Fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application

This study aimed to fabricate sand/zinc oxide (ZnO) nanorods (NRs)-basednanocomposite via sol-gel immersion method with titanium dioxide (TiO2) and graphene oxide(GO)-based materials for methylene blue (MB) dye degradation.The nanocomposite photocatalyst wasinitially fabricated by growing ZnO via so...

Full description

Saved in:
Bibliographic Details
Main Author: Nur Jannah Idris
Format: thesis
Language:eng
Published: 2020
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=6743
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:6743
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic
spellingShingle
Nur Jannah Idris
Fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application
description This study aimed to fabricate sand/zinc oxide (ZnO) nanorods (NRs)-basednanocomposite via sol-gel immersion method with titanium dioxide (TiO2) and graphene oxide(GO)-based materials for methylene blue (MB) dye degradation.The nanocomposite photocatalyst wasinitially fabricated by growing ZnO via sol-gel immersion followed by synthesizing TiO2using hydrothermal method on the sand as a substrate. Different concentration and synthesis timewere used as parameters for the fabrication. These nanocomposites were then hybridized withGO and GO_multi- walled carbon nanotubes (MWCNTs) hybrid solution via immersion method. Prior tohybridization, the initial GO was synthesized using electrochemical exfoliation method assisted bycommercially available single-tail sodium dodecyl sulphate surfactant and was further mixed withMWCNTs to form GO_MWCNTs hybridsolution. The sand/ZnO, sand/ZnO/TiO2 nanocomposites, and sand/ZnO/TiO2/GO-based photocatalyst materials were then characterized by usingultraviolet (UV)-light irradiation within three-days interval for MB dye degradation,field emission scanning electron microscopy (FESEM), micro-Raman spectroscopy and ultraviolet-visible specstroscopy (UV-vis). The finding, sand/ZnO NRs (4h)presented the highest photocatalysis performance (92.64%) as compared to sand/ZnO/TiO2nanocomposite and and/ZnO/TiO2/GO-based photocatalyst materials. This was due to high density andactives sites presented by sand/ZnO NRs (4h) which lead to higher adsorption of MB molecules on itssurfaces. As for the conclusion, sand/ZnO NRs (4h) demonstrated a potential ability to be appliedas a photocatalyst material to degrade MB solution. The implication of this study is a novel,simpler, low-cost and green approach for the production of sand/ZnO, sand/ZnO/TiO2nanocomposites, and sand/ZnO/TiO2/GO-based photocatalyst materials for photocatalysis application.
format thesis
qualification_name
qualification_level Master's degree
author Nur Jannah Idris
author_facet Nur Jannah Idris
author_sort Nur Jannah Idris
title Fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application
title_short Fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application
title_full Fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application
title_fullStr Fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application
title_full_unstemmed Fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application
title_sort fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2020
url https://ir.upsi.edu.my/detailsg.php?det=6743
_version_ 1747833303062282240
spelling oai:ir.upsi.edu.my:67432022-02-15 Fabrication of sand/zinc oxide-based nanocomposite via sol-gel immersion method for photocatalysis application 2020 Nur Jannah Idris This study aimed to fabricate sand/zinc oxide (ZnO) nanorods (NRs)-basednanocomposite via sol-gel immersion method with titanium dioxide (TiO2) and graphene oxide(GO)-based materials for methylene blue (MB) dye degradation.The nanocomposite photocatalyst wasinitially fabricated by growing ZnO via sol-gel immersion followed by synthesizing TiO2using hydrothermal method on the sand as a substrate. Different concentration and synthesis timewere used as parameters for the fabrication. These nanocomposites were then hybridized withGO and GO_multi- walled carbon nanotubes (MWCNTs) hybrid solution via immersion method. Prior tohybridization, the initial GO was synthesized using electrochemical exfoliation method assisted bycommercially available single-tail sodium dodecyl sulphate surfactant and was further mixed withMWCNTs to form GO_MWCNTs hybridsolution. The sand/ZnO, sand/ZnO/TiO2 nanocomposites, and sand/ZnO/TiO2/GO-based photocatalyst materials were then characterized by usingultraviolet (UV)-light irradiation within three-days interval for MB dye degradation,field emission scanning electron microscopy (FESEM), micro-Raman spectroscopy and ultraviolet-visible specstroscopy (UV-vis). The finding, sand/ZnO NRs (4h)presented the highest photocatalysis performance (92.64%) as compared to sand/ZnO/TiO2nanocomposite and and/ZnO/TiO2/GO-based photocatalyst materials. This was due to high density andactives sites presented by sand/ZnO NRs (4h) which lead to higher adsorption of MB molecules on itssurfaces. As for the conclusion, sand/ZnO NRs (4h) demonstrated a potential ability to be appliedas a photocatalyst material to degrade MB solution. The implication of this study is a novel,simpler, low-cost and green approach for the production of sand/ZnO, sand/ZnO/TiO2nanocomposites, and sand/ZnO/TiO2/GO-based photocatalyst materials for photocatalysis application. 2020 thesis https://ir.upsi.edu.my/detailsg.php?det=6743 https://ir.upsi.edu.my/detailsg.php?det=6743 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abdel-Maksoud, Y. K., Imam, E., & Ramadan, A. R. (2018). Sand supported TiO2 photocatalyst in atray photo-reactor for the removal of emerging contaminants inwastewater. Catalysis Today, 313, 55-62.Abdulrahman, A. F., Ahmed, S. M., & Almessiere, M. A. (2017). Effect of the growth time on theoptical properties of ZnO nanorods grown by low temperature method. 12(4), 1001-1009.Abdulrazzak, F. H. (2016). Enhance photocatalytic activity of TiO2 by carbon nanotubes.International Journal of ChemTech Research, 9(3), 431-443.Adhikari, S., Sarkar, D., & Madras, G. (2015). Highly efficient WO3ZnO mixed oxides forphotocatalysis. RSC Advances, 5(16), 11895-11904.Adnan M. A. M., Julkapli, N. M., & Hamid, S. B. A. (2016). Review on ZnO hybrid photocatalyst:Impact on photocatalytic activities of water pollutant degradation. Inorganic Chemistry, 36(2),1-28.Ahmad, M. K., Mokhtar, S. M., Soon, C. F., Nafarizal, N., Suriani, A.B., Mohamed, A., et al (2016).Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction timesusing one step hydrothermal method. Journal of Materials Science: Materials in Electronics,27(8), 7920-7926.Ahn, K., Lee, H. U., Jeong, Y. M., Kim, J. P., Jeong, S. Y., & Cho, C. R. (2011). Effects of TiO2nanorod length and post-annealing on the electrical properties of TiO2 nanobarbed fiberstructures. Journal of nanoscience and nanotechnology, 11(8), 7155-7158.Albert, E. L., Azurahanim, Che Abdullah, C. A., & Shiroshaki, Y. (2018). Synthesis andcharacterization of graphene oxide functionalized with magnetic nanoparticle via simple emulsionmethod. Results in Physics, 11, 944-950.Alcntara, R., Navas, J., Fernndez-Lorenzo, C., Martn, J., Guilln, E., & Anta, J. A. (2011).Synthesis and Raman spectroscopy study of TiO2 nanoparticles. Physica Status Solidi (c), 8(6),1970-1973.Alhomoudi, I. A., & Newaz, G. (2009). Residual stresses and Raman shift relation in anatase TiO2thin film. Thin Solid Films, 517(15), 4372-4378.Alkaim, A. F., Aljeboree, A. M., Alrazaq, N. A., Baqir, S. J., Hussein, F. H., & Lilo, A.J. (2014). Effect of pH on adsorption and photocatalytic degradation efficiency ofdifferent catalysts on removal of methylene blue. Asian Journal of Chemistry,26(24), 8445-8448.Al-lami, S., & Jaber, H. (2014). Controlling ZnO nanostructure morphology on seedlesssubstrate by tuning process parameters and additives. Chemistry and Material Research,6(4), 1-9.Alwash, A., Adil, H., Hussain, Z., & Yousif, E. (2018). Potential of carbon nanotubes in enhance ofphotocatalyst activity. L Upine Publishers 1(3), 6570.Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. In advanced oxidation processes for wastewater treatment. Emerging Green Chemical Technology,135-175.Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation ofwastewater using various nano-materials. Arabian Journal of Chemistry, 1-23.Amin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., & Willander, M. (2011).Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnONanostructures Grown by the Hydrothermal Method. Journal of Nanomaterials, 2011, 1-9.Arajo, E. S., da Costa, B. P., Oliveira, R. A., Libardi, J., Faia, P. M., & de Oliveira, H.P. (2016). TiO2/ZnO hierarchical heteronanostructures: Synthesis,characterization and application as photocatalysts. Journal of environmental chemicalengineering, 4(3), 2820-2829.Arthi. G (2016). Investigation of Growth and Functional Properties of TiO2Nanostructures for Dye Sensitized Solar Cell Applications. (Doctoraldissertation). SRM University, IndiaAshrafi, A., & Jagadish, C. (2007). Review of zinc blende ZnO: Stability of metastable ZnO phases.Journal of Applied Physics, 102(7), 1-13.Asmatulu, R. (2012). Nanocoatings for corrosion protection of aerospace alloys.Corrosion Protection and Control Using Nanomaterials, 357-374.Awalludin, M., Mamat, M. H., Sahdan, M. Z., Mohamad, Z., & Rusop, M. (2013). Zinc oxide nanorodscharacteristics prepared by sol-gel immersion method immersedat different times. In Advanced Materials Research, 667, 375-379.Azam, A., & Babkair, S. S. (2014). Low-temperature growth of well-aligned zinc oxidenanorod arrays on silicon substrate and their photocatalytic application.International Journal of Nanomedicine, 2109-2115.Azmina, M. S., Md Nor, R., Rafaie, H. A., Razak, N. S. A., Sani, S. F. A., & Osman,Z. (2017). Enhanced photocatalytic activity of ZnO nanoparticles grown on porous silicamicroparticles. Applied Nanoscience, 7(8), 885892.Ba-abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. (2013).Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles viasol - gel technique. Journal of Industrial and Engineering Chemistry, 19(1), 99-105.Bagheri, M., Najafabadi, N. R., & Borna, E. (2019). Removal of reactive blue 203 dye photocatalyticusing ZnO nanoparticles stabilized on functionalized MWCNTs. Journal of King SaudUniversity-Science, 1-6.Bai, L. J., Kou, G., Gong, Z. Y., & Zhao, Z. M. (2013). Effect of Zn and Ti mole ratio onmicrostructure and photocatalytic properties of magnetron sputtered TiO2-ZnO heterogeneouscomposite film. Transactions of Nonferrous Metals Society of China (English Edition),23(12), 3643-3649.Balachandran, U. G. E. N., & Eror, N. G. (1982). Raman spectra of titanium dioxide.Journal of Solid State Chemistry, 42(3), 276-282.Banerjee, S., Benjwal, P., Singh, M., & Kar, K. K. (2018). Graphene oxide (rGO)-metal oxide(TiO2/Fe3O4) based nanocomposites for the removal of methylene blue. Applied SurfaceScience, 439, 560-568.Baneto, M., Enesca, A., Lare, Y., Jondo, K., Napo, K., & Duta, A. (2014). Effect of precursorconcentration on structural, morphological and opto-electric properties of ZnO thin filmsprepared by spray pyrolysis. Ceramics International, 40(6), 8397-8404.Baruah, S., Jaisai, M., Imani, R., Nazhad, M. M., & Dutta, J. (2010). Photocatalytic paper usingzinc oxide nanorods. Science and Technology of Advance Materials, 11, 1-8.Basturk, E., & Karatas, M. (2015). Decolorization of antraquinone dye Reactive Blue 181 solution byUV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67-72.Batakliev, T., Petrova-doycheva, I., Angelov, V., Georgiev, V., Ivanov, E., Kotsilkova,R., et al (2019). Effects of graphene nanoplatelets and multiwall carbon nanotubes on the structure and mechanical properties of poly (actic acid) composites. Appliedsciences, 1-15.Benkara, S., & Ghamri, H. Preparation and characterization of ZnO/TiO2nanocomposite by anodization and hydrothermal synthesis. International Lettersof Chemistry, Physics and Astronomy, 55, 27-33.Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dyeremoval from wastewater: A review. Critical Reviews in Environmental Science andTechnology, 47(19), 1836-1876.Bhunia, A. K., Jha, P. K., Rout, D., & Saha, S. (2016). Morphological properties and ramanspectroscopy of ZnO nanorods. Journal of Physical Sciences, 21, 111-118.Bru, E. I., & Iovu, H. (2018). Graphene Nanocomposites Studied by Raman Spectroscopy.In G. M. D. Nascimento (Ed.), Raman Spectroscopy (pp. 179-201).Bitenc, M., & Orel, Z. C. (2009). Synthesis and characterization of crystallinehexagonal bipods of zinc oxide. Materials Research Bulletin, 44(2), 381-387.Boberg, J. (2005). Freswater availability. In A J. Boberg (Ed), Changes and WaterManagement Policies Affect Freshwater Resource (pp. 15-28).Bodson, C. J., Lambert, S. D., Ali, C., Catton, X., Pirard, J. P., Bied, C., et al (2010).Effects of additives and solvents on the gel formation rate and on the texture of P- and Si-dopedTiO2 materials. Microporous and Mesoporous Materials, 134(1-3), 157-164.Bokobza, L., Rahmani, M., Belin, C., Bruneel, J.L., & El Bounia, N.E. (2008). Blends of carbonblacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers.Journal of Polymer Science Part B: Polymer Physics, 46(18), 1939-1951.Brodie, B. C. (1859). On the atomic weight of graphite. Journal Storage, 247-259.Butburee, T., Kotchasarn, P., Hirunsit, P., Zhuxing, S., Qijun, T., Khemthong, P.,et al (2019).New understanding of crystal control and facet selectivity of titanium dioxide rulingphotocatalytic. Journal of Materials Chemistry A, 1-11.Byrappa, K., Dayananda, A. S., Sajan, C. P., Basavalingu, B., Shayan, M. B., Soga, K., et al (2008). Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and theirphotocatalytic applications. Journal of Materials Science,43(7), 2348-2355.Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titaniumdioxide. Progress in Solid State Chemistry, 32(1-2), 33-177.Chaudhary, D., Singh, S., Vankar, V. D., & Khare, N. (2018). ZnO nanoparticlesdecorated multi-walled carbon nanotubes for enhanced photocatalytic andphotoelectrochemical water splitting. Journal of Photochemistry and PhotobiologyA: Chemistry, 351, 154-161.Chen, J., Yao, B., Li, C., & Shi G. (2013). An improved Hummers method for eco- friendly synthesisof graphene oxide. Carbon, 64(1), 225-229.Chen, J. D., Liao, W. S., Jiang, Y., Yu, D. N., Zou, M. L., Zhu, H., et al (2016). Facilefabrication of ZnO/TiO2 heterogeneous nanofibres and their photocatalytic behaviour and mechanism towards Rhodamine B. Nanomaterials and Nanotechnology, 6, 9-16.Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient andrapid photocatalytic degradation of azo dyes. Nanoscale Reasearch Letters,4-13.Chen, Y. F., Tan, Y. J., Li, J., Hao, Y. B., Shi, Y. D., & Wang, M. (2018). Graphene oxide-assisteddispersion of multi-walled carbon nanotubes in biodegradable Poly (-caprolactone) for mechanical and electrically conductive enhancement. Polymer Testing, 65, 387-397.Cheng, C., Amini, A., Zhu, C., Xu, Z., Song, H., & Wang, N. (2014). Enhancedphotocatalytic performance of TiO2-ZnO hybrid nanostructures. Sciencetific Reports, 4(1),1-5.Cheng, P., Wang, Y., Xu, L., Su, Z., Jin, F., Liu, F., et al (2016). High specific surface areaurchin-like hierarchical ZnO-TiO2 architectures: Hydrothermal synthesis and photocatalyticproperties. Materials Letters, 175, 52-55.Cirak, B.B., Caglar, B., Kilinc, T., Karadeniz, M. S., Erdogan, Y., Kilic, S., et al (2018).Synthesis and characterization of ZnO nanorice decorated TiO2 nanotubes for enhancedphotocatalytic activity. Materials Research Bulletin, 1-32.Dalt, S. D., Alves, A. K., & Bergmann, C. P. (2016). Preparation and performance of TiO2-ZnO/CNThetero-nanostructures applied to photodegradation of organic dye. Materials Research. 19(6),13721375.Danish, R., Ahmed, F., Arshi, N., Anwar, M. S., & Koo, B. H. (2014). Facile synthesis ofsingle-crystalline rutile TiO2 nano-rods by solution method. Transactions ofNonferrous Metals Society of China, 24, 152-156.Devaraj, R., Karthikeyan, K., & Jeyasubramanian, K. (2013). Synthesis and propertiesof ZnO nanorods by modified Pechini Process, Applied Nanoscience, 3(1), 37-40.Duan, Q., Lee, J., Liu, Y., & Qi, H. (2016). Preparation and photocatalytic performance ofMWCNTs/TiO2 nanocomposites for degradation of aqueous substrate. Journal of Chemistry, 2016, 1-8.Durmus, Z., Kurt, Z. K., & Durmus, A. (2019). Synthesis and characterization ofgraphene oxide/zinc oxide (GO/ZnO) nanocomposite and its utilization for photocatalytic degradation of basic fuchsin dye. Materials Science inc Nanomaterials & Polymers,271-278.Eddy, D. R., Puri, F. N., & Noviyanti, A. R. (2015). Synthesis and photocatalyticactivity of silica-based sand quartz as the supporting TiO2 photocatalyst. Procedia Chemistry, 17,55-58.Ehrampoush, M. H., Moussavi, G. R., Ghaneian, M. T., Rahimi, S., & Ahmadian, M. (2011). Removalof methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process. Iranian Journal of Enviromental. Health Science &Engineering, 8(1), 35-40.Ekthammathat, N., Thongtem, T., Phuruangrat, A., & Thongtem, S. (2013).Photoluminescence of hexagonal ZnO nanorods hydrothermally grown on Zn foils in KOH solutionswith different values of basicity. Journal of Nanomaterials, 2013, 1-4.Etcheverry, L. P., Flores, W. H., Silva, D. L. da, & Moreira, E. C. (2018). Annealing Effects onthe Structural and Optical Properties of ZnO Nanostructures. Materials Research, 21(2),1-7.Fatiatun, 2018. Fabrication of graphene oxide/zinc oxide nanocomposite through spraying method for solar cell application. (Master's Thesis). Universiti Pendidikan SultanIdris, Malaysia.Fei, B. L., Zhong, J. K., Deng, N. P., Wang, J. H., Liu, Q. B., Li, Y. G., & Mei, X.(2018). A novel 3D heteropoly blue type photo-Fenton-like catalyst and its ability to remove dyepollution. Chemosphere, 197, 241-250.Fudzi, L. M., Zainal, Z., Lim, H. N., Chang, S. K., & Holi, A. M. (2018). Effect of temperature andgrowth time on vertically aligned ZnO nanorods by simplified hydrothermal technique forphotoelectrochemical cells. Materials, 11(5), 704- 717.Fosso-kankeu, E., Waanders, F., & Geldenhuys, M. (2015). Photocatalytic degradation of dyes using TiO2 nanoparticles of different shapes. Engineering &Technology,1-6.Frank, S. N., & Bard, A. J. (1977). Heterogeneous photocatalytic oxidation of cyanide ion inaqueous solutions at titanium dioxide powder. Journal of the American Chemical Society,99(1), 303-304.Fujishima, A., & Honda, K. (1972a). TiO2 photoelectrochemistry and photocatalysis.Nature, 238(5358), 37-38.Fujishima, A., & Honda, K. (1972b). Electrochemical Photolysis of Water at aSeminconductor Electrode. Nature, 238(5358), 38-40.Gan, W. Y., Lee, M. W., Amal, R., Zhao, H., & Chiang, K. (2008).Photoelectrocatalytic activity of mesoporous TiO2 films prepared using the sol-gel method withtri-block copolymer as structure directing agent. Journal of Applied Electrochemistry, 38(5),703-712.Gangu, K. K., Maddila, S., & Jonnalagadda, S. B. (2019). A review on novel compositesof MWCNTs mediated semiconducting materials as photocatalysts in water treatment. Science of theTotal Environment, 646, 1398-1412.Gaya, U. I. (2013). Heterogeneous photocatalysis using inorganic semiconductor solids.Ge, J., Zhang, Y., & Park, S. J. (2019). Recent advances in carbonaceous photocatalysts withenhanced photocatalytic performances: A mini review. Materials, 12(12), 1916-1941.Ghaderi, A., Abbasi, S., & Farahbod, F (2015). Synthesis of SnO2 and ZnO Nanoparticlesand SnO2-ZnO Hybrid for the Photocatalytic Oxidation of Methyl Orange. Iranian Journal of ChemicalEngineering, 12(3), 96-105.Gita, S., Hussan, A., & Choudhury, T. G. (2017). Impact of textile dyes waste onaquatic environments and its treatment. Environment & Ecology, 35(3), 2349- 2353.Goak, J. C., Lee, S. H., Han, J. H., Jang, S. H., Kim, K. B., Seo, Y., et al(2011). Spectroscopic studies and electrical properties of transparent conductive films fabricated by using surfactant-stabilized single-walled carbon nanotube suspensions. Carbon,49(13), 4301-4313.Greenwood, N., N., & Earnshaw, A. (1997). Chemistry of Elements (2?? ed.).Gupta, S. M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese ScienceBulletin, 56(16), 1639-1657.Habib, M. A., Shahadat, M. T., Bahadur, N. M., Ismail, I. M. I., & Mahmood, A. J. (2013).Synthesis and characterization of ZnO-TiO2 nanocomposites and their application asphotocatalysts. International Nano Letters, 3(5), 1-8.Hadjltaief, H. B., Zina, M. B., Galvez, M. E., & Costa, P. D. (2016). Photocatalytic degradation ofmethyl green dye in aqueous solution over natural clay-supported ZnO-TiO2 catalysts. Journal ofPhotochemistry and Photobiology A: Chemistry, 315, 25-33.Hakki, H. K., Allahyari, S., Rahemi, N., & Tasbihi, M. (2019). Surface properties,adherence, and photocatalytic activity of solgel dip-coated TiO2ZnO films on glass plates.Comptes Rendus Chimie, 22(5), 393-405.Hanaor, D. A. H., & Sorrell, C. C. (2014). Sand supported mixed-phase TiO2photocatalysts for water decontamination applications. Advanced Engineering Materilas, 16(2),248254.Hardcastle, F. D. (2011). Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts. Journal of the Arkansas academy of science, 65(1), 43-48.Hariharan, C. (2006). Photocatalytic degradation of organic contaminants in water by ZnOnanoparticles: Revisited. Applied Catalysis A: General, 304, 55-61.Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: A historical overview andfuture prospects. Japanese journal of applied physics, 44(12),8269- 8285Hassaan, M. A., & Nemr, A. El. (2017). Health and environmental impacts of dyes: Mini review.American Journal of Environmental Science and Engineering, 1(3), 64-67.Heinonen, S., Nikkanen, J.-P., Hakola, H., Huttunen-Saarivirta, E., Kannisto, M.,Hyvrinen, L., et al (2016). Effect of temperature and concentration of precursors on morphologyand photocatalytic activity of zinc oxide thin films prepared by hydrothermal route. IOP ConferenceSeries: Materials Science and Engineering, 123, 12030-12035Hezam, A., Namratha, K., Drmosh, Q. A., Chandrashekar, B. N., Sadasivuni, K. K., Yamani, Z. H., et al (2017). Heterogeneous growth mechanism of ZnO nanostructures and the effectsof their morphology on optical and photocatalytic properties. CrystEngComm, 19(24), 3299-3312.Hidayah, N. M. S., Liu, W. W., Lai, C. W., Noriman, N. Z., Khe, C. S., Hashim, U.,etal (2017). Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis andcharacterization. AIP Conference Proceedings, 1892, 1-8.Hodkiewicz. J. (2010). Characterizing Carbon Materials with Raman Spectroscopy.Thermo Fisher Scientific, 51946-51950.Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A criticalreview on textile wastewater treatments: Possible approaches. Journal of Environmental Management,182, 351366.Hong, M., Dai, L., Li, H., Hu, H., Liu, K., Yang, L., & Pu, C. (2019). Structural Phase Transitionand Metallization of Nanocrystalline Rutile Investigated by High- Pressure RamanSpectroscopy and Electrical Conductivity. Minerals, 9(7), 441- 452.Hosseini, F., Kasaeian, A., Pourfayaz, F., Sheikhpour, M., & Wen, D. (2018). Novel ZnO-Ag/MWCNTnanocomposite for the photocatalytic degradation of phenol. Materials Science in SemiconductorProcessing, 83, 175-185.Huang, N., Shu, J., Wang, Z., Chen, M., Ren, C., & Zhang, W. (2015). One-steppyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostabilityunder visible light and UV light irradiation. Journal of Alloys and Compounds, 648, 919-929.Huang, Y., Chen, D., Hu, X., Qian, Y., & Li, D. (2018). Preparation of TiO2/carbonnanotubes/reduced graphene oxide composites with enhanced photocatalytic activity for thedegradation of Rhodamine B. Nanomaterials, 8(6), 1-9.Hummers, W.S., & Offeman, R. E. (1957). Preparation of Graphitic Oxide. Journal of AmericanChemical Society, 80(6), 1339.Huyen, T. T. T., Chi, T. T. K., Dung, N. D., Kosslick, H., & Liem, N. Q. (2018).Enhanced photocatalytic activity of {110}-faceted TiO2 rutile nanorods in thephotodegradation of hazardous pharmaceuticals. Nanomaterials, 8(5), 276-287.Ibhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous photocatalysis: recent advancesand applications. Catalysts, 3(1), 189-218.Inagaki, M., Kang, F., Toyoda, M., & Konno, H. (2014). Graphene: Synthesis andpeparation. Advanced Materials Science and Engineering of Carbon, 2, 4165.Idiawati, R., Mufti, N., Taufiq, A., Wisodo, H., Laila, I. K. R., & Fuad, A. (2017).Effect of Growth Time on the Characteristics of ZnO Nanorods. Materials Scienceand Engineering, 202(1), 12050-12059.Ivanova, M.V., Lamprecht, C., Huzil, J. T., & Foldvari, M. (2012). Pharmaceuticalcharacterization of solid and dispersed carbon nanotubes as nanoexcipients.International Journal of Nanomedicine, 7, 403-415.Jiang, T., Zhang, L., Ji, M., Wang, Q., Zhao, Q., Fu, X., & Yin, H. (2013). Carbon nanotubes/TiO2nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology,11(6), 737-742.Johar, M. A., Afzal, R. A., Alazba, A. A., & Manzoor, U. (2015). Photocatalysis and bandgapengineering using ZnO nanocomposites. Advances in Materials Science and Engineering, 1-12.Kakaei, K., & Hasanpour, K. (2014). Synthesis of graphene oxide nanosheets byelectrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application foroxygen reduction. Journal of Materials Chemistry A, 2(37), 1542815436.Kalpana, V. N., & Rajeswari, V. D. (2018). A review on green synthesis , biomedical applications,and toxicity studies of ZnO NPs. Bioinorganic Chemistry and Applications, 2018, 1-12.Kandiel, T. A., Robben, L., Alkaim, A., & Bahnemann, D. (2012). Brookite versus anatase TiO2photocatalysts: Phase transformations and photocatalytic activities Photochemical & PhotobiologicalSciences, 12(4), 602-609.Kang, J. H., Kim, T., Choi, J., Park, J., Kim, Y. S., Chang, M. S., et al (2016). Hidden secondoxidation step of Hummers method. Chemistry of Materials, 28(3),756- 764.Kant, R. (2011). Textile dyeing industry an environmental hazard. Natural Science, 4(1),1-5.Karnati, P., Haque, A., Taufique, M. F. N., & Ghosh, K. (2018). A systematic study on thestructural and optical properties of vertically aligned zinc oxide nanorods grown by highpressure assisted pulsed laser deposition technique. Nanomaterials, 8(2), 62-74.Karthik, V., Saravanan, K., Bharathi, P., Dharanya, V., & Meiaraj, C. (2014). Anoverview of treatments for the removal of textile dyes. Journal of Chemical andPharmaceutical Sciences, 7(4), 301-307.Kashif, M., Al-Douri, Y., Hashim, U., Ali, M. E., Ali, S. M. U., & Willander, M. (2012).Characterisation, analysis and optical properties of nanostructure ZnO using the solgel method.Micro & Nano Letters, 7(2), 163-167.Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recentwastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4),4676-4697.Kazuhito, H., Hiroshi, I., & Akira, F. (2005). TiO2 Photocatalysis : A historicaloverview and future prospects. Japanese Journal of Applied Physics, 44(12), 8269-8285.Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. (2018). Evaluating theefficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. Journalof Molecular Liquids, 258, 354-365.Khalil, I., Julkapli, N., Yehye, W., Basirun, W., & Bhargava, S. (2016). Graphene-goldnanoparticles hybrid-synthesis, functionalization, and application in aelectrochemical and surface-enhanced raman scattering biosensor. Materials, 9(6), 406-443.Khan, M. M., Adil, S. F., & Al-Mayouf, A. (2015). Metal oxides as photocatalysts.Journal of Saudi Chemical Society, 19(5), 462464.Khataee, A. R., & Kasiri, M. B. (2010). Photocatalytic degradation of organic dyes in the presenceof nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal ofMolecular Catalysis A: Chemical, 328(1-2), 8-26.Khojasteh, H., Salavati-Niasari, M., & Sangsefidi, F. S. (2018). Photocatalytic evaluationof rGO/TiO2 NWs/Pd-Ag nanocomposite as an improved catalyst for efficient dye degradation. Journalof Alloys and Compounds, 746, 611-618.Koay, H. W., Ruslinda, A. R., Hashwan, S. S. B., Fatin, M. F., Thivina, V., & Tony, V.C. S., et al (2016). Surface morphology of reduced graphene oxide-carbon nanotubes hybridfilm for bio-sensing applications. IEEE Internatinal Conference on Semiconductors Electronics,320-323.Ko?odziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc Oxide - From synthesis to application:A review. Materials, 7(4), 2833-2881.Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyesin aqueous solution: kinetic and mechanistic investigations: A review.Applied Catalysis B: Environmental, 49(1), 1-14.Kumar, A., Madaria, A, R., & Zhou, C. (2010). Growth of aligned single-crystallinerutile TiO2 nanowires on arbitrary substrates and their application in dye- sensitizedsolar cells. Journal of Physical Chemistry C, 114, 7787-7792.Lacombe, S., & Keller, N. (2012). Photocatalysis: Fundamentals and applications in JEP 2011.Environmental Science and Pollution Research, 19(9), 3651-3654.Latthe, S. S., Gurav, A. B., Maruti, C. S., & Vhatkar, R. S. (2012). Recent progress in preparation of superhydrophobic surfaces : A review. Journal of Surface Engineered Materialsand Advanced Technology, 2, 76-94.Lee, K., Saipolbahri, Z. A., Beh Hoe Guan, B. H., & Soleimani, H (2014). Organic sol-gel methodin the synthesis and characterization of ZnO nanoparticles. American Journal of AppliedSciences, 11(6), 959-962.Li, X., Yu, J., Wageh, S., Al-Ghamdi, A. A., & Xie, J. (2016). Graphene inphotocatalysis: A review. Small, 12(48), 6640-6696.Lim, C. S. (2010). Synthesis and characterisation of TiO2-ZnO nanocomposite by a two-step chemicalmethod. Journal of Ceramic Processing Research, 11(5), 631- 635.Liu, B., & Aydil, E. S. (2009). Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal ofthe American Chemical Society, 131(11), 3985-3990.Liu, P., Cai, W., Fang, M., Li,Z., Zeng, H., Hu, J., et al (2009). Room temperature synthesizedrutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity.Nanotechnology, 20(28), 285707-285713.Liu, X., Cao, J., Yang, L., Wei, M., Li, X., Lang, J., et al (2015). Growth mechanism, optical andphotocatalytic properties of ZnO nanorods@nanoflowers (quantum dots) hybrid nanostructures.Ceramics International, 41(9), 12258-12266.Liu, Y. (2017). Application of graphene oxide in water treatment Application of grapheneoxide in water treatment. Earth and Environmental Science, 94, 1-7.Ma, H. L., Yang, J. Y., Dai, Y., Zhang, Y. B., Lu, B., & Ma, G. H. (2007). Raman study of phasetransformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser.Applied Surface Science, 253(18), 7497-7500.Mahmoodi, N. M. (2013). Photocatalytic degradation of dyes using carbon nanotubeand titania nanoparticle. Water, air, & Soil Pollution, 224(7), 1612-1619.Malek, M. F., Mamat, M. H., Soga, T., Rahman, S. A., Abu Bakar, S., Ismail, A. S., etal (2015). Thickness-controlled synthesis of vertically alignedc-axis oriented ZnO nanorod arrays:Effect of growth time via novel dual sonication solgel process. Japanese Journal of AppliedPhysics, 55(1), 15-21.Mali, S. S., Shinde, P. S., Betty, C. A., Bhosale, P. N., Lee, W. J., & Patil, P. S. (2011).Nanocoral architecture of TiO2 by hydrothermal process: Synthesis andcharacterization Applied Surface Science Nanocoral architecture of TiO2 by hydrothermalprocess: Synthesis and characterization. Applied Surface Science, 257(23), 9737-9746.Mallakpour, S., & Rashidimoghadam, S. (2019). Carbon Nanotubes for Dyes Removal.Composite Nanoadsorbents, 211-243.Marco, D. M., Menzel, R., Bawaked, S. M., Mokhtar, M., Obaid, A. Y., Basahel, N. S., et al (2017).Hybrid effects in graphene oxide/carbon nanotube-supported layered double hydroxides: Enhancing theCO2 sorption properties. Carbon, 123, 616-627.Martins, P. M., Ferreira, C. G., Silva, A. R., Magalhes, B., Alves, M. M., Pereira, L., et al (2018). TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study. Composites Part B:Engineering, 145, 39-46.Mau?ec, D., uligoj, A., Risti?, A., Dra?i?, G., Pintar, A., & Tuar, N. N. (2018).Titania versus zinc oxide nanoparticles on mesoporous silica supports asphotocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 310,32-41.Md Disa, N., Abu Bakar, S., Alfarisa, S., Mohamed, A., Md Isa, I., Kamari, A., et al (2015). Thesynthesis of graphene oxide via electrochemical exfoliation method. Advanced Materials Research,1109, 55-59.Mekasuwandumrong, O., Pawinrat, P., Praserthdam, P. and Panpranot, J. (2010). Effects ofsynthesis conditions and annealing post-treatment on the photocatalytic activities of ZnOnanoparticles in the degradation of methylene blue dye. Chemical Engineering Journal, 164,77-84.Meng, X. Q., Shen, D. Z., Zhang, J. Y., Zhao, D. X., Lu, Y. M., Dong. L., et al (2005). The structural and optical properties of ZnO nanorod arrays. Solid StateCommunications, 135(3), 179-182.Mojsov, K. D., Andronikov, D., Janevski, A., Kuzelov, A., & Gaber, S. (2016). Theapplication of enzymes for the removal of dyes from textile effluents. Advanced Technologies, 5(1), 8186.Mokhtar, S. M., Ahmad, M. K., Soon, S.F., Narafizal, N., Faridah, A. B., Suriani, A.B.,et al (2018). Fabrication and characterization of rutile-phased titanium dioxide (TiO2)nanorods array with various reaction times using one step hydrothermal method. Optik, 154, 510-515.Montenegro,D. N., Hortelano, V., Martinez,O., Martinez-Tomas, M. C., Sallet, V.,Munoz-Sanjose, V., et al (2013). Non-radiative recombination centres in catalyst- free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. Journal ofPhysics D: Applied Physics,46(23), 235302-235305.Morales-torres, S., & Martinez-Pastrana, L. M. (2014). Nanostructured carbon-TiO2photocatalysts for water purification: An overview. Boletn del Grupo Espaol del Carbn, 32, 9-14.Moura, K. F., Maul, J., Albuquerque, A. R., Casali, G. P., Longo, E., Keyson, D., et al (2014).TiO2 synthesized by microwave assisted solvothermal method: Experimental and theoreticalevaluation. Journal of Solid State Chemistry, 210(1), 171-177.Mousavi, S. F., Davar, F., & Loghman-Estarki, M. R. (2016). Controllable