. F., & Suib, S. L. (1994). Characterizing Materials with CyclicVoltammetry. Advanced Materials, 6, 922930.Sabatani, E., & Rubinstein, I. (1987). Organized self-assembling. 2. Monolayers - basedultramicroelectrodes for the study of very rapid electrode kinetics. Journal of Physical Chemistry,91, 66636669.Saidin, M. I., Isa, I. M., Ahmad, M., Hashim, N., & Ab Ghani, S. (2017). Analysis of trace nickelby square wave stripping voltammetry using chloropalladium(II) complex-modified MWCNTs paste electrode. Sensors and Actuators, B: Chemical, 240, 848856.Saito, Y., & Takumi Kikuchi. (2013). Voltammetry: Theory, Types and Applications.Nova Science Publishers, Inc.Sajid, M., Nazal, M. K., Mansha, M., Alsharaa, A., Jillani, S. M. S., & Basheer, C. (2016). Chemically modified electrodes for electrochemical detection of dopamine in thepresence of uric acid and ascorbic acid: A review. TrAC - Trends in Analytical Chemistry.Elsevier B.V, 76.Salian, S., Doshi, T., & Vanage, G. (2011). Perinatal exposure of rats to Bisphenol A affectsfertility of male offspring-An overview. Reproductive Toxicology, 31, 359362.Santana, E. R., de Lima, C. A., Piovesan, J. V., & Spinelli, A. (2017). An originalferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination ofbisphenol A. Sensors and Actuators, B: Chemical, 240, 487 496.Sarijo, S. H., Hussein, M. Z., Yahaya, A. H. J., & Zainal, Z. (2010). Effect ofincoming and outgoing exchangeable anions on the release kinetics ofphenoxyherbicides nanohybrids. Journal of Hazardous Materials, 182, 563569.Scholz, F. (2015). Voltammetric techniques of analysis: the essentials. ChemTexts, 1,17.Shah, B. A., Christy, F. A., Shrivastav, P. S., & Sanyal, M. (2014). Characterizationand controlled release formulation of agrochemical herbicides based on zinc- layeredhydroxide-3-(4-Methoxyphenyl) Propionate Nanocomposite. Journal of Physical and ChemicalSciences, 6, 15.Shahrokhian, S., Hamzehloei, A., Thaghani, A., & Mousavi, S. R. (2004).Electrocatalytic oxidation of 2-thiouracil and 2-thiobarbituric acid at a carbon- pasteelectrode modified with cobalt phthalocyanine. Electroanalysis, 16, 915 921.Shahrokhian, S., & Rastgar, S. (2012). Construction of an electrochemical sensor based onthe electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film forvoltammetric determination of cefotaxime. Analyst, 137, 27062715.Sheng, Z., Zheng, X., Xu, J., Bao, W., Wang, F., & Xia, X. (2012). Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine anduric acid. Biosensors and Bioelectronics, 34, 125 131.Shi, R., Liang, J., Zhao, Z., Liu, A., & Tian, Y. (2017a). An electrochemicalbisphenol A sensor based on one step electrochemical reduction of cuprous oxide wrapped grapheneoxide nanoparticles modified electrode. Talanta, 169, 3743.Shi, R., Liang, J., Zhao, Z., Liu, A., & Tian, Y. (2017b). An electrochemicalbisphenol A sensor based on one step electrochemical reduction of cuprous oxide wrapped grapheneoxide nanoparticles modified electrode. Talanta, 169, 3743.Shin, H. S., Park, C. H., Park, S. J., & Pyo, H. (2001). Sensitive determination ofbisphenol A in environmental water by gas chromatography with nitrogen- phosphorusdetection after cyanomethylation. Journal of Chromatography. A, 912, 119125.Silion, M., Hritcu, D., Lisa, G., & Popa, M. I. (2012). New hybrid materials based on layered double hydroxides and antioxidant compounds. Preparation, characterization andrelease kinetic studies. Journal of Porous Materials, 19, 267276.Singh, N., Reza, K. K., Ali, M. A., Agrawal, V. V., & Biradar, A. M. (2015). Self assembled DCsputtered nanostructured rutile TiO2platform for bisphenol