Augmented realty (AR) in education: assessment and ranking framework based on fuzzy delphi and hybrid of AHP entropy and vikor methods

<p>This research aims to assist the educational institutions, teachers and students for the</p><p>selection of augmented reality (AR) educational applications. Educational institutions face</p><p>the challenge of evaluating and se...

Full description

Saved in:
Bibliographic Details
Main Author: Al-Shafee, Ghailan Abbood Khudhair
Format: thesis
Language:eng
Published: 2021
Subjects:
N/A
Online Access:https://ir.upsi.edu.my/detailsg.php?det=7068
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:7068
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic N/A
spellingShingle N/A
Al-Shafee, Ghailan Abbood Khudhair
Augmented realty (AR) in education: assessment and ranking framework based on fuzzy delphi and hybrid of AHP entropy and vikor methods
description <p>This research aims to assist the educational institutions, teachers and students for the</p><p>selection of augmented reality (AR) educational applications. Educational institutions face</p><p>the challenge of evaluating and selecting educational AR applications particularly.</p><p>Therefore, the main problem is the appropriate selection of instructional augmented reality</p><p>applications. Framework was proposed to aid the educational institutions in selection and</p><p>ranking the available AR educational applications to select the best one. Improper selection</p><p>decisions may cause educational institutions to lose time, effort, and financial costs. The</p><p>evaluation and benchmarking of AR educational applications are challenging because of</p><p>the multiple conflicting evaluation criteria. This study constructed a decision matrix (DM)</p><p>based on the crossover of the three evaluation perspectives (usability, immersing and user</p><p>perspective) with six AR educational applications. The matrix was evaluated using the</p><p>criteria developed from the evaluation of 15 experts. The alternatives were evaluated by 13</p><p>users. Then asked to answer a questionnaire consisting of 90 questions for each application</p><p>.The AR educational applications were then selected and ranked using multi-criteria</p><p>decision-making techniques, including the Analytic Hierarchy Process (AHP), ENTROPY</p><p>and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). AHP was</p><p>applied to calculate the weights of the main evaluation criteria, ENTROPY to calculate the</p><p>weights for evaluation sub-criteria and VIKOR to select and rank the AR educational</p><p>applications. The results showed that (1) the integration of AHP, ENTROPY and VIKOR</p><p>effectively solved the AR educational applications benchmarking\selection problems. (2)</p><p>The rankings of the AR educational applications obtained from internal and external</p><p>VIKOR group decision making were almost the same.</p><p>(3) The best AR educational application was more immersive and more usable. In the</p><p>objective validation, significant differences were recognized between the groups scores,</p><p>thereby indicating that the ranking results of internal and external VIKOR group decision</p><p>making were valid.</p>
format thesis
qualification_name
qualification_level Doctorate
author Al-Shafee, Ghailan Abbood Khudhair
author_facet Al-Shafee, Ghailan Abbood Khudhair
author_sort Al-Shafee, Ghailan Abbood Khudhair
title Augmented realty (AR) in education: assessment and ranking framework based on fuzzy delphi and hybrid of AHP entropy and vikor methods
title_short Augmented realty (AR) in education: assessment and ranking framework based on fuzzy delphi and hybrid of AHP entropy and vikor methods
title_full Augmented realty (AR) in education: assessment and ranking framework based on fuzzy delphi and hybrid of AHP entropy and vikor methods
title_fullStr Augmented realty (AR) in education: assessment and ranking framework based on fuzzy delphi and hybrid of AHP entropy and vikor methods
title_full_unstemmed Augmented realty (AR) in education: assessment and ranking framework based on fuzzy delphi and hybrid of AHP entropy and vikor methods
title_sort augmented realty (ar) in education: assessment and ranking framework based on fuzzy delphi and hybrid of ahp entropy and vikor methods
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Seni, Komputeran dan Industri Kreatif
publishDate 2021
url https://ir.upsi.edu.my/detailsg.php?det=7068
_version_ 1747833350475743232
spelling oai:ir.upsi.edu.my:70682022-05-18 Augmented realty (AR) in education: assessment and ranking framework based on fuzzy delphi and hybrid of AHP entropy and vikor methods 2021 Al-Shafee, Ghailan Abbood Khudhair N/A <p>This research aims to assist the educational institutions, teachers and students for the</p><p>selection of augmented reality (AR) educational applications. Educational institutions face</p><p>the challenge of evaluating and selecting educational AR applications particularly.</p><p>Therefore, the main problem is the appropriate selection of instructional augmented reality</p><p>applications. Framework was proposed to aid the educational institutions in selection and</p><p>ranking the available AR educational applications to select the best one. Improper selection</p><p>decisions may cause educational institutions to lose time, effort, and financial costs. The</p><p>evaluation and benchmarking of AR educational applications are challenging because of</p><p>the multiple conflicting evaluation criteria. This study constructed a decision matrix (DM)</p><p>based on the crossover of the three evaluation perspectives (usability, immersing and user</p><p>perspective) with six AR educational applications. The matrix was evaluated using the</p><p>criteria developed from the evaluation of 15 experts. The alternatives were evaluated by 13</p><p>users. Then asked to answer a questionnaire consisting of 90 questions for each application</p><p>.The AR educational applications were then selected and ranked using multi-criteria</p><p>decision-making techniques, including the Analytic Hierarchy Process (AHP), ENTROPY</p><p>and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). AHP was</p><p>applied to calculate the weights of the main evaluation criteria, ENTROPY to calculate the</p><p>weights for evaluation sub-criteria and VIKOR to select and rank the AR educational</p><p>applications. The results showed that (1) the integration of AHP, ENTROPY and VIKOR</p><p>effectively solved the AR educational applications benchmarking\selection problems. (2)</p><p>The rankings of the AR educational applications obtained from internal and external</p><p>VIKOR group decision making were almost the same.</p><p>(3) The best AR educational application was more immersive and more usable. In the</p><p>objective validation, significant differences were recognized between the groups scores,</p><p>thereby indicating that the ranking results of internal and external VIKOR group decision</p><p>making were valid.</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7068 https://ir.upsi.edu.my/detailsg.php?det=7068 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Seni, Komputeran dan Industri Kreatif <p>Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A., & Zaidan, B. (2016a). An</p><p>evaluation and selection problems of OSS-LMS packages. SpringerPlus, 5(1), 248.