Preparation and characterisation of resin-based dental composites using natural hydroxyapatite and silica fillers

Dental resin-based composites (RBCs) have been widely used in dental treatmentbecause of their excellent characteristics such as aesthetic, mechanical andbiocompatibility properties. The aims of this study were to prepare and characterise theresin-based dental composite using natural hydroxyapatite...

Full description

Saved in:
Bibliographic Details
Main Author: Rafiq Akram Che Razali
Format: thesis
Language:eng
Published: 2021
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=6842
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:6842
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic RK Dentistry
spellingShingle RK Dentistry
Rafiq Akram Che Razali
Preparation and characterisation of resin-based dental composites using natural hydroxyapatite and silica fillers
description Dental resin-based composites (RBCs) have been widely used in dental treatmentbecause of their excellent characteristics such as aesthetic, mechanical andbiocompatibility properties. The aims of this study were to prepare and characterise theresin-based dental composite using natural hydroxyapatite (NHA) and silica fillers. Theeffect of different compositions of these materials on the properties of dental resin composite was investigated. RBC was prepared by varying the composition of silica(0, 5, 15, 20 wt%) in the filler mixture of NHA and silica. The ratio between fillers and organicresins was fixed at 70:30 wt%. Two different ratios of organic resins of bisphenol A glycidylmethacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA)/hydroxyethyl methacrylate (HEMA) were used i.e. 50:25:25 wt% (CB50) and 25:50:25 wt% (CT50). The composites wereinserted into the mould and cross-linked using visible light for 60 seconds on bothsides. The degree of conversion, flexural and compressive strength, surface roughness, Vickershardness, water sorption of composites, and cytotoxicity test were evaluated andcompared. The surface morphology and distribution of the dental composites were also observed and examined by field emission scanning electron microscope (FESEM). Thedata were analysed using one-way ANOVA and the Tukeys post hoc test at the significance level of0.05. The results indicated that the CB50 with 15 wt% silica in filler mixture exhibitedsatisfactory mechanical and physical properties compared to CT50 with the value offlexural strength (42.74 MPa), compressive strength (174.28 MPa), surface roughness (43.0 nm),Vickers hardness (43.7 HV) and water sorption (34.84 g/mm). Cytotoxicity test demonstratedno toxic effects released from the composites. In conclusion, this result has compliedwith the standard requirement of dental composite. The implication, combination of NHA andsilica is promising as reinforcing filler for dental resin composite application.
format thesis
qualification_name
qualification_level Master's degree
author Rafiq Akram Che Razali
author_facet Rafiq Akram Che Razali
author_sort Rafiq Akram Che Razali
title Preparation and characterisation of resin-based dental composites using natural hydroxyapatite and silica fillers
title_short Preparation and characterisation of resin-based dental composites using natural hydroxyapatite and silica fillers
title_full Preparation and characterisation of resin-based dental composites using natural hydroxyapatite and silica fillers
title_fullStr Preparation and characterisation of resin-based dental composites using natural hydroxyapatite and silica fillers
title_full_unstemmed Preparation and characterisation of resin-based dental composites using natural hydroxyapatite and silica fillers
title_sort preparation and characterisation of resin-based dental composites using natural hydroxyapatite and silica fillers
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2021
url https://ir.upsi.edu.my/detailsg.php?det=6842
_version_ 1747833319848935424
spelling oai:ir.upsi.edu.my:68422022-03-03 Preparation and characterisation of resin-based dental composites using natural hydroxyapatite and silica fillers 2021 Rafiq Akram Che Razali RK Dentistry Dental resin-based composites (RBCs) have been widely used in dental treatmentbecause of their excellent characteristics such as aesthetic, mechanical andbiocompatibility properties. The aims of this study were to prepare and characterise theresin-based dental composite using natural hydroxyapatite (NHA) and silica fillers. Theeffect of different compositions of these materials on the properties of dental resin composite was investigated. RBC was prepared by varying the composition of silica(0, 5, 15, 20 wt%) in the filler mixture of NHA and silica. The ratio between fillers and organicresins was fixed at 70:30 wt%. Two different ratios of organic resins of bisphenol A glycidylmethacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA)/hydroxyethyl methacrylate (HEMA) were used i.e. 50:25:25 wt% (CB50) and 25:50:25 wt% (CT50). The composites wereinserted into the mould and cross-linked using visible light for 60 seconds on bothsides. The degree of conversion, flexural and compressive strength, surface roughness, Vickershardness, water sorption of composites, and cytotoxicity test were evaluated andcompared. The surface morphology and distribution of the dental composites were also observed and examined by field emission scanning electron microscope (FESEM). Thedata were analysed using one-way ANOVA and the Tukeys post hoc test at the significance level of0.05. The results indicated that the CB50 with 15 wt% silica in filler mixture exhibitedsatisfactory mechanical and physical properties compared to CT50 with the value offlexural strength (42.74 MPa), compressive strength (174.28 MPa), surface roughness (43.0 nm),Vickers hardness (43.7 HV) and water sorption (34.84 g/mm). Cytotoxicity test demonstratedno toxic effects released from the composites. In conclusion, this result has compliedwith the standard requirement of dental composite. The implication, combination of NHA andsilica is promising as reinforcing filler for dental resin composite application. 