A detection. Biosensors andBioelectronics, 68, 633641.Song, H., Xue, G., Zhang, J., Wang, G., Ye, B. C., Sun, S., Li, Y. (2017).Simultaneous voltammetric determination of dopamine and uric acid using carbon-encapsulatedhollow Fe3O4 nanoparticles anchored to an electrode modified with nanosheets ofreduced graphene oxide. Microchimica Acta, 184, 843853.Soto, A. M., & Sonnenschein, C. (2010). Environmental causes of cancer: Endocrine disruptors ascarcinogens. Nature Reviews Endocrinology, 6, 363370.Srivastav, S., & Kant, R. (2015). Influence of Uncompensated Solution Resistance onDiffusion Limited Chronocoulometric Response at Rough Electrode.Electrochimica Acta, 180, 208217.vancara, I., Vyt?as, K., Kalcher, K., Walcarius, A., & Wang, J. (2009). Carbon paste electrodes infacts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste inelectrochemistry and electroanalysis. Electroanalysis, 21, 728.ter Halle, A., Claparols, C., Garrigues, J. C., Franceschi-Messant, S., & Perez, E.(2015). Development of an extraction method based on new porous organogel materialscoupled with liquid chromatography-mass spectrometry for the rapid quantification ofbisphenol A in urine. Journal of Chromatography A, 1414, 19.Tsierkezos, N. G., & Ritter, U. (2012). Influence of concentration of supportingelectrolyte on electrochemistry of redox systems on multi-walled carbon nanotubes.Physics and Chemistry of Liquids, 50.Tsierkezos, N. G., Ritter, U., Thaha, Y. N., Downing, C., Szroeder, P., & Scharff, P. (2016). Multi-walled carbon nanotubes doped with boron as an electrode material forelectrochemical studies on dopamine, uric acid, and ascorbic acid. Microchimica Acta, 183, 3547.Tsirlina, G. A. (2017). The role of supporting electrolyte in heterogeneous electrontransfer, 18331845.Van Den Brink, F. T. G. (2016). Microreactor for electrochemical conversion in drug screening andproteomics. Enschede.vom Saal, F. S., & Hughes, C. (2005). An extensive new literature concerning low- dose effects of bisphenol A shows the need for a new risk assessment. Environmental HealthPerspectives, 113, 926933.Vytras, K., vancara, I., & Metelka, R. (2009). Carbon paste electrodes inelectroanalytical chemistry. Journal of the Serbian Chemical Society, 74, 1021 1153.Wang. (2000). Analytical Electrochemistry, (2nd ed.). Wiley-VCH.Wang, C., Li, J., Shi, K., Wang, Q., Zhao, X., Xiong, Z., Wang, Y. (2016). Graphene coated bypolydopamine/multi-walled carbon nanotubes modified electrode for highly selective detectionof dopamine and uric acid in the presence of ascorbic acid. Journal of Electroanalytical Chemistry,770, 5661.Wang, J. (2006). Analytical Electrochemistry. Analytical Electrochemistry, (3rd ed.).Wiley-VCH.Wang, Y., Zhang, Y., Hou, C., & Liu, M. (2016). Ultrasensitive electrochemical sensingof dopamine using reduced graphene oxide sheets decorated with p- toluenesulfonate-doped polypyrrole/Fe3O4nanospheres. Microchimica Acta, 183, 11451152.Warburg, E. (1899). Ueber das Verhalten sogenannter unpolarisirbarer Elektrodengegen Wechselstrom. Annalen Der Physik, 303, 493499.Wardani, N. I., Isa, I. M., Hashim, N., & Ghani, S. A. (2014). Zinc layered hydroxide-2(3-chlorophenoxy)propionate modified multi-walled carbon nanotubes paste electrode for thedetermination of nano-molar levels copper(II). Sensors and Actuators, B: Chemical, 198,243248.Wen, Y., Zhou, B. S., Xu, Y., Jin, S. W., & Feng, Y. Q. (2006). Analysis of estrogens inenvironmental waters using polymer monolith in-polyether ether ketone tube solid-phase microextraction combined with high-performance liquid chromatography. Journal ofChromatography A, 1133, 