</p><p></p><p>Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A. A., & Zaidan, B. B. (2016b). An</p><p>evaluation and selection problems of OSS-LMS packages. SpringerPlus, 5(1), 248.</p><p>Retrieved from https://doi.org/10.1186/s40064-016-1828-y. doi:10.1186/s40064-</p><p>016-1828-y</p><p></p><p>Adunlin, G., Diaby, V., & Xiao, H. (2015). Application of multicriteria decision analysis</p><p>in health care: a systematic review and bibliometric analysis. Health Expectations,</p><p>18(6), 1894-1905.</p><p></p><p>Ahmad, W. N. K. W., Rezaei, J., Sadaghiani, S., & Tavasszy, L. A. (2017). Evaluation of</p><p>the external forces affecting the sustainability of oil and gas supply chain using Best</p><p>Worst Method. Journal of Cleaner Production, 153, 242-252.</p><p></p><p>Akayr, M., & Akayr, G. (2017). Advantages and challenges associated with augmented</p><p>reality for education: A systematic review of the literature. Educational Research</p><p>Review, 20, 1-11.</p><p></p><p>Akin, N. T. A., & Gokturk, M. (2019). Comparison of the Theory of Mind Tests on the</p><p>Paper, 2D Touch Screen and Augmented Reality Environments on the Students</p><p>With Neurodevelopmental Disorders. IEEE Access, 7, 52390-52404.</p><p></p><p>Alamoodi, A., Zaidan, B., Zaidan, A. A., Samuri, S. M., Ismail, A. R., Zughoul, O., . . .</p><p>Chyad, M. (2019). A review of data analysis for early-childhood period: taxonomy,</p><p>motivations, challenges, recommendation, and methodological aspects. IEEE</p><p>Access, 7, 51069-51103.</p><p></p><p>Albahri, A., Albahri, O., Zaidan, A., Zaidan, B., Hashim, M., Alsalem, M., . . . Enaizan, O.</p><p>(2019). Based multiple heterogeneous wearable sensors: A smart real-time health</p><p>monitoring structured for hospitals distributor. IEEE Access, 7, 37269-37323.</p><p></p><p>Albahri, O., Albahri, A., Zaidan, A., Zaidan, B., Alsalem, M., Mohsin, A., . . . Enaizan, O.</p><p>(2019). Fault-tolerant mHealth framework in the context of IoT-based real-time</p><p>wearable health data sensors. IEEE Access, 7, 50052-50080.</p><p></p><p>Aldlaigan, A. H., & Buttle, F. A. (2002). SYSTRASQ: a new measure of bank service</p><p>quality. International journal of service industry management.</p><p></p><p>Alshafeey, G. A., Lakulu, M. M., Chyad, M., Abdullah, A., & Salem, G. (2019).</p><p>Augmented Reality for the Disabled: Review Articles. Journal of ICT in Education,</p><p>1, 46-57.</p><p></p><p>AlShifay, G., Udofia, J., Zuhair, I., & Hassan, H. DESKTOP VIRTUALISATION AS A</p><p>TOOL TO SUPPORT IT VIRTUAL TEAM. RESEARCH JOURNAL, 104.</p><p></p><p>Altinpulluk, H. (2019). Determining the trends of using augmented reality in education</p><p>between 2006-2016. Education and Information Technologies, 24(2), 1089-1114.</p><p></p><p>Andrea, R., Lailiyah, S., & Agus, F. (2019). " Magic Boosed" an elementary school</p><p>geometry textbook with marker-based augmented reality. Telkomnika, 17(3), 1242-</p><p>1249.</p><p></p><p>Ar, I. M., & Kurtaran, A. (2013). Evaluating the relative efficiency of commercial banks</p><p>in Turkey: An integrated AHP/DEA approach. International Business Research,</p><p>6(4), 129.</p><p></p><p>Aruldoss, M., Lakshmi, T. M., & Venkatesan, V. P. (2013). A survey on multi criteria</p><p>decision making methods and its applications. American Journal of Information</p><p>Systems, 1(1), 31-43.</p><p></p><p>Ashour, O. M., & Okudan, G. E. (2010). Fuzzy AHP and utility theory based patient sorting</p><p>in emergency departments. International Journal of Collaborative Enterprise, 1(3-</p><p>4), 332-358.</p><p></p><p>Azadeh, A., Asadzadeh, S. M., & Tanhaeean, M. (2017). A consensus-based AHP for</p><p>improved assessment of resilience engineering in maintenance organizations.</p><p>Journal of Loss Prevention in the Process Industries, 47, 151-160.</p><p></p><p>Azeez, D., Ali, M. A. M., Gan, K. B., & Saiboon, I. (2013). Comparison of adaptive neurofuzzy</p><p>inference system and artificial neutral networks model to categorize patients</p><p>in the emergency department. SpringerPlus, 2(1), 416.</p><p></p><p>Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual</p><p>Environments, 6(4), 355-385.</p><p></p><p>Baltussen, R., & Niessen, L. (2006). Priority setting of health interventions: the need for</p><p>multi-criteria decision analysis. Cost effectiveness and resource allocation, 4(1),</p><p>14.</p><p></p><p>Baos, R. M., Botella, C., Alcaiz, M., Liao, V., Guerrero, B., & Rey, B. (2004).</p><p>Immersion and emotion: their impact on the sense of presence. Cyberpsychology &</p><p>behavior, 7(6), 734-741.</p><p></p><p>Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art</p><p>survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051-</p><p>13069.</p><p></p><p>Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: an integrated</p><p>approach: Springer Science & Business Media.</p><p></p><p>Bian, Y., Yang, C., Gao, F., Li, H., Zhou, S., Li, H., . . . Meng, X. (2016). A framework</p><p>for physiological indicators of flow in VR games: construction and preliminary</p><p>evaluation. Personal and Ubiquitous Computing, 20(5), 821-832.</p><p></p><p>Bronack, S. C. (2011). The role of immersive media in online education. The Journal of</p><p>Continuing Higher Education, 59(2), 113-117.</p><p></p><p>Bursali, H., & Yilmaz, R. M. (2019). Effect of augmented reality applications on secondary</p><p>school students' reading comprehension and learning permanency. Computers in</p><p>Human Behavior, 95, 126-135.</p><p></p><p>Cai, S., Chiang, F.-K., Sun, Y., Lin, C., & Lee, J. J. (2017). Applications of augmented</p><p>reality-based natural interactive learning in magnetic field instruction. Interactive</p><p>Learning Environments, 25(6), 778-791.</p><p></p><p>Cai, S., Liu, E., Yang, Y., & Liang, J. C. (2019). Tabletbased AR technology: Impacts on</p><p>students conceptions and approaches to learning mathematics according to their</p><p>selfefficacy. British Journal of Educational Technology, 50(1), 248-263.</p><p></p><p>Cai, S., Wang, X., & Chiang, F.-K. (2014). A case study of Augmented Reality simulation</p><p>system application in a chemistry course. Computers in Human Behavior, 37, 31-</p><p>40.</p><p></p><p>Cakir, R., & Korkmaz, O. (2019). The effectiveness of augmented reality environments on</p><p>individuals with special education needs. Education and Information Technologies,</p><p>24(2), 1631-1659.</p><p></p><p>Campanella, G., & Ribeiro, R. A. (2011). A framework for dynamic multiple-criteria</p><p>decision making. Decision Support Systems, 52(1), 52-60.</p><p></p><p>Cavallini, C., Giorgetti, A., Citti, P., & Nicolaie, F. (2013). Integral aided method for</p><p>material selection based on quality function deployment and comprehensive</p><p>VIKOR algorithm. Materials & Design, 47, 27-34.</p><p></p><p>Chang, H.-Y., Hsu, Y.-S., & Wu, H.-K. (2016). A comparison study of augmented reality</p><p>versus interactive simulation technology to support student learning of a socioscientific</p><p>issue. Interactive Learning Environments, 24(6), 1148-1161.</p><p></p><p>Chang, R.-C., Chung, L.-Y., & Huang, Y.-M. (2016). Developing an interactive augmented</p><p>reality system as a complement to plant education and comparing its effectiveness</p><p>with video learning. Interactive Learning Environments, 24(6), 1245-1264.</p><p></p><p>Chang, S.-C., & Hwang, G.