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=6842 https://ir.upsi.edu.my/detailsg.php?det=6842 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik Abdulrahman, I., Tijani, H. I., Mohammed, B. A., Saidu, H., Yusuf, H., Jibrin, M. N.,& Mohammed, S. (2014). From Garbage to Biomaterials: An Overview on Egg Shell Based Hydroxyapatite.Journal of Materials.Adabo, G. L., Cruz, C. A. D. S., Fonseca, R. G., & Vaz, L. G. (2003). The volumetric fraction ofinorganic particles and the flexural strength. Journal of Dentistry, 31(5), 353-359.Aguiar, T. R., Andr, C. B., Maria, G., Ambrosano, B., & Giannini, M. (2014). The Effect of LightExposure on Water Sorption and Solubility of Self-Adhesive Resin Cements, InternationalScholarly Research Notices.Akashi, A., Matsuya, Y., Unemori, M., & Akamine, A. (1999). The relationship betweenwater absorption characteristics and the mechanical strength of resin- modifiedglass-ionomer cements in long-term water storage. Biomaterials, 20, 1573-1578.Akram, M., Ahmed, R., Shakir, I., Ibrahim, W. A. W., & Hussain, R. (2014). Extractinghydroxyapatite and its precursors from natural resources. Journal of Materials Science,49(4), 1461-1475.Aktu?, S. L., Durdu, S., Yal?n, E., avu?o?lu, K., & Usta, M. (2017). Bioactivity andbiocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolyticoxidation. Materials Science and Engineering C, 71, 1020-1027.Alrahlah, A. (2013). Physical, Mechanical and Surface Properties of Dental Resin-composites. Materials Science.Al-sanabani, J. S., Madfa, A. A., & Al-sanabani, F. A. (2013). Application of Calcium PhosphateMaterials in Dentistry. International Journal of Biomaterials.Aljabo, A., Xia, W., Liaqat, S., Khan, M. A., Knowles, J. C., Ashley, P., & Young, A.M. (2015). Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizingdental composites. Dental Materials, 31(11), 1279-1289.Anusavice, K. J., & Phillips, R. W. (2003). Phillips' Science of Dental Materials.Philadelphia: W. B. Saunders.Arcs, R. W., Lpez-Macipe, A., Toledano, M., Osorio, E., Rodrguez-Clemente, R.,Murtra, J., Fanovich, M. A., & Pascual, C. D. (2002). Mechanical properties of visible light-curedresins reinforced with hydroxyapatite for dental restoration. Dental Materials, 18, 49-57.Asmussen, E., & Peutzfeldt, A. (1998). Influence of UEDMA , BisGMA and TEGDMA onselected mechanical properties of experimental resin composites. Dental Materials, 14, 51-56.Bakar, M. S. A., Cheng, M. H. W., Tang, S. M., Yu, S. C., Liao, K., Tan, C. T., Khor,K. A., & Cheang, P. (2003). Tensile properties, tension-tension fatigue and biologicalresponse of polyetheretherketone-hydroxyapatite composites for load- bearing orthopedic implants.Biomaterials, 24, 22452250.Balakrishnan, H., Husin, M. R., Wahit, M. U., & Abdul Kadir, M. R. (2013). Maleated High Density Polyethylene Compatibilized High DensityPolyethylene/Hydroxyapatite Composites for Biomedical Applications: Properties and Characterization. Polymer-Plastics Technology and Engineering, 52(8),774-782.Bano, N., Jikan, S. S., Basri, H., Bakar, S. A. A., & Nuhu, A. H. (2017). Naturalhydroxyapatite extracted from bovine bone. Journal of Science and Technology,9(2), 22-28.Barakat, N. A. M., Khalil, K. A., Sheikh, F. A., Omran, A. M., Gaihre, B., Khil, S. M., & Kim,H. Y. (2008). Physiochemical characterisations of hydroxyapatite extracted from bovine bones by three different methods: Extraction of biologically desirable HAp. MaterialsScience and Engineering: C, 28(8), 1381- 1387.Bezzi, G., Celotti, G., Landi, E., La Torretta, T. M. G., Sopyan, I., & Tampieri, A. (2003). Anovel sol-gel technique for hydroxyapatite preparation. Materials Chemistry and Physics,78(3), 816-824.Blackwood, D. J., & Seah, K. H. W. (2009). Electrochemical cathodic deposition of hydroxyapatite:Improvements in adhesion and crystallinity. Materials Science and Engineering C, 29(4),1233-1238.Bollen, C. M. L., Lambrechts, P., & Quirynen, M. (1997). Comparison of surfaceroughness of oral hard materials to the threshold surface roughness for bacterial plaque retention:A review of the literature. Dental Materials, 13(4), 258-269.Borba, M., Bona, A. D., Cecchetti, D. (2009). Flexural strength and hardness of direct and indirectcomposites. Dental Materials, 23(1), 5-10.Botta, A. C., Duarte, S., Filho, P. I. P., & Gheno, S. M. (2008). Effect of DentalFinishing Instruments on the Surface Roughness of Composite Resins as Elucidatedby Atomic Force Microscopy. Microscopy and Microanalysis, 14,380-386.Boutinguiza, M., Pou, J., Comesaa, R., Lusquios, F., de Carlos, A., & Len, B.