synthesis of ZnOnanoflowers by the modified solgel method. Journal of Materials Science: Materials in Electronics,27(12), 1298512995.Muda, M. R., Ramli, M. M., Mat Isa, S. S., Halin, D. S. C., Talip, L. F. A., Mazelan,N. S., et al 2017). Structural and Morphological investigation for water-processed grapheneoxide/single-walled carbon nanotubes hybrids. Materials Science and Engineering, 209(1),12030-12039.Mulmi, D. D., Thapa, D., Dahal, B., Baral, D., & Solanki, P. R. (2016). Spectroscopic studies ofboron doped titanium dioxide nanoparticles. International Journal of Materials Science andEngineering, 4, 172-178.Muqoyyanah, 2018. Fabrication of graphene oxide/titanium dioxide hybrid material for solar celland membrane application. (Doctoral Dissertation).Universiti Pendidikan Sultan Idris, MalaysiaMustafa, M. K., Iqbal, Y., Majeed, U., & Sahdan, M. Z. (2017). Effect of precursors concentrationon structure and morphology of ZnO nanorods synthesized through hydrothermal method on goldsurface. AIP Conference Proceedings, 1788(1), 30120-30128.Nalumaga, H. (2017). A Study on the Properties of ZnO/TiO2 Nanocomposite Preparedvia the Sol- gel Technique. (Master's Dissertation). Kangwon National University, Korea.Neelgund, G. M., & Oki, A. (2016). Influence of carbon nanotubes and graphenenanosheets on photothermal effect of hydroxyapatite. Journal of Colloid and InterfaceScience, 484, 135-145.Nenavathu, B. P., Kandula, S., & Verma, S. (2018). Visible-light-driven photocatalytic degradationof safranin-T dye using functionalized graphene oxide. RSC Advances, 8(35),1965919667.Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., & Murugesan, V. (2002).Solar/UV-induced photocatalytic degradation of three commercial textile dyes. Journal ofHazardous Materials, 89(23), 303-317.Nguyen-Phan, T. D., Pham, V. H., Shin, W. E., Pham, H. D., Kim ,S., Chung, J. S., et al (2011).The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170(1), 226-232.Nidheesh, P. V., Olvera-Vargas, H., Oturan, N., & Oturan, M. A. (2017).Heterogeneous Electro-Fenton Process: Principles and Applications. Electro- Fenton Process,85-110.Nikoofar, K., Haghighi, M., Lashanizadegan, M., & Ahmadvand, Z. (2014). ZnO nanorodes: Efficient and reusable catalyst for the synthesis of substituted imidazoles inwater media. Journal of Taibah University of Science, 9(4), 570- 578.Noroozi, M., Zakaria, A., Radiman, S., & Wahab, Z. A. (2016). Environmental synthesis offew layers graphene sheets using ultrasonic exfoliation with enhanced electrical and thermalproperties. PLOS ONE, 11(4), 1-17.Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactorengineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 24, 16-42.Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solarphotocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable EnergyReviews, 81, 536-551.Pan, Y., Wang, Y., Zhou, A., Wang, A., Wu, Z., Lv, L., et al (2017). Removal of azo dye in anup-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chemical Engineering Journal, 326, 454-461.Parihar, V., Raja, M., & Paulose, R. (2018). A brief review of structural, electrical andelectrochemical properties of zinc oxide nanoparticles. Reviews on Advanced MaterialsScience, 53(2), 119-130.Park, J. S., Mahmud, I., Shin, H. J., Park, M. K., Ranjkesh, A., Lee, D. K., & Kim, H.R. (2016). Effect of surface energy and seed layer annealing temperature on ZnO seed layerformation and ZnO nanowire growth. Applied Surface Science, 362, 132-139.Parsa, B. J., Rezaei, M., & Soleymani, A.R (2009). Electrochemical oxidation of an azo dye inaqueous media investigation of operational parameters and kinetics. Journal of HazardousMaterials, 168(2-3), 997-1003Parvez, K., Wu, Z. S., Li, R., Liu, X., Graf, R., Feng, X., & Mllen, K. (2014).Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal ofthe American Chemical Society, 136(16), 6083-6091.Paul, S. S. P., Radhika, N., Borang, O., Lydia, I. S., & Merlin, J. P. (2017). Visible light driven photodegradation of Rhodamine B using cysteine capped ZnO/GO nanocomposite asphotocatalyst. Journal of Materials Science: Materials in Electronics, 28(9), 6722-6730.Pawar, R. C., Shaikh, J. S., Suryavanshi, S. S., & Patil, P. S. (2012). Growth of ZnO nanodisk,nanospindles and nanoflowers for gas sensor: pH dependency. Current Applied Physics, 12(3),778-783.Pei, S., Wei, Q., Huang, K., Cheng, H. M., & Ren, W. (2018). Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 9(1), 1-9.Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., et al. (2012). Areview on the visible light active titanium dioxide photocatalysts for environmental applications.Applied Catalysis B: Environmental, 125, 331-349.Prez-ramrez, E. E., Luz-asuncin, M. D., Martnez-hernndez, A. L., & Velasco- santos,C. (2016). Graphene materials to remove organic pollutants and heavy metals from water:Photocatalysis and Adsorption-Materials, Mechanism and Applications, 491-522.Peter, I. J., Praveen, E., Vignesh, G., & Nithiananth, P. (2017). ZnO nanostructures with different morphology for enhanced photocatalytic activity. Materials Research Express,4(12), 1-18.Piaskowski, K., ?widerska-D?browska, R., & Zarzycki, P. K. (2018). Dye removal from water and wastewater using various physical, chemical, and biologicalprocesses. Journal of AOAC International, 101(5), 13711384.Poorebrahimi, S., & Norouzbeigi, R. (2015). A facile solution-immersion process for thefabrication of superhydrophobic gibbsite films with a binary micro-nano structure:Effective factors optimization via Taguchi method. Applied Surface Science, 356, 157-166.Prasannalakshmi, P., & Shanmugam, N. (2017). Fabrication of TiO2/ZnOnanocomposites for solar energy driven photocatalysis. Materials Science in SemiconductorProcessing, 61, 114-124.Prathan, A., Sanglao, J., Wang, T., Bhoomanee, C., Ruankham, P., Gardchareon, A., &Wongratanaphisan, D. (2020). Controlled Structure and Growth Mechanism behind HydrothermalGrowth of TiO2 Nanorods. Scientific Reports, 10(1), 1-11.Pudukudy, M., & Yaakob, Z. (2015). Facile synthesis of quasi spherical ZnO nanoparticleswith excellent photocatalytic activity. Journal of Cluster Science, 26(4), 1187-1201.Purwaningsih, S. Y., Pratapa, S., Triwikantoro, & Darminto. (2016). Nano-sized ZnO powders preparedby co-precipitation method with various pH. AIP Conference Proceedings, 1725(1), 20063-20069.Qin, D., Bi, Y., Feng, X., Wang, W., Barber, G. D., Wang, T., et al (2015).Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chemistry of Materials, 27(12), 4180-4183.Rajendar, V., Raghu, Y., Rajitha, B., Chakra, C. S., Rao, K. V., & Park, S. H. (2017). Synthesis,characterization, and photocatalytic behaviour of nanocrystalline ZnO, TiO2 and ZnO/TiO2nanocomposites. Journal of Ovonic Research, 13(3), 101-111.Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M.V. B., Kajitvichyanukul, P., & Krishnan-Ayer, R. (2008). Heterogeneousphotocatalytic treatment of organic dyes in air and aqueous media. Journal ofPhotochemistry and Photobiology C: Photochemistry Reviews, 9(4), 171192.Raliya, R., Avery, C., Chakrabarti, S., & Biswas, P. (2017). Photocatalytic degradation of methylorange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and theircomposites under visible light irradiation. Applied Nanoscience, 7(5), 253259.Ray, S. C. (2015). Application and Uses of Graphene Oxide and Reduced Graphene Oxide. Applications of Graphene and Graphene-Oxide Based Nanomaterials, 39-55.Rehman, S., Ullah, R., Butt, A. M., & Gohar, N. D. (2009). Strategies of making TiO2 and ZnOvisible light active. Journal of Hazardous Materials, 170(23), 560569.Reyes-Coronado, D., Rodr?guez-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., Coss, R., &Oskam, O. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 19,1-11.Ridhuan, N. S., Fong, Y. P., Lockman, Z., & Razak, K. A. (2011) Formation of ZnO nanorods viaseeded growth hydrothermal reaction. Applied Mechanics and Materials 83, 116-122.Ridhuan, N. S., Razak, K. A., Lockman, Z., & Aziz, A. A. (2012). Structural andmorphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and itsproperties as UV sensing. PloS one, 7(11), 50405-50419.Rihtnesberg, D. B., Almqvist, S., Wang, Q., Sugunan, A., Yang, X., Toprak, M. S., et al (2011).ZnO nanorods/nanoflowers and their applications. The 4th IEEE International NanoElectronics,1-2.Rosnan, N. A., Haan, T. Y., & Mohammad, A. W. (2018). Synthesis andcharacterization of ZnO-decorated GO nanocomposite material with different ZnO loading throughsol-gel method. Jurnal Kejuruteraan, 30(2), 249-255.Saleh, T. A. (2013). The role of carbon nanotubes in enhancement of photocatalysis.Syntheses and Applications of Carbon Nanotubes and Their Composites.Saner, B., Grsel, S. A., & Yrm, Y. (2013). Layer-by-layer polypyrrole coated graphiteoxide and graphene nanosheets as catalyst support materials for fuel cells. Fullerenes, Nanotubesand Carbon Nanostructure, 21(3), 233-247.Sanchez, L., Guz, L., Garca, P., Ponce, S., Goyanes, S., Marchi, M. C., et al (2014). Influenceof pyrolytic seeds on ZnO nanorod growth onto rigid substrates for photocatalyticabatement of Escherichia coli in water. Water Science and Technology: Water Supply, 14(6),10871094.Saravanan, R., Gracia, F., and Stephen, A. (2017). Basic, Principles, Mechanism,and Challenges of Photocatalysis. Springer Series on Polymer and Composite Materials, 19-40.Schlur, L., Calado, J. R., & Spitzer, D. (2018). Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever. Royal Society Open Science, 5(8), 1-11.Seema, S. (2015). Development of novel polystyrene supported TiO2 photocatalysis for dye wastewater treatment. (Doctoral dissertation). Jaypee University ofEngineering and Technology, Guna, India.Shaban, M., Ashraf, A. M., & Abukhadra, M. R. (2018). TiO2 nanoribbons/carbon nanotubescomposite with enhanced photocatalytic activity; Fabrication, characterization , andapplication. Scientific Reports, 8(1), 1-17.Shahriary, L., Ghourchian, H., & Athawale, A. A. (2014). Graphene-multiwalled carbonnanotube hybrids synthesized by gamma radiations: Application as a glucose sensor. Journalof Nanotechnology, 2014, 1-10.Shan, A. Y., Ghazi, T. I. M., & Rashid, S. A. (2010). Immobilisation of titanium dioxide ontosupporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A:General, 389(1-2), 1-8.Sharma, M., Behl, K., Nigam, S., & Joshi, M. (2018). TiO2-GO nanocomposite for energy andenvironmental applications: A green synthesis approach. Vacuum, 156, 434-439.Sharma, S. K., Misra, A. K., Ismail, S., & Singh, U. N. (2006). Remote Ramanspectroscopy of various MIXED and composite mineral phases at 7.2 m distance. NASA Technical ReportServer, 1-2.Singh, N., Pandey, P., & Haque, F. Z. (2012). Effect of heat and time-period on the growth of ZnOnanorods by solgel technique. International Journal for Light and Electron Optics, 123(15),1340-1342.Singh, R. K., Kumar, R., & Singh, D. P. (2016). Graphene oxide: Strategies forsynthesis, reduction and frontier applications. RSC Advances, 6(69), 64993 65011.Singh, R. L., Singh, P. K., & Singh, R. P. (2015). Enzymatic decolorization anddegradation of azo dyes-A review. International Biodeterioration andBiodegradation, 104, 21-31.Singh, S., Mahalingam, H., & Singh, P. K. (2013). Polymer-supported titanium dioxide photocatalystsfor environmental remediation: A review. Applied Catalysis A: General, 462, 178-195.Siwi?ska-Stefa?ska, K., Kubiak, A., Piasecki, A., Goscianska, J., Nowaczyk, G., Jurga,S., & Jesionowski, T. (2018). TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity. Materials, 11(5), 841-859.Siwi?ska-Stefa?ska, K., Kubiak, A., Piasecki, A., Dobrowolska, A., Czaczyk, K.,Motylenko, M., et al (2019). Hydrothermal synthesis of multifunctional TiO2-ZnO oxide systemswith desired antibacterial and photocatalytic properties. Applied Surface Science, 463,791-801.Sohail, M., Saleem, M., Ullah, S., Saeed, N., Afridi, A., Khan, M., & Arif, M. (2017). Modifiedand improved Hummers synthesis of graphene oxide for capacitors applications. ModernElectronic Materials, 3(3), 110-116.Song, J., & Lim, S. (2007). Effect of Seed Layer on the Growth of ZnO Nanorods.Journal of Physical Chemistry C, 111(2), 596-600.Srivastava, R. K., Xingjue, W., Kumar, V., Srivastava, A., & Singh, V. (2014).Synthesis of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubescomposite for supercapacitance application. Journal Of Alloys And Compounds, 612, 343-348.Sui, Z., Meng, Q., Zhang, X., Ma, R., & Cao, B. (2012). Green synthesis of carbon nanotubegraphenehybrid aerogels and their use as versatile agents for water purification. Journal ofMaterials Chemistry, 22(18), 8767-8771.Sun, L. (2019). Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering,1-10.Sun, N., Ma, J., Wang, C., Xue, J., Qiang, L., & Tang, J. (2018). A facile and efficient method to directly synthesize TiO2/rGO with enhanced photocatalytic performance.Superlattices and Microstructures, 121, 18.Sunyani, M. (2013). Synthesis and characterization of zinc oxide nanoparticles. Journal of ThermalAnalysis and Calorimetry, 111(2), 1107-1119.Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Mamat, M. H., Hashim, N., et al (2018).Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells.Journal of Materials Science: Materials in Electronics, 29(13), 10723-10743.Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Rohani, R., Yusoff, I. I., et al (2019).Incorporation of electrochemically exfoliated graphene oxide and TiO2 into polyvinylidene fluoride-based nanofiltration membrane for dyerejection. Water, Air, & Soil Pollution, 230(8), 176.Tamilselvan, V., Yuvaraj, D., Kumar, R. R., & Rao, K. N. (2012). Applied surfacescience growth of rutile TiO2 nanorods on TiO2 seed layer deposited by electron beam evaporation.Applied Surface Science, 258(10), 4283-4287.Taziwa, R., Meyer, E., & Takata, N. (2017). Structural and Raman spectroscopiccharacterization of C-TiO2 nanotubes synthesized by a template-assisted sol-gel technique. Journalof Nanoscience & Nanotechnology Research, 1, 1-11.Tokarsk, J., Mat?jka, V., Neuwirthov, L., Vontorov, J., Kutlkov, K. M.,Kukutschov., et al (2013). A low-cost photoactive composite quartz sand/TiO2. Chemical EngineeringJournal, 222, 488-497.Topkaya, E., Konyar, M., Yatmaz, H. C., & ztrk, K. (2014). Pure ZnO and composite ZnO/TiO 2catalyst plates: A comparative study for the degradation of azo dye, pesticide and antibiotic inaqueous solutions. Journal Of Colloid And Interface Science, 430, 6-11.Tripathi, R. M., Bhadwal, A. S., Gupta, R. K., Singh, P., Shrivastav, A., & Shrivastav,B. R. (2014). ZnO nanoflowers: Novel biogenic synthesis and enhancedphotocatalytic activity. Journal of Photochemistry and Photobiology B: Biology, 141, 288-295.Uribe Lpez, M. C., Alvarez Lemus, M. A., Hidalgo, M. C., Lpez Gonzlez, R., QuintanaOwen, P., Oros-Ruiz, S., et al (2019). Synthesis and characterization of ZnO-ZrO2 nanocompositesfor photocatalytic degradation and mineralization of phenol. Journal of Nanomaterials, 2019, 1-12.Vallejo, W., Rueda, A., Daz-Uribe, C., Grande, C., & Quintana, P. (2019).Photocatalytic activity of graphene oxideTiO2 thin films sensitized by natural dyes extracted fromBactris guineensis. Royal Society open science, 6(3), 181824- 181841.Vaseem, M., Umar, A., & Hahn, Y.B. (2010). ZnO nanoparticles: Growth, properties, andapplications. American Sciencetific, 5, 1-36.Vasudevan, A., Jung, S., & Ji, T. (2011). Synthesis and characterization of hydrolysis grown zincoxide nanorods. ISRN Nanotechnology, 2011, 1-7.Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Lowtemperature solution synthesis and characterization of ZnO nano- flowers. MaterialsResearch Bulletin, 42(9), 16401648.Wahyuono, R. A., Schmidt, C., Dellith, A., Dellith, J., Schulz, M., Seyring, M., et al(2016). ZnO nanoflowers-based photoanodes: aqueous chemical synthesis, microstructure and optical properties. Open Chemistry, 14(1), 1-12.Wang, B., Wan, J., Liu, Q., Zhang, J., & Wang, H. (2015). Optimizing the prepared condition of TiO21D/3D network structure films to enhance the efficiency of dye- sensitized solar cells. RSCAdvances, 5(101), 82968-82976.Wang, J., Tsuzuki, T., Tang, B., Hou, X., Sun, L., & Wang, X. (2012). Reducedgraphene oxide/ZnO composite: Reusable adsorbent for pollutant management. Applied Materials andInterfaces. 4(6), 3084-3090.Wang, X., Ahmad, M., & Sun, H. (2017). Three-Dimensional ZnO Hierarchical Nanostructures:Solution Phase Synthesis and Applications. Materials, 10(11), 1304-1057Wang, Y., Zhang, L., Deng, K., Chen, X., & Zou, Z. (2007). Low temperature synthesis andphotocatalytic activity of rutile TiO2 nanorod superstructures. Journal of PhysicalChemistry, 111(6), 2709-2714.Wang, Y., Zhang, H., Qu, S., & Su, C. (2016). Controllable synthesis and photocatalytic activity ofZnO nanorods. Ferroelectrics, 504(1), 46-52.Wang, Z., Xue, M., Huang, K., & Liu, Z. (2010). Textile Dyeing Wastewater Treatment.Advance in Treating Textile Effluent, 92-116Wetchakun, K., Wetchakun, N., & Sakulsermsuk, S. (2019). An overview ofsolar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- andZnO-based photocatalysts used in suspension photoreactors. Journal of Industrial and EngineeringChemistry, 71, 19-49.Woo, H., Sung, H., Gil, H., Chan, J., & Young, D. (2010). Growth, structural, Raman , andphotoluminescence properties of rutile TiO2 nanowires synthesized by the simple thermaltreatment. Journal of Alloys and Compounds, 504(1), 217-223.Wu, K., Wu, B., Li, C., & Hu, X. (2018). Gradation, Dispersion, and TribologicalBehaviors of Nanometric Diamond Particles in Lubricating Oils. MechanicalEngineering,113-133.Xie, J., Li, Y., Zhao, W., Bian, L., & Wei, Y. (2011). Simple fabrication andphotocatalytic activity of ZnO particles with different morphologies. Powder Technology,207, 140-144.Xie, Q., Dai, Z., Liang, J., Xu, L., Yu, W., & Qian, Y. (2005). Synthesis of ZnO three- dimensional architectures and their optical properties. Solid State Communications, 136(5), 304-307.Yahia, S. B., Znaidi, L., Kanaev, A., & Petitet, J. P. (2008). Raman study of orientedZnO thin films deposited by solgel method. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy, 71(4), 1234-1238.Yahya, N., Aziz, F., Jamaludin, N. A., Mutalib, M. A., Ismail, A. F., Salleh, W. N., et al (2018).A review of integrated photocatalyst adsorbents for wastewater treatment. Journal ofEnvironmental Chemical Engineering, 6(6), 7411-7425.Yan, J., Wu, G., Guan, N., Li, L., Li, Z., & Cao, X. (2013). Understanding the effect ofsurface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. PhysicalChemistry Chemical Physics, 15(26), 10978-10988.Yan, E. Y. C., Zakaria, S., & Chia, C. H. (2014, September). One-step synthesis of titanium oxidenanocrystal-rutile by hydrothermal method. AIP Conference Proceedings, 1614(1), 122-128.Yang, Z., Wang, B., Cui, H., An, H., Pan, Y., & Zhai, J. (2015). Hydrothermal synthesis of crystal-controlled TiO2 nanorods: Rutile and brookite as highly activePhotocatalysts. The Journal of Physical Chemistry C, 119(29), 16905-16912.Yar, A., Haspulat, B., stn, T., Eskizeybek, V., Avc?, A., Kam??, H., & Achour, S. (2017).Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSCadvances, 7(47), 29806-29814.Yin, T., Chen, N., Zhang, Y., Cai, X., & Wang, Y. (2014). Structure, morphologies and dye removalefficiency of ZnO nanorods grown on polycrystalline Zn substrate. Superlattices AndMicrostructures, 74, 279-293.Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., & Cai, Z. (2019). Recent Advances andApplications of Semiconductor Photocatalytic Technology. Applied Sciences, 9(12), 2489.Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis,characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012, 1-22.Zhao, X. S., Bao, X. Y., Guo, W., & Lee, F. Y. (2006). Immobilizing catalysts onporous materilas. Materials Today, 9(3), 32-39.Zhao, Y., Gu, X., & Qiang, Y. (2012). Influence of growth time and annealing on rutileTiO2 single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells. Thin Solid Films, 520(7), 2814-2818.Zhou, Q., Wen, J., Zhao, P., & Anderson, W. (2017). Synthesis of vertically-alignedzinc oxide nanowires and their application as a photocatalyst. Nanomaterials, 7(1), 9-21.Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., & Li, Z. (2014). Photocatalytic degradationof methylene blue using TiO2 impregnated diatomite. Advances inMaterials Science and Engineering, 2014, 1-7.