-J. (2018). Impacts of an augmented reality-based flipped</p><p>learning guiding approach on students scientific project performance and</p><p>perceptions. Computers & Education.</p><p></p><p>Chen, C.-H., Lee, I.-J., & Lin, L.-Y. (2016). Augmented reality-based video-modeling</p><p>storybook of nonverbal facial cues for children with autism spectrum disorder to</p><p>improve their perceptions and judgments of facial expressions and emotions.</p><p>Computers in Human Behavior, 55, 477-485.</p><p></p><p>Chen, C.-p., & Wang, C.-H. (2015). Employing augmented-reality-embedded instruction</p><p>to disperse the imparities of individual differences in earth science learning.</p><p>Journal of Science Education and Technology, 24(6), 835-847.</p><p></p><p>Chen, J. A., Metcalf, S. J., & Tutwiler, M. S. (2014). Motivation and beliefs about the</p><p>nature of scientific knowledge within an immersive virtual ecosystems</p><p>environment. Contemporary Educational Psychology, 39(2), 112-123.</p><p></p><p>Chen, N., Lin, J., Hoi, S. C., Xiao, X., & Zhang, B. (2014). AR-miner: mining informative</p><p>reviews for developers from mobile app marketplace. Paper presented at the</p><p>Proceedings of the 36th international conference on software engineering.</p><p></p><p>Chen, P., Liu, X., Cheng, W., & Huang, R. (2017). A review of using Augmented Reality</p><p>in Education from 2011 to 2016. In Innovations in Smart Learning (pp. 13-18):</p><p>Springer.</p><p></p><p>Chen, Y.-H., & Wang, C.-H. (2018). Learner presence, perception, and learning</p><p>achievements in augmentedrealitymediated learning environments. Interactive</p><p>Learning Environments, 26(5), 695-708.</p><p></p><p>Cheng, K.-H. (2018). Surveying Students Conceptions of Learning Science by</p><p>Augmented Reality and their Scientific Epistemic Beliefs. Eurasia Journal of</p><p>Mathematics, Science and Technology Education, 14(4), 1147-1159.</p><p></p><p>Cheng, M. T., She, H. C., & Annetta, L. A. (2015). Game immersion experience: its</p><p>hierarchical structure and impact on gamebased science learning. Journal of</p><p>Computer Assisted Learning, 31(3), 232-253.</p><p></p><p>Chiang, T. H.-C., Yang, S. J., & Hwang, G.-J. (2014). An augmented reality-based mobile</p><p>learning system to improve students' learning achievements and motivations in</p><p>natural science inquiry activities. Educational Technology & Society, 17(4), 352-</p><p>365.</p><p></p><p>Chiang, T. H., Yang, S. J., & Hwang, G.-J. (2014). Students' online interactive patterns in</p><p>augmented reality-based inquiry activities. Computers & Education, 78, 97-108.</p><p></p><p>Chiu, J. L., DeJaegher, C. J., & Chao, J. (2015). The effects of augmented virtual science</p><p>laboratories on middle school students' understanding of gas properties. Computers</p><p>& Education, 85, 59-73.</p><p></p><p>Chiu, W.-Y., Tzeng, G.-H., & Li, H.-L. (2013). A new hybrid MCDM model combining</p><p>DANP with VIKOR to improve e-store business. Knowledge-Based Systems, 37,</p><p>48-61.</p><p></p><p>Chou, S.-Y., Chang, Y.-H., & Shen, C.-Y. (2008). A fuzzy simple additive weighting</p><p>system under group decision-making for facility location selection with</p><p>objective/subjective attributes. European Journal of Operational Research, 189(1),</p><p>132-145.</p><p></p><p>Coxon, M., Kelly, N., & Page, S. (2016). Individual differences in virtual reality: Are</p><p>spatial presence and spatial ability linked? Virtual Reality, 20(4), 203-212.</p><p></p><p>Cummings, J. J., & Bailenson, J. N. (2016). How immersive is enough? A meta-analysis</p><p>of the effect of immersive technology on user presence. Media Psychology, 19(2),</p><p>272-309.</p><p></p><p>da Silva, M. M., Teixeira, J. M. X., Cavalcante, P. S., & Teichrieb, V. (2019). Perspectives</p><p>on how to evaluate augmented reality technology tools for education: a systematic</p><p>review. Journal of the Brazilian Computer Society, 25(1), 3.</p><p></p><p>Dalim, C. S. C., Kolivand, H., Kadhim, H., Sunar, M. S., & Billinghurst, M. (2017). Factors</p><p>influencing the acceptance of augmented reality in education: a review of the</p><p>literature.</p><p></p><p>Dawood, K. A., Sharif, K. Y., Zaidan, A., Ghani, A. A. A., Zulzalil, H. B., & Zaidan, B. J.</p><p>I. A. (2019). Mapping and Analysis of Open Source Software (OSS) usability for</p><p>sustainable OSS product. 7, 65913-65933.</p><p></p><p>Dede, C. (2009). Immersive interfaces for engagement and learning. science, 323(5910),</p><p>66-69.</p><p></p><p>Dolan, J. G., Boohaker, E., Allison, J., & Imperiale, T. F. (2013). Patients preferences and</p><p>priorities regarding colorectal cancer screening. Medical Decision Making, 33(1),</p><p>59-70.</p><p></p><p>dos Santos Nunes, E. P., Roque, L. G., & dos Santos Nunes, F. d. L. (2016). Measuring</p><p>Knowledge Acquisition in 3D Virtual Learning Environments. IEEE computer</p><p>graphics and applications, 36(2), 58-67.</p><p></p><p>Enyedy, N., Danish, J. A., & DeLiema, D. (2015). Constructing liminal blends in a</p><p>collaborative augmented-reality learning environment. International Journal of</p><p>Computer-Supported Collaborative Learning, 10(1), 7-34.</p><p></p><p>Erbas, C., & Demirer, V. (2019). The effects of augmented reality on students' academic</p><p>achievement and motivation in a biology course. Journal of Computer Assisted</p><p>Learning.</p><p></p><p>Felnhofer, A., Kothgassner, O. D., Schmidt, M., Heinzle, A.-K., Beutl, L., Hlavacs, H., &</p><p>Kryspin-Exner, I. (2015). Is virtual reality emotionally arousing? Investigating five</p><p>emotion inducing virtual park scenarios. International Journal of Human-</p><p>Computer Studies, 82, 48-56.</p><p></p><p>Frank, J. A., & Kapila, V. (2017). Mixed-reality learning environments: Integrating mobile</p><p>interfaces with laboratory test-beds. Computers & Education, 110, 88-104.</p><p></p><p>Gan, H. S., Tee, N. Y. K., Bin Mamtaz, M. R., Xiao, K., Cheong, B. H. P., Liew, O. W., &</p><p>Ng, T. W. (2018). Augmented reality experimentation on oxygen gas generation</p><p>from hydrogen peroxide and bleach reaction. Biochemistry and Molecular Biology</p><p>Education, 46(3), 245-252.</p><p></p><p>Garg, H. (2019). Intuitionistic fuzzy hamacher aggregation operators with entropy weight</p><p>and their applications to multi-criteria decision-making problems. Iranian Journal</p><p>of Science and Technology, Transactions of Electrical Engineering, 43(3), 597-</p><p>613.</p><p></p><p>Garzn, J., Pavn, J., & Baldiris, S. (2019). Systematic review and meta-analysis of</p><p>augmented reality in educational settings. Virtual Reality, 1-13.</p><p></p><p>Georgiou, Y., & Kyza, E. A. (2017a). A design-based approach to augmented reality</p><p>location-based activities: investigating immersion in relation to student learning.</p><p>Paper presented at the Proceedings of the 16th World Conference on Mobile and</p><p>Contextual Learning.</p><p></p><p>Georgiou, Y., & Kyza, E. A. (2017b). The development and validation of the ARI</p><p>questionnaire: An instrument for measuring immersion in location-based</p><p>augmented reality settings. International Journal of Human-Computer Studies, 98,</p><p>24-37.</p><p></p><p>Georgiou, Y., & Kyza, E. A. (2018). Relations between student motivation, immersion and</p><p>learning outcomes in location-based augmented reality settings. Computers in</p><p>Human Behavior, 89, 173-181.