(2012). Biological hydroxyapatite obtained from fish bones. Materials Science andEngineering C, 32(3), 478-486.Boyer, D. B., Chaklley, Y., & Chan, K. C. (1982). Correlation between strength of bonding toenamel and mechanical properties of dental composites. Journal of Biomedical MaterialsResearch, 16, 775-83.Braem, M., Finger, W., Van Doren, V. E., Lambrechts, P., & Vanherle, G. (1989).Mechanical Properties and Filler Fraction of Dental Composites. Dental Materials,5, 346-349.Calabrese, L., Fabiano, F., Curr, M., Borsellino, C., Bonaccorsi, L. M., Fabiano, V., Lentile,R., & Proverbio, E. (2016). Hydroxyapatite Whiskers Based Resin Composite versus Commercial Dental Composites : Mechanical and Biocompatibility Characterisation. Advances in Materials Science and Engineering.Chadda, H., Naveen, S. V., Mohan, S., Satapathy, B. K., Ray, A. R., & Kamarul, T. (2016). Cytotoxicevaluation of hydroxyapatite-filled and silica/hydroxyapatite- filled acrylate-based restorativecomposite resins: An in vitro study. The Journal of Prosthetic Dentistry, 1-7.Chadwick, R. G., McCabe, J. F., Walls, A. W. G., & Storer, R. (1990). The Effect of Storage MediaUpon the Surface Microhardness and Abrasion Resistance of Three Composites. DentalMaterials, 6, 123-128.Chen, C., Huang, C., Lin, S., Han, J., Hsieh, K., & Lin, C. (2008). Low-shrinkagevisible-light-curable urethane-modified epoxy acrylate/SiO? composites as dental restorativematerials. Composites Science and Technology, 68, 2811-2817.Chen, L., Yu, Q., Wang, Y., & Li, H. (2011). BisGMA / TEGDMA dental composite containing high aspect-ratio hydroxyapatite nanofibers. Dental Materials, 27(11), 1187-1195.Cho, I. S., Oh, H. M., Cho, M. O., Jang, B. S., Cho, J. K., Park, K. H., & Huh, K. M.(2018). Synthesis and characterization of thiolated hexanoyl glycol chitosan as a mucoadhesivethermogelling polymer. Biomaterials research, 22(1), 30.Chuenarrom, C., Benjakul, P., & Daosodsai, P. (2009). Effect of Indentation Load and Time onKnoop and Vickers Microhardness Tests for Enamel and Dentin. Materials Research, 12(4),473-476.Chung, K. H., & Greener, E. H. (1990). Correlation between Degree of Conversion, FillerConcentration and Mechanical Properties of Posterior Composite Resins.Journal of Oral Rehabilitation, 17, 487-494.Collares, F. M., Leitune, V. C., Rostirolla, F. V., Trommer, R. M., Bergmann, C. P.,& Samuel, S. M. (2012). Nanostructured hydroxyapatite as filler formethacrylate-based root canal sealers. International Endodontic Journal, 45, 63- 67.Denis, A. B., Diagone, C. A., Plepis, A. M. G., & Viana, R. B. (2016). KineticParameters during Bis-GMA and TEGDMA Monomer Polymerization by ATR- FTIR : The Influence ofPhotoinitiator and Light Curing Source.De Moraes, R. R., Marimon, J. L. M., Jochims Schneider, L. F., Sinhoreti, M. A. C.,Correr-Sobrinho, L., & Bueno, M. (2008). Effects of 6 Months of Aging in Water on Hardness and Surface Roughness of Two Microhybrid Dental Composites. Journal ofProsthodontics, 17, 323-326.Devaprakasam, D., Hatton, P. V., Mbus, G., & Inkson, B. J. (2008). Nanoscaletribology, energy dissipation and failure mechanisms of nano and micro-silicaparticle-filled polymer composites. Tribology Letters, 34, 11-19.Dodes, J. E. (2001). The Amalgam Controversy: An Evidence-Based Analysis.Journal of the American Dental Association, 132, 348-356.Domingo, C., Arcs, R. W., Lpez-Macipe, A., Osorio, R., Rodrguez-Clemente, R., Murtra, J., Fanovich, M. A., & Toledano, M. (2001). Dental composites reinforced withhydroxyapatite: Mechanical behavior and absorption / elution characteristics. Journal ofBiomedical Materials Research, 56, 297-305.Dorozhkin, S. V. (2010). Nanosized and nanocrystalline calcium orthophosphates.Acta Biomaterialia, 6(3), 715-734.Du, M., & Zheng, Y. (2008). Degree of Conversion and Mechanical Properties Studies ofUDMA Based Materials for Producing Dental Posts. Polymer Composites, 623-630.Fairuz, A. M., Sapuan, S. M., Zainudin, E. S., & Jaafar, C. N. A. (2016). Effect of filler loadingon mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites. Journal ofMechanical Engineering and Sciences, 10(1), 1931- 42.Fara, A., Khalis, A. N., bin Yahya, M. A., & Abdullah, H. Z. (2015). Preparation andCharacterization of Biological Hydroxyapatite (HAp) Obtained from Tilapia Fish Bone. AdvancedMaterials Research, 1087, 152-156.Ferracane, J. L. (1995). Current Trends in Dental Composites. Critical Reviews in OralBiology and Medicine, 6, 302-318.Ferracane, J. L. (2011). Resin Composite - State of the Art. Dental Materials, 27, 29-38.Ferracane, J. L., Antonio, R. C., & Matsumoto, H. (1987). Variables Affecting theFracture Toughness of Dental Composites. Journal of Dental Research, 66,1140-1145.Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H.