Missing data imputation framework for early childhood longitudinal data: a study case on NCDRC data
This research aims to develop an imputation framework for the National ChildhoodDevelopment Research Centre (NCDRC)s missing data. Missing data and other associatedissues, such as outliers, time points, noise, and continuity, were the main challenges in thisresearch. The nature of the NCDRC dataset...
محفوظ في:
المؤلف الرئيسي: | Al-Amoodi, Abdullah Hussien Abdullah |
---|---|
التنسيق: | thesis |
اللغة: | eng |
منشور في: |
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ir.upsi.edu.my/detailsg.php?det=6762 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Robust Random Regression Imputation method for missing data in the presence of outliers
بواسطة: John, Ahamefule Happy
منشور في: (2013) -
An improved K-nearest neighbor with grasshopper optimization algorithm for missing data imputation /
بواسطة: Nadzurah Zainal Abidin
منشور في: (2020) -
Enhanced k-nearest neighbours classification performance based on segmentation and imputation of missing data
بواسطة: Saeed, Soobia
منشور في: (2022) -
An improved imputation method based on fuzzy c-means and particle swarm optimization for missing data
بواسطة: Samat, Nurul Ashikin
منشور في: (2017) -
An enhanced robust association rules method for missing values imputation in Arabic language data set
بواسطة: Salem, Awsan Thabet
منشور في: (2023)