</p><p></p><p>Giasiranis, S., & Sofos, L. (2017). Flow Experience and Educational Effectiveness of</p><p>Teaching Informatics using AR. Journal of Educational Technology & Society,</p><p>20(4), 78-88.</p><p></p><p>Goff, E. E., Mulvey, K. L., Irvin, M. J., & Hartstone-Rose, A. (2018). Applications of</p><p>Augmented Reality in Informal Science Learning Sites: a Review. Journal of</p><p>Science Education and Technology, 1-15.</p><p></p><p>Gopalan, V., Bakar, J. A. A., Zulkifli, A. N., & Alwi, A. (2018). A Review of Augmented</p><p>Multimedia Elements in Science Learning. Journal of Telecommunication,</p><p>Electronic and Computer Engineering (JTEC), 10(1-10), 87-92.</p><p></p><p>Grinberg, A. M., Careaga, J. S., Mehl, M. R., & OConnor, M.-F. (2014). Social</p><p>engagement and user immersion in a socially based virtual world. Computers in</p><p>Human Behavior, 36, 479-486.</p><p></p><p>Gul, M., Celik, E., Aydin, N., Gumus, A. T., & Guneri, A. F. (2016). A state of the art</p><p>literature review of VIKOR and its fuzzy extensions on applications. Applied Soft</p><p>Computing, 46, 60-89.</p><p></p><p>Gn, E. T., & Atasoy, B. (2017). The effects of augmented reality on elementary school</p><p>students spatial ability and academic achievement. Egitim ve Bilim, 42(191).</p><p></p><p>Guo, S., & Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and</p><p>its applications. Knowledge-Based Systems, 121(Supplement C), 23-31. Retrieved</p><p>from http://www.sciencedirect.com/science/article/pii/S0950705117300114.</p><p>doi:https://doi.org/10.1016/j.knosys.2017.01.010</p><p></p><p>Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst</p><p>method and VIKOR. Journal of Air Transport Management, 68, 35-47.</p><p></p><p>Gupta, H., & Barua, M. K. (2017). Supplier selection among SMEs on the basis of their</p><p>green innovation ability using BWM and fuzzy TOPSIS. Journal of Cleaner</p><p>Production, 152, 242-258.</p><p></p><p>Guzman, E., El-Haliby, M., & Bruegge, B. (2015). Ensemble methods for app review</p><p>classification: An approach for software evolution (n). Paper presented at the 2015</p><p>30th IEEE/ACM International Conference on Automated Software Engineering</p><p>(ASE).</p><p></p><p>Hansen, A. H., & Mossberg, L. (2013). Consumer immersion: A key to extraordinary</p><p>experiences. In Handbook on the experience economy: Edward Elgar Publishing.</p><p></p><p>Harncharnchai, A., & Saeheaw, T. (2018). Context-aware learning using augmented reality</p><p>and WebQuest to improve students' learning outcomes in history. International</p><p>Journal of Innovation and Learning, 23(3), 283-303.</p><p></p><p>Havlkov, V., orgo, A., Blek, M., Lamanauskas, V., ai, S. ., Ersozlu, Z. N., . . .</p><p>Ersozlu, A. (2018). Can Virtual Dissection Replace Traditional Hands-on</p><p>Dissection in School Biology Laboratory Work? Eurasia Journal of Mathematics,</p><p>Science and Technology Education, 14(4), 1415-1429.</p><p></p><p>Hilgerink, M. P., Hummel, M. J., Manohar, S., Vaartjes, S. R., & IJzerman, M. J. (2011).</p><p>Assessment of the added value of the Twente Photoacoustic Mammoscope in breast</p><p>cancer diagnosis. Medical devices (Auckland, NZ), 4, 107.</p><p></p><p>Hoehle, H., & Venkatesh, V. (2015). Mobile application usability: conceptualization and</p><p>instrument development. Mis Quarterly, 39(2), 435-472.</p><p></p><p>Hsu, T.-C. (2017). Learning English with augmented reality: Do learning styles matter?</p><p>Computers & Education, 106, 137-149.</p><p></p><p>Huang, T.-C., Chen, C.-C., & Chou, Y.-W. (2016). Animating eco-education: To see, feel,</p><p>and discover in an augmented reality-based experiential learning environment.</p><p>Computers & Education, 96, 72-82.</p><p></p><p>Huang, T.-L., & Liao, S.-L. (2017). Creating e-shopping multisensory flow experience</p><p>through augmented-reality interactive technology. Internet Research.</p><p></p><p>Huang, T.-L., & Liao, S. (2015). A model of acceptance of augmented-reality interactive</p><p>technology: the moderating role of cognitive innovativeness. Electronic Commerce</p><p>Research, 15(2), 269-295.</p><p></p><p>Huang, T.-L., & Liu, F. H. (2014). Formation of augmented-reality interactive technology's</p><p>persuasive effects from the perspective of experiential value. Internet Research.</p><p></p><p>Huang, Y.-M., & Lin, P. H. (2017). Evaluating students learning achievement and flow</p><p>experience with tablet PCs based on AR and tangible technology in u-learning.</p><p>Library Hi Tech, 35(4), 602-614.</p><p></p><p>Hudson, S., Matson-Barkat, S., Pallamin, N., & Jgou, G. (2019). With or without you?</p><p>Interaction and immersion in a virtual reality experience. Journal of Business</p><p>Research, 100, 459-468.</p><p></p><p>Hung, Y. H., Chen, C. H., & Huang, S. W. (2017). Applying augmented reality to enhance</p><p>learning: a study of different teaching materials. Journal of Computer Assisted</p><p>Learning, 33(3), 252-266.</p><p></p><p>Hwang, G.-J., Wu, P.-H., Chen, C.-C., & Tu, N.-T. (2016). Effects of an augmented realitybased</p><p>educational game on students' learning achievements and attitudes in realworld</p><p>observations. Interactive Learning Environments, 24(8), 1895-1906.</p><p></p><p>Ibez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A</p><p>systematic review. Computers & Education.</p><p></p><p>Ibanez, M.-B., Di-Serio, A., Villaran-Molina, D., & Delgado-Kloos, C. (2015). Support for</p><p>augmented reality simulation systems: The effects of scaffolding on learning</p><p>outcomes and behavior patterns. IEEE Transactions on learning technologies, 9(1),</p><p>46-56.</p><p></p><p>Ibanez, M.-B., Di-Serio, A., Villaran-Molina, D., & Delgado-Kloos, C. (2016). Support for</p><p>augmented reality simulation systems: the effects of scaffolding on learning</p><p>outcomes and behavior patterns. IEEE Transactions on learning technologies, 9(1),</p><p>46-56.</p><p></p><p>Ibez, M. B., Di Serio, ., Villarn, D., & Kloos, C. D. (2014). Experimenting with</p><p>electromagnetism using augmented reality: Impact on flow student experience and</p><p>educational effectiveness. Computers & Education, 71, 1-13.</p><p></p><p>Jablonsky, J. (2014). MS Excel based software support tools for decision problems with</p><p>multiple criteria. Procedia Economics and Finance, 12, 251-258.</p><p></p><p>Jadhav, A., & Sonar, R. (2009). Analytic hierarchy process (AHP), weighted scoring</p><p>method (WSM), and hybrid knowledge based system (HKBS) for software selection:</p><p>a comparative study. Paper presented at the 2009 Second International Conference</p><p>on Emerging Trends in Engineering & Technology.</p><p></p><p>Jahan, A., Mustapha, F., Ismail, M. Y., Sapuan, S., & Bahraminasab, M. (2011). A</p><p>comprehensive VIKOR method for material selection. Materials & Design, 32(3),</p><p>1215-1221.</p><p></p><p>Joo-Nagata, J., Abad, F. M., Giner, J. G.-B., & Garca-Pealvo, F. J. (2017). Augmented</p><p>reality and pedestrian navigation through its implementation in m-learning and elearning:</p><p>Evaluation of an educational program in Chile. Computers & Education,</p><p>111, 1-17.</p><p></p><p>Jumaah, F., Zadain, A., Zaidan, B., Hamzah, A., & Bahbibi, R. (2018). Decision-Making</p><p>Solution based Multi-Measurement Design Parameter for Optimization of GPS</p><p>Receiver Tracking Channels in Static and Dynamic Real-Time Positioning</p><p>Multipath Environment. Measurement.