(2010). Effect of the calcination temperature on the composition andmicrostructure of hydroxyapatite derived from human and animal bone. CeramicsInternational, 36(8), 2383-2393.Gajewski, V. E. S., Pfeifer, C. S., Fres-Salgado, N. R. G., Boaro, L. C. C., & Braga,R. R. (2012). Monomers Used in Resin Composites: Degree of Conversion, MechanicalProperties and Water Sorption / Solubility. Brazilian Dental Journal, 23(5), 508-514.Gu, S., Zhou, J., Luo, Z., Wang, Q., & Ni, M. (2013). A detailed study of the effects of pyrolysistemperature and feedstock particle size on the preparation of nanosilica from rice husk.Industrial Crops and Products, 50, 540-549.Guo, Y. J., Cheng, H., Zhang, S. P., & Li, X. R. (2010). Preparation of strontium-substituted hydroxyapatite nanoparticle and its influence on mechanical properties ofdental resin. Journal of Clinical Rehabilitative Tissue Engineering, 14(38).Habib, E., Wang, R., Wang, Y., Zhu, M., & Zhu, X. X. (2015). Inorganic Fillers for Dental ResinComposites - Present and Future. ACS Biomaterials Science and Engineering.Heuer, G. A., Garman, T. A., Sherrer, J. D., & Williams, H. A. (1982). A ClinicalComparison of a Quartz- and Glass-Filled Composite with a Glass-Filled Composite. TheJournal of the American Dental Association, 105, 246-247.Hosseinalipour, M., Javadpour, J., Rezaie, H., Dadras, T., & Hayati, A. N. (2010).Investigation of mechanical properties of experimental Bis-GMA / TEGDMA dental compositeresins containing various mass fractions of silica nanoparticles. Journal of Prosthodontics, 19,112-117.Hou, C., Hou, S., Hsueh, Y., Lin, J., Wu, H., & Lin, F. (2009). The in vivoperformance of biomagnetic hydroxyapatite nanoparticles in cancerhyperthermia therapy. Biomaterials, 30(23-24), 3956-3960.Hoyer, B., Bernhardt, A., Heinemann, S., Stachel, I., Meyer, M., & Gelinsky, M. (2012).Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering.Biomacromolecules, 13(4), 1059-1066.Husin, M. R., Wahit, M. U., Kadir, M. R. A., & Rahman, W. A. W. A. (2011). Effect of hydroxyapatite reinforced high density polyethylene composites onmechanical and bioactivity properties. Key Engineering Materials, 471, 303-308.Iijima, M., Du, C., Abbott, C., Doi, Y., & Moradian-Oldak, J. (2006). Control ofapatite crystal growth by the co-operative effect of a recombinant porcine amelogenin andfluoride. European Journal of Oral Sciences, 114, 304-307.In-Gu, K., Cheon-ll, P., Hyun, L., Hyoun-Ee, K., & Sung-Mi, L. (2018).Hydroxyapatite Microspheres as an Additive to Enhance Radiopacity,Biocompatibility, and Osteoconductivity of Poly(methyl methacrylate) Bone Cement. Materials,11(2), 258.International Standard Organization (ISO), Specification No. 4049. (2000). Dentistry- Polymer-basedfilling, restorative and luting materials. Geneva, Switzerland: International Organizationfor Standardization.International Standard Organization (ISO), 10993-5, (2009). Biological evaluation of medicaldevices - Part 5: Tests for in vitro cytotoxicity. Geneve: International Organization forStandardization.Itokazu, M., Yang, W., Aoki, T., Ohara, A., & Kato, N. (1998). Synthesis ofantibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drugrelease testing. Biomaterials, 19, 817-819.Izyan, K. M. I., Jaafar, C. N. A., Zainol, I., & Yusoff, M. Z. M. (2019). Preparation andCharacterization of Hydroxyapatite from Black Tilapia Fish Scales using Spray-dryingMethod. Malaysian Journal of Microscopy, 15, 155-163.Jafarzadeh, M., Rahman, I. A., & Sipaut, C. S. (2009). Synthesis of silicananoparticles by modified sol-gel process: The effect of mixing modes of the reactantsand drying techniques. Journal of Sol-Gel Science and Technology, 50(3), 328-336.Jal, P. K., Sudarshan, M., Saha, A., Patel, S., & Mishra, B. K. (2004). Synthesis andcharacterisation of nanosilica prepared by precipitation method. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 240(1-3), 173-178.Janus, J., Fauxpoint, G., Arntz, Y., Pelletier, H., & Etienne, O. (2010). Surfaceroughness and morphology of three nanocomposites after two different polishing treatments by amultitechnique approach. Dental Materials, 26(5), 416-425.Jongwattanapisan, P., Charoenphandhu, N., Krishnamra, N., Thongbunchoo, J., Tang, I., Hoonsawat,R., Smith, S. M., & Pon-on, W. (2011). In vitro study of the SBF and osteoblast-like cells onhydroxyapatite / chitosan-silica nanocomposite. Materials Science and Engineering C, 31(2),290-299.Karabela, M. M., & Sideridou, I. D. (2008). Effect of the structure of silane coupling agent onsorption characteristics of solvents by dental resin-nanocomposites.Dental Materials, 24, 1631-1639.Karabela, M. M., & Sideridou, I. D. (2011). Synthesis and study of properties ofdental resin composites with different nanosilica particles size. Dental Materials, 27(8), 825-835.Kim, K. H., Park, J. H., Imai, Y., & Kishi, T. (1994). Microfracture Mechanisms of Dental Resin Composites Containing Spherically-Shaped Filler Particles. Journal of Dental Research, 73,499-504.Klapdohr, S., & Moszner, N. (2005). New Inorganic Components for Dental Filling Composites.Monatshefte fur Chemie, 136, 21-45.Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., & Chanthai, S., (2013).Nanocrystalline hydroxyapatite from fish scale waste: Preparation,characterization and application for selenium adsorption in aqueous solution. ChemicalEngineering Journal, 215-216, 522-532.Kusrini, E., Pudjiastuti, A. R., Astutiningsih, S., & Harjanto, S. (2012). Preparation ofHydroxyapatite from Bovine Bone by Combination Methods of Ultrasonic and Spray Drying.Lang, B. R., Jaarda, M., & Wang, R. F. (1992). Filler Particle Size and Composite ResinClassification Systems. Journal of Oral Rehabilitation, 19, 569-584.Latifi, S. M., Fathi, M. H., & Golozar, M. A. (2011). Preparation and characterisation of bioactivehydroxyapatite-silica composite nanopowders via sol-gel method for medical applications. Advancesin Applied Ceramics, 110(1), 8-14.Leitune, V. C. B., Collares, F. M., Trommer, R. M., Andrioli, D. G., Bergmann, C. P., & Samuel, S.M. W. (2013). The addition of nanostructured hydroxyapatite to an experimental adhesive resin.Journal of Dentistry, 41(4), 