2128.Wong, A., Razzino, C. A., Silva, T. A., & Fatibello-Filho, O. (2016). Square-wavevoltammetric determination of clindamycin using a glassy carbon electrode modified withgraphene oxide and gold nanoparticles within a crosslinked chitosan film. Sensors andActuators, B: Chemical, 231, 183193.Wu, W., Min, H., Wu, H., Ding, Y., & Yang, S. (2017). ElectrochemicalDetermination of Uric Acid Using a Multiwalled Carbon Nanotube Platinum Nickel AlloyGlassy Carbon Electrode. Analytical Letters, 50, 91104.Xin, X., Sun, S., Li, H., Wang, M., & Jia, R. (2015). Electrochemical bisphenol Asensor based on core-shell multiwalled carbon nanotubes/graphene oxide nanoribbons.Sensors and Actuators, B: Chemical, 209, 275280.Yang, S. A., Jiang, X., Dong, Y. J., Zhu, N. N., & Wang, Y. F. (2013). Ferroferric Oxide Magnetic Nanoparticles Carbon Nanotubes Nanocomposite-Based Electrochemical Sensor Applied for Detection of Bisphenol A. Advanced Materials Research, 663, 297302.Yang, Y., Zhang, H., Huang, C., & Jia, N. (2016). MWCNTs-PEI composites-based electrochemicalsensor for sensitive detection of bisphenol A. Sensors and Actuators, B: Chemical, 235,408413.Yazid, S. N. A. M., Isa, I. M., Bakar, S. A., & Hashim, N. (2015). Facile, costeffective and green synthesis of graphene in alkaline aqueous solution.International Journal of Electrochemical Science, 10, 79777984.Yin, Huan shun, Zhou, Y. lei, & Ai, S. yun. (2009). Preparation and characteristic of cobaltphthalocyanine modified carbon paste electrode for bisphenol A detection. Journal ofElectroanalytical Chemistry, 626, 8088.Yin, Huanshun, Cui, L., Ai, S., Fan, H., & Zhu, L. (2010). Electrochemicaldetermination of bisphenol A at MgAlCO? layered double hydroxide modified glassy carbonelectrode, 55, 603610.Yin, Huanshun, Zhou, Y., Cui, L., Liu, X., Ai, S., & Zhu, L. (2011). Electrochemical oxidation behavior of bisphenol A at surfactant/layered double hydroxide modified glassycarbon electrode and its determination. Journal of Solid State Electrochemistry, 15,167173.Yu, C., Gou, L., Zhou, X., Bao, N., & Gu, H. (2011). Chitosan-Fe?O? nanocompositebased electrochemical sensors for the determination of bisphenol A.Electrochimica Acta, 56, 90569063.Yu, H., Feng, X., Chen, X. X., Qiao, J. L., Gao, X. L., Xu, N., & Gao, L. J. (2017).Electrochemical Determination of Bisphenol A on a Glassy Carbon Electrode Modified withGold Nanoparticles Loaded on Reduced Graphene Oxide-multi Walled Carbon Nanotubes Composite.Chinese Journal of Analytical Chemistry, 45, 713720.Zare, H. R., Nasirizadeh, N., Golabi, S., & Namazian, M. (2006). Electrochemicalevaluation of coumestan modified carbon paste electrode : Study on itsapplication as a NADH biosensor in presence of uric acid, 114, 610617.Zhan, T., Song, Y., Li, X., & Hou, W. (2016). Electrochemical sensor for bisphenol A based onionic liquid functionalized Zn-Al layered double hydroxide modified electrode. MaterialsScience and Engineering C, 64, 354361.Zhan, T., Song, Y., Tan, Z., & Hou, W. (2017). Electrochemical bisphenol A sensor based on exfoliated Ni2Al-layered double hydroxide nanosheets modified electrode. Sensors andActuators, B: Chemical, 238, 962971.Zhang, X., Zhang, Y. C., & Ma, L. X. (2016). One-pot facile fabrication of graphene- zinc oxidecomposite and its enhanced sensitivity for simultaneous electrochemicaldetection of ascorbic acid, dopamine and uric acid. Sensors and Actuators, B: Chemical, 227,488496.Zhang, Y., Cheng, Y., Zhou, Y., Li, B., Gu, W., Shi, X., & Xian, Y. (2013).Electrochemical sensor for bisphenol A based on magnetic nanoparticlesdecorated reduced graphene oxide. Talanta, 107, 211218. |