</p><p></p><p>Jun, H., XiaoLing, Y., Yi, L., HUANG, W., Jun, C., & DaHu, L. (2019). Comprehensive</p><p>Evaluation of Microgrid Planning Scheme based on AHP-Entropy method. Paper</p><p>presented at the 2019 IEEE Sustainable Power and Energy Conference (iSPEC).</p><p></p><p>Jung, T., tom Dieck, M. C., Lee, H., & Chung, N. (2016). Effects of virtual reality and</p><p>augmented reality on visitor experiences in museum. In Information and</p><p>communication technologies in tourism 2016 (pp. 621-635): Springer.</p><p></p><p>Kabir, M. A., Salem, O. A., & Rehman, M. U. (2017). Discovering knowledge from mobile</p><p>application users for usability improvement: A fuzzy association rule mining</p><p>approach. Paper presented at the 2017 8th IEEE International Conference on</p><p>Software Engineering and Service Science (ICSESS).</p><p></p><p>Kalid, N., Zaidan, A., Zaidan, B., Salman, O. H., Hashim, M., Albahri, O., & Albahri, A.</p><p>(2018). Based on real time remote health monitoring systems: a new approach for</p><p>prioritization large scales data patients with chronic heart diseases using body</p><p>sensors and communication technology. Journal of medical systems, 42(4), 69.</p><p></p><p>Karahalios, H. (2017). The application of the AHP-TOPSIS for evaluating ballast water</p><p>treatment systems by ship operators. Transportation Research Part D: Transport</p><p>and Environment, 52, 172-184.</p><p></p><p>Kaur, S., Sehra, S. K., & Sehra, S. S. (2016). A framework for software quality model</p><p>selection using topsis. Paper presented at the 2016 IEEE International Conference</p><p>on Recent Trends in Electronics, Information & Communication Technology</p><p>(RTEICT).</p><p></p><p>Kaya, ., olak, M., & Terzi, F. (2018). Use of MCDM techniques for energy policy and</p><p>decisionmaking problems: A review. International Journal of Energy Research,</p><p>42(7), 2344-2372.</p><p></p><p>Kazanidis, I., Palaigeorgiou, G., Papadopoulou, ., & Tsinakos, A. (2018). Augmented</p><p>Interactive Video: Enhancing Video Interactivity for the School Classroom.</p><p>Journal of Engineering Science and Technology Review, 11(2), 174-181.</p><p></p><p>Ke, F., Lee, S., & Xu, X. (2016). Teaching training in a mixed-reality integrated learning</p><p>environment. Computers in Human Behavior, 62, 212-220.</p><p></p><p>Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and</p><p>value trade-offs: Cambridge university press.</p><p></p><p>Kim, M. J., & Cho, M. E. (2014). Studying children's tactile problem-solving in a digital</p><p>environment. Thinking Skills and Creativity, 12, 1-13.</p><p></p><p>Kim, S. K., Kang, S.-J., Choi, Y.-J., Choi, M.-H., & Hong, M. (2017). Augmented-Reality</p><p>Survey: from Concept to Application. KSII Transactions on Internet & Information</p><p>Systems, 11(2).</p><p></p><p>Kornyshova, E., & Salinesi, C. (2007, 1-5 April 2007). MCDM Techniques Selection</p><p>Approaches: State of the Art. Paper presented at the 2007 IEEE Symposium on</p><p>Computational Intelligence in Multi-Criteria Decision-Making.</p><p></p><p>Kourouthanassis, P., Boletsis, C., Bardaki, C., & Chasanidou, D. (2015). Tourists</p><p>responses to mobile augmented reality travel guides: The role of emotions on</p><p>adoption behavior. Pervasive and Mobile Computing, 18, 71-87.</p><p></p><p>Kk, S., Ylmaz, R. M., & Gkta, Y. (2014). Augmented reality for learning English:</p><p>Achievement, attitude and cognitive load levels of students. Education &</p><p>Science/Egitim ve Bilim, 39(176).</p><p></p><p>Kuhn, J., Lukowicz, P., Hirth, M., Poxrucker, A., Weppner, J., & Younas, J. (2016).</p><p>gPhysics-Using Smart Glasses for Head-Centered, Context-Aware Learning in</p><p>Physics Experiments. Paper presented at the TLT.</p><p></p><p>Kyza, E. A., & Georgiou, Y. (2019). Scaffolding augmented reality inquiry learning: the</p><p>design and investigation of the TraceReaders location-based, augmented reality</p><p>platform. Interactive Learning Environments, 27(2), 211-225.</p><p></p><p>Lahby, M., Cherkaoui, L., & Adib, A. (2013). An enhanced-TOPSIS based network</p><p>selection technique for next generation wireless networks. Paper presented at the</p><p>ICT 2013.</p><p></p><p>Lai, A. F., Chen, C. H., & Lee, G. Y. (2019). An augmented realitybased learning</p><p>approach to enhancing students science reading performances from the perspective</p><p>of the cognitive load theory. British Journal of Educational Technology, 50(1),</p><p>232-247.</p><p></p><p>Laine, T. H., & Suk, H. J. (2016). Designing mobile augmented reality exergames. Games</p><p>and Culture, 11(5), 548-580.</p><p></p><p>Lee, I.-J. (2019). Using augmented reality to train students to visualize three-dimensional</p><p>drawings of mortisetenon joints in furniture carpentry. Interactive Learning</p><p>Environments, 1-15.</p><p></p><p>Lee, I.-J., Chen, C.-H., Wang, C.-P., & Chung, C.-H. (2018). Augmented Reality Plus</p><p>Concept Map Technique to Teach Children with ASD to Use Social Cues When</p><p>Meeting and Greeting. The Asia-Pacific Education Researcher, 27(3), 227-243.</p><p></p><p>Li, X., & Zhang, Z. (2015). A User-App Interaction Reference Model for Mobility</p><p>Requirements Analysis. ICSEA 2015, 170-177.</p><p></p><p>Li, X., Zhang, Z., & Stefanidis, K. (2018). Sentiment-aware Analysis of Mobile Apps User</p><p>Reviews Regarding Particular Updates. Paper presented at the ICSEA 2018.</p><p></p><p>Liberatore, M. J., & Nydick, R. L. (2008). The analytic hierarchy process in medical and</p><p>health care decision making: A literature review. European Journal of Operational</p><p>Research, 189(1), 194-207.</p><p></p><p>Lin, C.-Y., Chai, H.-C., Wang, J.-y., Chen, C.-J., Liu, Y.-H., Chen, C.-W., . . . Huang, Y.-</p><p>M. (2016). Augmented reality in educational activities for children with disabilities.</p><p>Displays, 42, 51-54.</p><p></p><p>Lin, H.-C. K., Chen, M.-C., & Chang, C.-K. (2015). Assessing the effectiveness of learning</p><p>solid geometry by using an augmented reality-assisted learning system. Interactive</p><p>Learning Environments, 23(6), 799-810.</p><p></p><p>Lindner, C., Rienow, A., & Jrgens, C. (2019). Augmented Reality applications as digital</p><p>experiments for educationAn example in the Earth-Moon System. Acta</p><p>Astronautica.</p><p></p><p>Liou, H.-H., Yang, S. J., Chen, S. Y., & Tarng, W. (2017). The influences of the 2d imagebased</p><p>augmented reality and virtual reality on student learning. Journal of</p><p>Educational Technology & Society, 20(3), 110-121.</p><p></p><p>Lo, H.-W., Liou, J. J., Wang, H.-S., & Tsai, Y.-S. (2018). An integrated model for solving</p><p>problems in green supplier selection and order allocation. Journal of Cleaner</p><p>Production, 190, 339-352.</p><p></p><p>Lotfi, F. H., & Fallahnejad, R. (2010). Imprecise Shannons entropy and multi attribute</p><p>decision making. Entropy, 12(1), 53-62.</p><p></p><p>Loup-Escande, E., Frenoy, R., Poplimont, G., Thouvenin, I., Gapenne, O., & Megalakaki,</p><p>O. (2017). Contributions of mixed reality in a calligraphy learning task: Effects of</p><p>supplementary visual feedback and expertise on cognitive load, user experience and</p><p>gestural performance. Computers in Human Behavior, 75, 42-49.</p><p></p><p>Lu, S.-J., & Liu, Y.-C. (2015). Integrating augmented reality technology to enhance</p><p>childrens learning in marine education. Environmental Education Research, 21(4),</p><p>525-541.