321-327.Leprince, J. G., Palin, W. M., Hadis, M. A., Devaux, J., & Leloup, G. (2012).Progress in dimethacrylate-based dental composite technology and curing efficiency.Dental Materials, 29(2), 139-156.Lezaja, M., Veljovic, D. N., Jokic, B. M., Cvijovic-Alagic, I., Zrilic, M. M., &Miletic, V. (2013). Effect of hydroxyapatite spheres, whiskers, and nanoparticles on mechanicalproperties of a model BisGMA / TEGDMA composite initially and after storage. Journal ofBiomedical Materials Research Part B, 101B, 1469- 1476.Li, W., Zhou, J., & Xu, Y. (2015). Study of The in Vitro Cytotoxicity Testing ofMedical Devices. Biomedical reports, 3(5), 617-620.Lin-Gibson, S., Sung, L., Forster, A. M., Hu, H., Cheng, Y., & Lin, N. J. (2009).Effects of filler type and content on mechanical properties of photopolymerizable composites measured across two-dimensional combinatorial arrays. ActaBiomaterialia, 5, 2084-2094.Liou, T. (2004). Preparation and characterisation of nano-structured silica from ricehusk. Materials Science and Engineering A, 364(1-2), 313-323.Liu, F., Jiang, X., Bao, S., Wang, R., Sun, B., & Zhu, M. (2015). Effect ofhydroxyapatite whisker surface graft polymerization on water sorption, solubility and bioactivityof the dental resin composite. Materials Science and Engineering C, 53, 150-155.Liu, F., Jiang, X., Zhang, Q., & Zhu, M. (2014). Strong and bioactive dental resincomposite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles.Composites Science and Technology, 101, 86-93.Liu, F., Wang, R., Cheng, Y., Jiang, X., Zhang, Q., & Zhu, M. (2013). Polymer graftedhydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical properties. Materials Science and Engineering C, 33(8), 4994-5000.Liu, J., Ye, X., Wang, H., Zhu, M., Wang, B., & Yan, H. (2003). The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method.Ceramics International, 29(6), 629-633.Lopes, G. C., De Souza Ferreira, R., Baratieri, L. N., Vieira, L. C. C., & Monteiro Jr,S. (2002). Direct Posterior Resin Composite Restorations: New Techniques and ClinicalPossibilities. Case Reports. Quintessence International, 33, 337-346.Lu, H., Lee, Y. K., Oguri, M., & Powers, J. M. (2006). Properties of a Dental Resin Composite witha Spherical Inorganic Filler. Operative Dentistry, 31(6), 734- 740.Lundin, S. A. (1990). Studies on Posterior Composite Resins with Special Reference to Class IiRestorations. Swedish dental journal. Supplement, 73, 1-41.Lung, C. Y. L., Sarfraz, Z., Habib, A., Khan, A. S., & Matinlinna, J. P. (2016). Effect ofsilanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA basedresin composite. Journal of the Mechanical Behavior of Biomedical Materials, 54, 283-294.Macedo, C. L. R., Mnchow, E. A., Lima, G., Zanchi, C. H., Ogliari, F. A., & Piva, E. (2015).Incorporation of inorganic fillers into experimental resin adhesives: Effects on physicalproperties and bond strength to dentin. International Journal of Adhesion and Adhesives, 62, 78-84.Majhool, A. A., Zainol, I., Azziz, S. S. S. A., Jafaar, C. N. A., & Jahil, M. M. (2019). Mechanical properties improvement of epoxy composites by natural hydroxyapatite from fishscales as a fillers. International Journal of Research inPharmaceutical Sciences, 10(2), 1424-1429.Manhart, J., Kunzelmann, K. H., Chen, H. Y., & Hickel, R. (2000). Mechanicalproperties of new composite restorative materials. Journal of Biomedical MaterialsResearch, 53(4), 353-61.Mezahi, F. Z., Oudadesse, H., Harabi, A., Gal, Y. Le., & Cathelineau, G. (2011).Sintering Effects on Physico Chemical Properties of Bioactivity of Natural and SyntheticHydroxyapatite. Journal of the Australian Ceramic Society, 47(1), 23- 27.Mirsasaani, S. S., Manjili, M. H., Baheiraei, N. (2011). Dental Nanomaterials.Advances in Diverse Industrial Applications of Nanocomposites, 441-474.Mitra, S. B., Wu, D., & Holmes, B. N. (2003). An Application of Nanotechnology in Advanced DentalMaterials. Journal of the American Dental Association, 134, 1382-1390.Mjor, I. (1999). Biological Side Effects to Materials Used in Dentistry. Journal of the RoyalCollege of Surgeons of Edinburgh, 44, 146-149.Mohsen, N. M., & Craig, R. G. (1995). Hydrolytic stability of silanated zirconia-silica-urethane dimethacrylate composites. Journal of Oral Rehabilitation, (22), 213-220.Mondal, S., Mahata, S., Kundu, S., & Mondal, B. (2010). Processing of natural resourced hydroxyapatite ceramics from fish scale. Advances in Applied Ceramics, 109(4),234-239.Mori, H., Tone, Y., Shimizu, K., Zikihara, K., Tokutomi, S., Ida, T., Ihara, H., &Hara, M. (2013). Studies on fish scale collagen of Pacific saury (Cololabis saira). MaterialsScience & Engineering C, 33(1), 174-181.Moshaverinia, A., Ansari, S., Moshaverinia, M., Roohpour, N., Darr, J. A., & Rehman, I.(2008). Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomaterialia, 4(2), 432-440.Moszner, N., & Klapdohr, S. (2004). Nanotechnology for Dental Composites.International Journal of Nanotechnology, 1, 130-156.Moszner, N., & Salz, U. (2001). New Developments of Polymeric Dental Composites.Progress in Polymer Science (Oxford), 26, 535-576.Munksgaard, E. C., Hansen, E. K., & Kato, H. (1987). Wall-to-Wall Polymerization Contraction ofComposite Resins Versus Filler Content. Scandinavian Journal of Dental Research, 95, 526-531.Mustafa, N., Ibrahim, M. H. I., Asmawi, R., & Amin, A. M. (2015). Hydroxyapatite extracted fromwaste fish bones and scales via calcination method. AppliedMechanics and Materials, 773-774, 287-290.Noohom, W., Jack, K. S., Martin, D., & Trau, M. (2009). Understanding the roles ofnanoparticle dispersion and polymer crystallinity in controlling the mechanical properties ofHA/PHBV nanocomposites. Biomedical Materials, 4, 015003.O'Brien, W. J. (2002). Dental Materials and Their Selection. Chicago: London:Quintessence Pub. Co.Oduncu, B. S., Yucel, S., Aydin, I., Sener, I. D., & Yamaner, G. (2010).Polymerisation Shrinkage of Light-Cured Hydroxyapatite (HA)-Reinforced Dental Composites. International Journal of Biomedical and Biological Engineering, 4(4),130-135.Okulus, Z., Buchwald, T., Szybowicz, M., & Voelkel, A. (2014). Study of a newresin-based composites containing hydroxyapatite filler using Raman and infraredspectroscopy. Materials Chemistry and Physics, 145, 304-312.Okulus, Z., Hberger, K., & Voelkel, A. (2014). Sorption, solubility, and mass changes of hydroxyapatite-containing composites in artificial saliva, food simulatingsolutions, tea, and coffee. Journal of Applied Polymer Science, 131(3), 1-10.Osborne, J. W. (1992). Dental Amalgam and Mercury Vapor Release. Advances in dentalresearch, 6, 135-138.Osborne, J. W., & Swift Jr, E. J. (2004). Safety of Dental Amalgam. Journal ofEsthetic and Restorative Dentistry, 16, 377-388.Oysaed, H., & Ruyter, I. E. (1986). Composites for Use in Posterior Teeth:Mechanical Properties Tested under Dry and Wet Conditions. Journal of BiomedicalMaterials Research, 20, 261-271.Ozmen, M., Akin, I., & Marsoglu, M. (2012). Production and Characterisation ofHydroxyapatite-Zirconia Composites. High Temperature Materials and Processes, 31,749-753.Panda, N. N., Pramanik, K., & Sukla, L. B. (2014). Extraction and characterisation of biocompatiblehydroxyapatite from fresh water fish scales for tissue engineering scaffold. Bioprocess andBiosystems Engineering, 37, 433-440.Park, S. W., Lee, Y-K., Kim, Y. U., Kim, M. C., Kim, K. N., Choi, B. J., & Choi, H.J. (2005). The effect of hydroxyapatite on the remineralization of dental fissure sealant. KeyEngineering Materials, 284-286, 35-38.Pati, F., Adhikari, B., & Dhara, S. (2010). Isolation and characterisation of fish scale collagenof higher thermal stability. Bioresource Technology, 101(10), 3737-3742.Peters, M. C., Bresciani, E., Barata, T. J. E., Fagundes, T. C., Navarro, R. L., Navarro,M. F. L., & Dickens, S. H. (2010). In vivo dentin remineralization by calcium- phosphate cement.Journal of Dental Research, 89(3), 286-291.Peutzfeldt, A. (1997). Resin Composites in Dentistry: The Monomer Systems.European Journal of Oral Sciences, 105, 97-116.Phillips, R. W., Avery, D. R., Mehra, R., Swartz, M. L., & McCune, R. J. (1972).Observations on a Composite Resin for Class Ii Restorations: Two-Year Report. The Journal ofProsthetic Dentistry, 28, 164-169.Pijarn, N., Jaroenworaluck, A., Sunsaneeyametha, W., & Stevens, R. (2010).Synthesis and characterisation of nanosized-silica gels formed under controlled conditions. PowderTechnology, 203, 462-468.Pon-On, W., Suntornsaratoon, P., Charoenphandhu, N., Thongbunchoo, J.,Krishnamra, N., & Tang, I. M. (2016). Hydroxyapatite from fish scale for potential useas bone scaffold or regenerative material. Materials Science and Engineering C, 62,183-189.Porto, I. C., de Aguiar, F. H., Brandt, W. C., & Liporoni, P. C. (2013). Mechanical and physicalproperties of silorane and methacrylate-based composites. Journal of Dentistry, 41, 732-739.Rahim, T. N. A. T., Mohamad, D., Ismail, A. R., & Akil, H. M. (2011). Synthesis of nanosilica fillers for experimental dental nanocomposites and their characterisations.Journal of Physical Science, 22(1), 93-105.Rahman, I. A., Masudi, S. M., Luddin, N., & Shiekh, R. A. (2014). One-pot synthesis ofhydroxyapatite-silica nanopowder composite for hardness enhancement of glass ionomer cement(GIC). Bulletin of Materials Science, 37(2), 213-219.Rahman, I. A., & Padavettan, V. (2012). Synthesis of Silica nanoparticles by Sol-Gel:Size-dependent properties, surface modification, and applications in silica- polymernanocomposites - A review. Journal of Nanomaterials.Rajan, G., Raju, R., Jinachandran, S., Farrar, P., & Xi, J. (2019). PolymerisationShrinkage Profiling of Dental Composites using Optical Fibre Sensing and their Correlation withDegree of Conversion and Curing Rate. Scientific Reports, 1- 10.Rastelli, A. N. S., Jacomassi, D. P., Faloni, A. N. A. P. S., Queiroz, T. P., Rojas, S. S., & Ine,M. (2011). The Filler Content of the Dental Composite Resins and Their Influence on DifferentProperties. 0(170), 1-8.Roulet, J. (1997). Benefits and disadvantages of tooth-coloured alternatives to. Journal of Dentistry, 25(6), 459-473.Ruyter, I. E., & ysd, H. (1982). Conversion in different depths of ultraviolet andvisible light activated composite materials. Acta OdontologicaScandinavica, 40(3), 179-192.Sadat-Shojai, M., Atai, M., Nodehi, A., & Khanlar, L. N. (2010). Hydroxyapatite nanorodsas novel fillers for improving the properties of dental adhesives: Synthesis andapplication. Dental Materials, 26, 471-482.Sadat-Shojai, M., Khorasani, M., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). SynthesisMethods for Nanosized Hydroxyapatite with Diverse Structures. Acta Biomaterialia, 9(8), 7591-7621.Salmoria, G. V., Fancello, E. A., Roesler, C. R., & Dabbas, F. (2013). Functionalgraded scaffold of HDPE/HA prepared by selective laser sintering:microstructure and mechanical properties. The International Journal of AdvancedManufacturing Technology, 65(9-12), 1529-1534.Samuel, S. P., Li, S., Mukherjee, I., Guo, Y., Patel, A. C., Baran, G., & Wei, Y.