</p><p></p><p>Maalej, W., & Nabil, H. (2015). Bug report, feature request, or simply praise? on</p><p>automatically classifying app reviews. Paper presented at the 2015 IEEE 23rd</p><p>international requirements engineering conference (RE).</p><p></p><p>Mahjouri, M., Ishak, M. B., Torabian, A., Manaf, L. A., Halimoon, N., & Ghoddusi, J.</p><p>(2017). Optimal selection of Iron and Steel wastewater treatment technology using</p><p>integrated multi-criteria decision-making techniques and fuzzy logic. Process</p><p>Safety and Environmental Protection, 107, 54-68.</p><p></p><p>Malczewski, J. (1999). GIS and multicriteria decision analysis: John Wiley & Sons.</p><p></p><p>Martn-Gutirrez, J., Mora, C. E., Aorbe-Daz, B., & Gonzlez-Marrero, A. (2017).</p><p>Virtual technologies trends in education. EURASIA Journal of Mathematics</p><p>Science and Technology Education, 13(2), 469-486.</p><p></p><p>Martins, V. F., Kirner, T. G., & Kirner, C. (2015). Subjective usability evaluation criteria</p><p>of augmented reality applications. Paper presented at the International Conference</p><p>on Virtual, Augmented and Mixed Reality.</p><p></p><p>McGloin, R., Farrar, K. M., & Fishlock, J. (2015). Triple whammy! Violent games and</p><p>violent controllers: Investigating the use of realistic gun controllers on perceptions</p><p>of realism, immersion, and outcome aggression. Journal of communication, 65(2),</p><p>280-299.</p><p></p><p>Medineckien, M., & Bjrk, F. (2011). Owner preferences regarding renovation measures</p><p>the demonstration of using multi-criteria decision making. Journal of civil</p><p>engineering and management, 17(2), 284-295.</p><p></p><p>Mills, A. F. (2016). A simple yet effective decision support policy for mass-casualty triage.</p><p>European Journal of Operational Research, 253(3), 734-745.</p><p></p><p>Morschheuser, B., Riar, M., Hamari, J., & Maedche, A. (2017). How games induce</p><p>cooperation? A study on the relationship between game features and we-intentions</p><p>in an augmented reality game. Computers in Human Behavior, 77, 169-183.</p><p></p><p>Mountford, V. A., Tchanturia, K., & Valmaggia, L. (2016). What Are You Thinking</p><p>When You Look at Me? A Pilot Study of the Use of Virtual Reality in Body Image.</p><p>Cyberpsychology, Behavior, and Social Networking, 19(2), 93-99.</p><p></p><p>Mylonas, G., Triantafyllis, C., & Amaxilatis, D. (2019). An Augmented Reality Prototype</p><p>for supporting IoT-based Educational Activities for Energy-efficient School</p><p>Buildings. Electronic Notes in Theoretical Computer Science, 343, 89-101.</p><p></p><p>Nafari, J., Arab, A., & Ghaffari, S. (2017). Through the looking glass: Analysis of factors</p><p>influencing Iranian students study abroad motivations and destination choice.</p><p>SAGE Open, 7(2), 2158244017716711.</p><p></p><p>Nagata, J. J., Giner, J. R. G.-B., & Abad, F. M. (2016). Virtual heritage of the territory:</p><p>Design and implementation of educational resources in augmented reality and</p><p>mobile pedestrian navigation. IEEE Revista Iberoamericana de Tecnologias Del</p><p>Aprendizaje, 11(1), 41-46.</p><p></p><p>Nilsson, H., Nordstrm, E.-M., & hman, K. (2016). Decision support for participatory</p><p>forest planning using AHP and TOPSIS. Forests, 7(5), 100.</p><p></p><p>Oh, C., Herrera, F., & Bailenson, J. (2019). The Effects of Immersion and Real-World</p><p>Distractions on Virtual Social Interactions. Cyberpsychology, Behavior, and Social</p><p>Networking, 22(6), 365-372.</p><p></p><p>Oliveira, M., Fontes, D. B., & Pereira, M. T. R. (2013). Multicriteria decision making: A</p><p>case study in the automobile industry.</p><p></p><p>Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A</p><p>comparative analysis of VIKOR and TOPSIS. European Journal of Operational</p><p>Research, 156(2), 445-455.</p><p></p><p>Opricovic, S., & Tzeng, G.-H. (2007). Extended VIKOR method in comparison with</p><p>outranking methods. European Journal of Operational Research, 178(2), 514-529.</p><p></p><p>Pallavicini, F., Pepe, A., & Minissi, M. E. (2019). Gaming in Virtual Reality: What</p><p>Changes in Terms of Usability, Emotional Response and Sense of Presence</p><p>Compared to Non-Immersive Video Games? Simulation & Gaming, 50(2), 136-</p><p>159.</p><p></p><p>Pamuar, D., Petrovi, I., & irovi, G. (2018). Modification of the BestWorst and</p><p>MABAC methods: A novel approach based on interval-valued fuzzy-rough</p><p>numbers. Expert Systems with Applications, 91, 89-106.</p><p></p><p>Perez-Sanagustin, M., Hernndez-Leo, D., Santos, P., Kloos, C. D., & Blat, J. (2014).</p><p>Augmenting reality and formality of informal and non-formal settings to enhance</p><p>blended learning. IEEE Transactions on learning technologies, 7(2), 118-131.</p><p></p><p>Ponners, P. J., & Piller, Y. (2019). Investigating the Impact of Augmented Reality on</p><p>Elementary Students Mental Model of Scientists. TechTrends, 63(1), 33-40.</p><p></p><p>Pradhan, L., Zhang, C., & Bethard, S. (2016). Towards extracting coherent user concerns</p><p>and their hierarchical organization from user reviews. Paper presented at the 2016</p><p>IEEE 17th International Conference on Information Reuse and Integration (IRI).</p><p></p><p>Pribeanu, C., Balog, A., & Iordache, D. D. (2017). Measuring the perceived quality of an</p><p>AR-based learning application: a multidimensional model. Interactive Learning</p><p>Environments, 25(4), 482-495.</p><p></p><p>Qader, M., Zaidan, B., Zaidan, A., Ali, S., Kamaluddin, M., & Radzi, W. (2017). A</p><p>methodology for football players selection problem based on multi-measurements</p><p>criteria analysis. Measurement, 111, 38-50.</p><p></p><p>Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis.</p><p>Personal and Ubiquitous Computing, 18(6), 1533-1543.</p><p></p><p>Rahmat, H., Zulzalil, H., Ghani, A. A. A., & Kamaruddin, A. (2015). An approach towards</p><p>development of evaluation framework for usability of smartphone applications.</p><p>Paper presented at the 2015 9th Malaysian Software Engineering Conference</p><p>(MySEC).</p><p></p><p>Rao, A. R. D., Sai, N. V., & Babu, K. P. (2017). An Integrated approach using VIKOR and</p><p>ENTROPY methods for a Supplier selection problem. Int. J. Innov. Eng. Technol.,</p><p>8(3), 1-9.</p><p></p><p>Raviv, G., Shapira, A., & Fishbain, B. (2017). AHP-based analysis of the risk potential of</p><p>safety incidents: Case study of cranes in the construction industry. Safety science,</p><p>91, 298-309.</p><p></p><p>Read, J. C., & Bohr, I. (2014). User experience while viewing stereoscopic 3D television.</p><p>Ergonomics, 57(8), 1140-1153.</p><p></p><p>Ren, J. (2018). Selection of sustainable prime mover for combined cooling, heat, and power</p><p>technologies under uncertainties: An interval multicriteria decisionmaking</p><p>approach. International Journal of Energy Research, 42(8), 2655-2669.</p><p></p><p>Rezaei, J. (2015a). Best-worst multi-criteria decision-making method. Omega,</p><p>53(Supplement C), 49-57. Retrieved from</p><p>http://www.sciencedirect.com/science/article/pii/S0305048314001480.</p><p>doi:https://doi.org/10.1016/j.omega.2014.11.009</p><p></p><p>Rezaei, J. (2015b). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.