(2009). Mechanical properties of experimental dental composites containing a combinationof mesoporous and nonporous spherical silica as fillers. Dental Materials, 25, 296-301.Santos, C., Clarke, R. L., Braden, M., Guitian, F., & Davy, K. W. M. (2002). Water absorptioncharacteristics of dental composites incorporating hydroxyapatite filler. Biomaterials, 23,1897-1904.Santos, C., Luklinska, Z. B., Clarke, R. L., & Davy, K. W. M. (2001). Hydroxyapatite as a fillerfor dental composite materials: mechanical properties and in vitro bioactivity ofcomposites. Journal of Materials Science: Materials in Medicine, 12, 565-573.Sarrett, D. C., Soderholm, K. J., & Batich, C. D. (1991). Water and Abrasive Effects on Three-BodyWear of Composites. Journal of Dental Research, 70, 1074- 1081.Schneider, L. F. J., Cavalcante, L. M., & Silikas, N. (2010). Shrinkage StressesGenerated during Resin-Composite Applications: A Review. Journal of Dental Biomechanics.Seol, Y., Young, J., Kyun, E., Kim, S., & Cho, D. (2009). MicroelectronicEngineering Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology. Microelectronic Engineering, 86(4-6),1443-1446.Shahdad, S. A., McCabe, J. F., Bull, S., Rusby, S., & Wassell, R. W. (2007). HardnessMeasured with Traditional Vickers and Martens Hardness Methods.Dental Materials, 23, 1079-1085.Shayegan, A., Atash, R., Petein, M., & Abbeele, A. V. (2010). Nanohydroxyapatiteused as a pulpotomy and direct pulp capping agent in primary pig teeth. Journal of Dentistry forChildren, 77, 77-83.Shiekh, R. A., Rahman, I. A., Masudi, S. M., & Luddin, N. (2014). Modification of glass ionomer cement by incorporating hydroxyapatite-silica nano-powder composite: Sol-gel synthesis andcharacterisation. Ceramics International, 40(2), 3165-3170.Sideridou, I., Tserki, V., & Papanastasiou, G. (2002). Effect of chemical structure on degree ofconversion in light-cured dimethacrylate-based dental resins. Biomaterials, 23,1819-1829.Sideridou, I., Tserki, V., & Papanastasiou, G. (2003). Study of water sorption,solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins.Biomaterials, 24, 655-665.Sideridou, I. D., & Karabela, M. M. (2009). Effect of the amount of 3-methacylox-ypropyltrimethoxysilane coupling agent on physical properties of dental resinnanocomposites. Dental Materials, 25(11), 1315-1324.Sideridou, I. D., Karabela, M. M., Micheliou, C. N., Karagiannidis, P. G., &Logothetidis, S. (2009). Physical Properties of a Hybrid and a Nanohybrid DentalLight-Cured Resin Composite. Journal of Biomaterials Science, Polymer Edition, 20, 1831-1844.Skrtic, D., & Antonucci, J. M. (2007). Effect of chemical structure and composition of the resinphase on vinyl conversion of amorphous calcium phosphate-filled composites. PolymerInternational, 56, 497-505.Sockalingam, K., Yahya, M. A., & Abdullah, H. Z. (2015). Preparations ofHydroxyapatite from Tilapia Scales. Advanced Materials Research, 1087, 30-34.Soderholm, K. J. M. (1983). Leaking of Fillers in Dental Composites. Journal of DentalResearch, 62, 126-130.Soderholm, K. J. M. (1984). Influence of Silane Treatment and Filler Fraction onThermal Expansion of Composite Resins. Journal of Dental Research, 63, 1321- 1326.Soderholm, K. J., & Roberts, M. J. (1990). Influence of Water Exposure on the TensileStrength of Composites. Journal of Dental Research, 69, 1812-1816.Sderholm, K. J., Zigan, M., Ragan, M., Fischlschweiger, W., & Bergman, M. (1984). HydrolyticDegradation of Dental Composites. Journal of Dental Research, 63,1248-1254.Srivastava, G. K., Alonso-Alonso, M. L., Fernandez-Bueno, I., Garcia-Gutierrez, M.T., Rull, F., Medina, J., & Pastor, J. C. (2018). Comparison between direct contact andextract exposure methods for PFO cytotoxicity evaluation. Scientific reports, 8(1), 1425.Strietzel, F. P., Reichart, P. A., & Graf, H-L. (2007). Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material(Ostim). Preliminary clinical and histological results. Clinical Oral Implants Research, 18,743-751.Sun, L., & Gong, K. (2001). Silicon-Based Materials from Rice Husks and TheirApplications. Industrial & Engineering Chemistry Research, 40, 5861-5877.Trombelli, L., Simonelli, A., Pramstraller, M., Wikesj, U. M. E., & Farina, R. (2010).Single flap approach with and without guided tissue regeneration and a hydroxyapatite biomaterial in the management of intraosseous periodontal defects. Journal of Periodontology,81(9), 1256-1263.Van Dijken, J. W. V., Wing, K. R., & Ruyter, I. E. (1989). An Evaluation of theRadiopacity of Composite Restorative Materials Used in Class I and Class Ii Cavities.Acta Odontologica Scandinavica, 47, 401-407.Venkatesan, J., Qian, Z. J., Ryu, B., Thomas, N. V., & Kim, S. K. (2011). Acomparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomedical Materials, 6(3), 1-12.Venkatesan, J., Pallela, R., Bhatnagar, I., & Kim, S. K. (2012). Chitosan-amylopectin/hydroxyapatiteand chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. International Journal of BiologicalMacromolecules, 51(5), 1033-1042.Wang, A. J., Lu, Y. P., Zhu, R. F., Li, S. T., & Ma, X. L. (2009). Effect of process parameters on the performance of spray dried hydroxyapatite microspheres.Powder Technology, 191(1-2), 