</p><p>Rochlen, L. R., Levine, R., & Tait, A. R. (2017). First person point of view augmented</p><p>reality for central line insertion training: A usability and feasibility study.</p><p>Simulation in healthcare: Journal of the Society for Simulation in Healthcare,</p><p>12(1), 57.</p><p></p><p>Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of</p><p>mathematical psychology, 15(3), 234-281.</p><p></p><p>Saaty, T. L. (1980). The analytic hierarchy process, new york: Mcgrew hill. International,</p><p>Translated to Russian, Portuguesses and Chinese, Revised edition, Paperback</p><p>(1996, 2000), Pittsburgh: RWS Publications, 9, 19-22.</p><p></p><p>Saaty, T. L., & Ozdemir, M. S. (2003). Why the magic number seven plus or minus two.</p><p>Mathematical and computer modelling, 38(3-4), 233-244.</p><p></p><p>Saidin, N. F., Halim, N. D. A., & Yahaya, N. (2015). A review of research on augmented</p><p>reality in education: Advantages and applications. International education studies,</p><p>8(13), 1.</p><p></p><p>Salman, O., Zaidan, A., Zaidan, B., Naserkalid, & Hashim, M. (2017). Novel methodology</p><p>for triage and prioritizing using big data patients with chronic heart diseases</p><p>through telemedicine environmental. International Journal of Information</p><p>Technology & Decision Making, 16(05), 1211-1245.</p><p></p><p>Sanabria, J. C. (2015). The Gradual Immersion Method (GIM): Pedagogical</p><p>Transformation into Mixed Reality. Procedia Computer Science, 75, 369-374.</p><p></p><p>Sanabria, J. C., & Armburo-Lizrraga, J. (2017). Enhancing 21st century skills with AR:</p><p>Using the gradual immersion method to develop collaborative creativity. Eurasia</p><p>Journal of Mathematics, Science and Technology Education, 13(2), 487-501.</p><p></p><p>Santos, M. E. C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., & Kato, H. (2014).</p><p>Augmented reality learning experiences: Survey of prototype design and</p><p>evaluation. IEEE Transactions on learning technologies, 7(1), 38-56.</p><p></p><p>Sekhavat, Y. A., & Zarei, H. (2018). Sense of immersion in computer games using single</p><p>and stereoscopic augmented reality. International Journal of HumanComputer</p><p>Interaction, 34(2), 187-194.</p><p></p><p>Serrai, W., Abdelli, A., Mokdad, L., & Hammal, Y. (2016). An efficient approach for Web</p><p>service selection. Paper presented at the 2016 IEEE Symposium on Computers and</p><p>Communication (ISCC).</p><p></p><p>Sherekar, V., Tatikonda, M., & Student, M. (2016). Impact of factor affecting on labour</p><p>productivity in construction projects by AHP method. Int. J. Eng. Sci. Comput, 6(6).</p><p></p><p>Shin, D.-H., & Biocca, F. (2017). Explicating user behavior toward multi-screen adoption</p><p>and diffusion. Internet Research.</p><p></p><p>Shin, D. (2018). Empathy and embodied experience in virtual environment: To what extent</p><p>can virtual reality stimulate empathy and embodied experience? Computers in</p><p>Human Behavior, 78, 64-73.</p><p></p><p>Shin, D. (2019). How does immersion work in augmented reality games? A user-centric</p><p>view of immersion and engagement. Information, Communication & Society, 22(9),</p><p>1212-1229.</p><p></p><p>Shojaei, P., Haeri, S. A. S., & Mohammadi, S. (2018). Airports evaluation and ranking</p><p>model using Taguchi loss function, best-worst method and VIKOR technique.</p><p>Journal of Air Transport Management, 68, 4-13.</p><p></p><p>Singh, A. (2014). Major MCDM Techniques and their application-A Review (Vol. 4).</p><p></p><p>Singh, A., & Malik, S. K. (2014). Major MCDM Techniques and their application-A</p><p>Review. IOSR Journal of Engineering, 4(5), 15-25.</p><p></p><p>kola, F., & Liarokapis, F. (2016). Examining the effect of body ownership in immersive</p><p>virtual and augmented reality environments. The Visual Computer, 32(6-8), 761-</p><p>770.</p><p></p><p>Smith, J., Cook, A., & Packer, C. (2010). Evaluation criteria to assess the value of</p><p>identification sources for horizon scanning. International journal of technology</p><p>assessment in health care, 26(3), 348-353.</p><p></p><p>Sofuolu, M. A., & Orak, S. (2017). A novel hybrid multi criteria decision making model:</p><p>application to turning operations. a a, 21(22), 2.</p><p></p><p>Solak, E., & Cakir, R. (2016). Investigating the role of augmented reality technology in the</p><p>language classroom. Online Submission, 18(4), 1067-1085.</p><p></p><p>Stoyanova, D., Kafadarova, N., & Stoyanova-Petrova, S. (2015). Enhancing elementary</p><p>student learning in natural sciences through mobile augmented reality technology.</p><p>Bulgarian Chemical Communications, 47, 532-536.</p><p></p><p>Suh, A., & Prophet, J. (2018). The state of immersive technology research: A literature</p><p>analysis. Computers in Human Behavior, 86, 77-90.</p><p></p><p>Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. (2017). Using the Analytic</p><p>Hierarchy Process to identify parameter weights for developing a water quality</p><p>index. Ecological Indicators, 75, 220-233.</p><p></p><p>Sziebig, G., Rudas, I., Demiralp, M., & Mastorakis, N. (2009). Achieving Total Immersion:</p><p>Technology Trends behind Augmented Reality- A Survey. Paper presented at the</p><p>WSEAS International Conference. Proceedings. Mathematics and Computers in</p><p>Science and Engineering.</p><p></p><p>Tarng, W., Lin, Y.-S., Lin, C.-P., & Ou, K.-L. (2016). Development of a lunar-phase</p><p>observation system based on augmented reality and mobile learning technologies.</p><p>Mobile Information Systems, 2016.</p><p></p><p>Tavana, M., & Hatami-Marbini, A. (2011). A group AHP-TOPSIS framework for human</p><p>spaceflight mission planning at NASA. Expert Systems with Applications, 38(11),</p><p>13588-13603. Retrieved from</p><p>http://www.sciencedirect.com/science/article/pii/S095741741100635X.</p><p>doi:https://doi.org/10.1016/j.eswa.2011.04.108</p><p></p><p>Techakosit, S., & Wannapiroon, P. (2015). Connectivism learning environment in</p><p>augmented reality science laboratory to enhance scientific literacy. Procedia-Social</p><p>and Behavioral Sciences, 174, 2108-2115.</p><p></p><p>Tekedere, H., & Gke, H. (2016). Examining the Effectiveness of Augmented Reality</p><p>Applications in Education: A Meta-Analysis. International Journal of</p><p>Environmental and Science Education, 11(16), 9469-9481.</p><p></p><p>Tian, K., Endo, M., Urata, M., Mouri, K., & Yasuda, T. (2014). Multi-viewpoint</p><p>smartphone AR-based learning system for astronomical observation. International</p><p>Journal of Computer Theory and Engineering, 6(5), 396-400.</p><p></p><p>Tian, Z.-p., Wang, J.-q., & Zhang, H.-y. (2018). An integrated approach for failure mode</p><p>and effects analysis based on fuzzy best-worst, relative entropy, and VIKOR</p><p>methods. Applied Soft Computing, 72, 636-646.</p><p></p><p>Tobar-Muoz, H., Baldiris, S., & Fabregat, R. (2017). Augmented reality game-based</p><p>learning: enriching students experience during reading comprehension activities.</p><p>Journal of Educational Computing Research, 55(7), 901-936.</p><p></p><p>Toledo-Morales, P., & Sanchez-Garcia, J. M. (2018). Use of Augmented Reality in Social</p><p>Sciences as Educational Research. Turkish Online Journal of Distance Education,</p><p>19(3), 38-52.</p><p></p><p>Torres, F., Tovar, L. A. N., & Egremy, M. C. (2015). Virtual interactive laboratory applied</p><p>to high schools programs. Procedia Computer Science, 75, 233-238.