6.Wang, P., Zhao, L., Liu, J., Weir, M. D., Zhou, X., & Xu, H. H. K. (2014). Bonetissue engineering via nanostructured calcium phosphate biomaterials and stem cells. BoneResearch, 2, 14017.Wang, X., Cai, Q., Zhang, X., Wei, Y., Xu, M., Yang, X., Ma, Q., Cheng, Y., & Deng,X. (2016). Improved performance of Bis-GMA / TEGDMA dental composites by net-likestructures formed from SiO? nanofiber fillers. Materials Science and Engineering C, 59, 464-470.Weir, M. D., Chow, L. C., & Xu, H. H. (2012). Remineralization of demineralized enamel viacalcium phosphate nanocomposite. Journal of Dental Research, 91,979-84.White, A. A., Best, S. M., & Kinloch, I. A. (2007). Hydroxyapatite - CarbonNanotube Composites for Biomedical Applications: A Review. International Journal of AppliedCeramic Technology, 4(1), 1-13.Wiegand, A., Buchalla, W., & Attin, T. (2007). Review on fluoride-releasingrestorative materials-fluoride release and uptake characteristics, antibacterial activity andinfluence on caries formation. Dental Materials, 23(3), 343-362.Wille, S., Hlken, I., Haidarschin, G., Adelung, R., & Kern, M. (2016). Biaxialflexural strength of new Bis-GMA / TEGDMA based composites with different fillers for dentalapplications. Dental Materials, 1-6.Willems, G., Lambrechts, P., Braem, M., Celis, J. P., & Vanherle, G. A. (1992).Classification of Dental Composites According to Their Morphological and MechanicalCharacteristics. Dental Materials, 8, 310-319.Wilson, K. S., & Antonucci, J. M. (2006). Interphase Structure-Property Relationships in ThermosetDimethacrylate Nanocomposites. Dental Materials, 22, 995-1001.Xu, J. L., Khor, K. A., Dong, Z. L., Gu, Y. W., Kumar, R., & Cheang, P. (2004).Preparation and characterisation of nano-sized hydroxyapatite powders produced in a radio frequency(rf) thermal plasma. Materials Science and Engineering A, 374(1-2), 101-108.Yamaguchi, R., Powers, J. M., & Dennison, J. B. (1989). Thermal Expansion ofVisible-Light-Cured Composite Resins. Operative Dentistry, 14, 64-67.Yap, A. U. J., Mah, M. K. S., Lye, C. P. W., & Loh, P. L. (2004). Influence of Dietary SimulatingSolvents on the Hardness of Provisional Restorative Materials. Dental Materials, 20,370-376.Ye, Q., Ohsaki, K., Li, K., Li, D., Zhu, C., Ogawa, T., Tenshin, S., & Takano-Yamamoto, T. (2001). Histological reaction to hydroxyapatite in the middle ear of rats. Auris NasusLarynx, 28, 131-136.Yeong, K. C. B., Wang, J., & Ng, S. C. (2001). Mechanochemical Synthesis ofNanocrystalline Hydroxyapatite from CaO and CaHPO?. Biomaterials, 22(20), 2705-2712.Zainol, I., Adenan, N. H., Rahim, N. A., & Jaafar, C. N. A. (2019). Extraction ofnatural hydroxyapatite from tilapia fish scales using alkaline treatment. Materials Today:Proceedings, 16, 1942-1948.Zainol, I., Alwi, N. M., Abidin, M. Z., Haniza, H. M. Z., Ahmad, M. S., & Ramli, A. (2012).Physicochemical Properties of Hydroxyapatite Extracted from FishScales. Advanced Materials Research, 545, 235-239.Zandinejad, A. A., Atai, M., & Pahlevan, A. (2006). The effect of ceramic and porousfillers on the mechanical properties of experimental dental composites. Dental Materials,22, 382-387.Zhang, H., & Darvell, B. W. (2012). Failure and behavior in water of hydroxyapatitewhisker-reinforced bis-GMA-based resin composites. Journal of the Mechanical Behavior of BiomedicalMaterials, 10, 39-47.Zhang, H., & Darvell, B. W. (2012). Mechanical properties of hydroxyapatitewhisker-reinforced bis-GMA-based resin composites. Dental Materials, 28(8), 824-830.Zhang, H., & Zhang, M. (2010). Effect of surface treatment of hydroxyapatite whiskers on the mechanical properties of bis-GMA-based composites. Biomedical Materials,5(5), 054106.Zhou, W. R., & Zheng, Y. F. (2015). Characterization of modified magnesium and magnesium alloys for biomedical applications. Surface Modification of Magnesium and its Alloysfor Biomedical Applications, 263-282.Zulkifli, N. S. C., Rahman, I. A., Mohamad, D., & Husein, A. (2013). A green sol-gel route for thesynthesis of structurally controlled silica particles from rice husk fordental composite filler. Ceramics International, 39(4), 4559-4567.LIST OF PUBLICATIONS1. Razali, R. A. C., Rahim, N. A., Zainol, I., & Sharif, A. M. (2018). Preparationof Dental Composite Using Hydroxyapatite from Natural Sources and Silica.Journal of Physics: Conference Series, 1097, 012050.2. Razali, R. A. C., Zainol, I., & Rahim, N. A. (2020). Synthesis of NaturalHydroxyapatite from Fish Scales and Its Potential Application as Fillers in DentalComposites. American Journal of Engineering Research (AJER), 9(4),166-170.LIST OF CONFERENCES1. The 5?? International Conference on Research, Implementation and Education of Mathematics andSciences 2018 (5?? ICRIEMS). 7??-8?? May 2018. Faculty of Mathematics and Natural Science,Yogyakarta State University. Oral Presentation. Preparation of Dental Composites Using Silica and Hydroxyapatite from Natural Sources.2. The 5?? International Postgraduate Conference on Science and Mathematics 2017 (IPCSM2017). 7??-9?? October 2017 at Universiti Pendidikan Sultan Idris. Oral Presentation.Preparation of Dental Composites Using Silica and Hydroxyapatite from Natural Sources.3. The 4?? International Postgraduate Conference on Science and Mathematics 2016 (IPCSM2016). 19?? November 2016 at Universiti Pendidikan Sultan Idris. Oral Presentation.Preparation of Dental Composites Using Silica andHydroxyapatite from Natural Sources.