</p><p></p><p>Tussyadiah, I. P., Jung, T. H., & tom Dieck, M. C. (2018). Embodiment of wearable</p><p>augmented reality technology in tourism experiences. Journal of Travel research,</p><p>57(5), 597-611.</p><p></p><p>Tussyadiah, I. P., Wang, D., Jung, T. H., & tom Dieck, M. C. (2018). Virtual reality,</p><p>presence, and attitude change: Empirical evidence from tourism. Tourism</p><p>Management, 66, 140-154.</p><p></p><p>van Til, J. A., Renzenbrink, G. J., Dolan, J. G., & IJzerman, M. J. (2008). The use of the</p><p>analytic hierarchy process to aid decision making in acquired equinovarus</p><p>deformity. Archives of physical medicine and rehabilitation, 89(3), 457-462.</p><p></p><p>Vella, K., Klarkowski, M., Johnson, D., Hides, L., & Wyeth, P. (2016). The social context</p><p>of video game play: Challenges and strategies. Paper presented at the Proceedings</p><p>of the 2016 ACM Conference on Designing Interactive Systems.</p><p></p><p>Wang, Y.-H. (2017). Exploring the effectiveness of integrating augmented reality-based</p><p>materials to support writing activities. Computers & Education, 113, 162-176.</p><p></p><p>Wei, X., Weng, D., Liu, Y., & Wang, Y. (2015). Teaching based on augmented reality for</p><p>a technical creative design course. Computers & Education, 81, 221-234.</p><p></p><p>Whaiduzzaman, M., Gani, A., Anuar, N. B., Shiraz, M., Haque, M. N., & Haque, I. T.</p><p>(2014). Cloud service selection using multicriteria decision analysis. The Scientific</p><p>World Journal, 2014.</p><p></p><p>Widiaty, I., Riza, L. S., Danuwijaya, A. A., Hurriyati, R., & Mubaroq, S. R. (2017).</p><p>MOBILE-BASED AUGMENTED REALITY FOR LEARNING 3-</p><p>DIMENSIONAL SPATIAL BATIK-BASED OBJECTS. JOURNAL OF</p><p>ENGINEERING SCIENCE AND TECHNOLOGY, 12, 12-22.</p><p></p><p>Wildan, A., Cheong, B. H.-P., Xiao, K., Liew, O. W., & Ng, T. W. (2019). Growth</p><p>measurement of surface colonies of bacteria using augmented reality. Journal of</p><p>Biological Education, 1-14.</p><p></p><p>Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy process.</p><p>Management science, 26(7), 641-658.</p><p></p><p>Wu, P.-H., Hwang, G.-J., Yang, M.-L., & Chen, C.-H. (2018). Impacts of integrating the</p><p>repertory grid into an augmented reality-based learning design on students learning</p><p>achievements, cognitive load and degree of satisfaction. Interactive Learning</p><p>Environments, 26(2), 221-234.</p><p></p><p>Yang, Q., Zhang, Z., You, X., & Chen, T. (2016). Evaluation and classification of overseas</p><p>talents in China based on the BWM for intuitionistic relations. Symmetry, 8(11),</p><p>137.</p><p></p><p>Yang, Y.-P. O., Shieh, H.-M., & Tzeng, G.-H. (2013). A VIKOR technique based on</p><p>DEMATEL and ANP for information security risk control assessment. Information</p><p>Sciences, 232, 482-500.</p><p></p><p>Yas, Q. M., Zaidan, A., Zaidan, B., Rahmatullah, B., & Karim, H. A. (2017).</p><p>Comprehensive Insights into Evaluation and Benchmarking of Real-time Skin</p><p>Detectors: Review, Open Issues & Challenges, and Recommended Solutions.</p><p>Measurement.</p><p></p><p>Yilmaz, R. M. (2016). Educational magic toys developed with augmented reality</p><p>technology for early childhood education. Computers in Human Behavior, 54, 240-</p><p>248.</p><p></p><p>Yilmaz, Z. A., & Batdi, V. (2016). A Meta-Analytic and Thematic Comparative Analysis</p><p>of the Integration of Augmented Reality Applications into Education. Egitim ve</p><p>Bilim, 41(188).</p><p></p><p>Yoon, K. (1981). Multiple Attribute Decision Making. Methods and Applications. In:</p><p>Springer-Verlag., Berlin Heidelberg.</p><p></p><p>Zaidan, A., Zaidan, B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M.</p><p>(2015). Evaluation and selection of open-source EMR software packages based on</p><p>integrated AHP and TOPSIS. Journal of biomedical informatics, 53, 390-404.</p><p></p><p>Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M.</p><p>(2015). Evaluation and selection of open-source EMR software packages based on</p><p>integrated AHP and TOPSIS. Journal of biomedical informatics, 53, 390-404.</p><p></p><p>Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Yas, Q. M.,</p><p>& Hashim, M. (2018). A review on smartphone skin cancer diagnosis apps in</p><p>evaluation and benchmarking: coherent taxonomy, open issues and</p><p>recommendation pathway solution. Health and Technology. Retrieved from</p><p>https://doi.org/10.1007/s12553-018-0223-9. doi:10.1007/s12553-018-0223-9</p><p></p><p>Zaidan, B., & Zaidan, A. (2017). Software and hardware FPGA-based digital watermarking</p><p>and steganography approaches: Toward new methodology for evaluation and</p><p>benchmarking using multi-criteria decision-making techniques. Journal of</p><p>Circuits, Systems and Computers, 26(07), 1750116.</p><p></p><p>Zaidan, B., Zaidan, A., Abdul Karim, H., & Ahmad, N. (2017). A new approach based on</p><p>multi-dimensional evaluation and benchmarking for data hiding techniques.</p><p>International Journal of Information Technology & Decision Making, 1-42.</p><p></p><p>Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamoaitien, J. (2009). Multi-attribute</p><p>decision-making model by applying grey numbers. Informatica, 20(2), 305-320.</p><p></p><p>Zha, R. (2019). Improving the usability of mobile application user review collection.</p><p></p><p>Zhang, J., Sung, Y.-T., Hou, H.-T., & Chang, K.-E. (2014). The development and</p><p>evaluation of an augmented reality-based armillary sphere for astronomical</p><p>observation instruction. Computers & Education, 73, 178-188.</p><p></p><p>Zhao, H., Guo, S., & Zhao, H. (2018). Comprehensive benefit evaluation of eco-industrial</p><p>parks by employing the best-worst method based on circular economy and</p><p>sustainability. Environment, Development and Sustainability, 20(3), 1229-1253.</p><p></p><p>Zionts, S. (1979). MCDMif not a roman numeral, then what? Interfaces, 9(4), 94-101.</p><p></p><p></p><p>LIST OF PUBLICATION</p><p></p><p>Published and Accepted Papers</p><p></p><p> GA Alshafeey et. al, 2019, Augmented Reality for the Disabled: Review Articles.</p><p>Journal of ICT in Education 1, 46-57,</p><p></p><p> GA Alshafeey et. al, 2014, DESKTOP VIRTUALISATION AS A TOOL TO</p><p>SUPPORT IT VIRTUAL TEAM, Infrastructure University Kuala Lumpur</p><p>Research Journal Vol. 2 No. 1 (2014).</p><p></p><p> MA Chyad, HA Alsattar, BB Zaidan, AA Zaidan, GA Al Shafeey , The Landscape</p><p>of Research on Skin Detectors: Coherent Taxonomy, Open Challenges,</p><p>Motivations, Recommendations and Statistical Analysis, Future Directions , IEEE</p><p>Access 7, 106536-106575.</p><p></p><p> AH Alamoodi, BB Zaidan, AA Zaidan, SM Samuri, AR Ismail, O Zughoul, A</p><p>review of data analysis for early-childhood period: taxonomy, motivations,</p><p>challenges, recommendation, and methodological aspects , IEEE Access 7, 51069-</p><p>51103.</p><p></p><p> OS Albahri, AS Albahri, AA Zaidan, BB Zaidan, MA Alsalem, AH Mohsin, Faulttolerant</p><p>mHealth framework in the context of IoT-based real-time wearable health</p><p>data sensors , IEEE Access 7, 50052-50080.</p><p></p><p> AS Albahri, OS Albahri, AA Zaidan, BB Zaidan, M Hashim, MA Alsalem, Based</p><p>multiple heterogeneous wearable sensors: A smart real-time health monitoring</p><p>structured for hospitals distributor , IEEE Access 7, 37269-37323.</p><p></p><p></p><p></p>