Classification of driver behaviours using machine learning
<p>According to the Malaysian Institute of Road Safety Research (MIROS), over</p><p>500,000 car accidents occurred in 2016, making cars an unsafe means of</p><p>transportation. This research aimed to collect driver behaviour-relat...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2021
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=7127 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:7127 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
Q Science |
spellingShingle |
Q Science Alaa Zaidan, Ruqayah Classification of driver behaviours using machine learning |
description |
<p>According to the Malaysian Institute of Road Safety Research (MIROS), over</p><p>500,000 car accidents occurred in 2016, making cars an unsafe means of</p><p>transportation. This research aimed to collect driver behaviour-related data for</p><p>Malaysian drivers to provide useful insights for Malaysian driving profile and to</p><p>modulate machine learning for classification tasks. Twenty-one drivers (11 male and</p><p>10 female) were studied and compared for their driving style in Lebuhraya Behrang</p><p>Stesen-tg malim (11 km per driver). Drivers were asked to drive naturally while</p><p>considering their safety. Two analysis techniques were utilized (i.e. Statistical and</p><p>Machine Learning-Based). Different conclusions were drawn from each analysis. The</p><p>number of driving events for each driver was calculated (i.e. aggressive, normal and</p><p>safe) and statistical tests (i.e. Mean, Standard Deviation, Correlation analysis, Oneway</p><p>ANOVA and T-test) presented significant differences between each driver from</p><p>the same gender versus their peers from the opposite gender. The statistics were</p><p>presented per driver, his/her group and a comparison with their peers. For a driver to</p><p>be considered as aggressive or normal, a challenge was presented because no</p><p>identification measure existed (i.e. threshold for driving event number to be</p><p>considered aggressive or normal). However, each driving event was identified based</p><p>on literature. Finally, it was determined that classifying drivers was possible through</p><p>their gender but not based on their aggressiveness level. One R Machine learning</p><p>classifier presented good accuracy at 95.24 % in comparison with j48DecisionTree,</p><p>Naive Bayes, One R, and SMO-SVM. The implications of the findings of this study</p><p>suggest male and female drivers tend to drive aggressively. A reason for such</p><p>mortality can be because of the cadence of front-end car accidents, which is a clear</p><p>outcome of aggressive driving behaviour (i.e. speeding, braking, etc.). Identifying</p><p>such behaviour using ML will save lives domestically and internationally</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Master's degree |
author |
Alaa Zaidan, Ruqayah |
author_facet |
Alaa Zaidan, Ruqayah |
author_sort |
Alaa Zaidan, Ruqayah |
title |
Classification of driver behaviours using machine learning |
title_short |
Classification of driver behaviours using machine learning |
title_full |
Classification of driver behaviours using machine learning |
title_fullStr |
Classification of driver behaviours using machine learning |
title_full_unstemmed |
Classification of driver behaviours using machine learning |
title_sort |
classification of driver behaviours using machine learning |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Seni, Komputeran dan Industri Kreatif |
publishDate |
2021 |
url |
https://ir.upsi.edu.my/detailsg.php?det=7127 |
_version_ |
1747833357897564160 |
spelling |
oai:ir.upsi.edu.my:71272022-06-13 Classification of driver behaviours using machine learning 2021 Alaa Zaidan, Ruqayah Q Science <p>According to the Malaysian Institute of Road Safety Research (MIROS), over</p><p>500,000 car accidents occurred in 2016, making cars an unsafe means of</p><p>transportation. This research aimed to collect driver behaviour-related data for</p><p>Malaysian drivers to provide useful insights for Malaysian driving profile and to</p><p>modulate machine learning for classification tasks. Twenty-one drivers (11 male and</p><p>10 female) were studied and compared for their driving style in Lebuhraya Behrang</p><p>Stesen-tg malim (11 km per driver). Drivers were asked to drive naturally while</p><p>considering their safety. Two analysis techniques were utilized (i.e. Statistical and</p><p>Machine Learning-Based). Different conclusions were drawn from each analysis. The</p><p>number of driving events for each driver was calculated (i.e. aggressive, normal and</p><p>safe) and statistical tests (i.e. Mean, Standard Deviation, Correlation analysis, Oneway</p><p>ANOVA and T-test) presented significant differences between each driver from</p><p>the same gender versus their peers from the opposite gender. The statistics were</p><p>presented per driver, his/her group and a comparison with their peers. For a driver to</p><p>be considered as aggressive or normal, a challenge was presented because no</p><p>identification measure existed (i.e. threshold for driving event number to be</p><p>considered aggressive or normal). However, each driving event was identified based</p><p>on literature. Finally, it was determined that classifying drivers was possible through</p><p>their gender but not based on their aggressiveness level. One R Machine learning</p><p>classifier presented good accuracy at 95.24 % in comparison with j48DecisionTree,</p><p>Naive Bayes, One R, and SMO-SVM. The implications of the findings of this study</p><p>suggest male and female drivers tend to drive aggressively. A reason for such</p><p>mortality can be because of the cadence of front-end car accidents, which is a clear</p><p>outcome of aggressive driving behaviour (i.e. speeding, braking, etc.). Identifying</p><p>such behaviour using ML will save lives domestically and internationally</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7127 https://ir.upsi.edu.my/detailsg.php?det=7127 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Seni, Komputeran dan Industri Kreatif <p>A, P., rez, Garc, M. I., Nieto, M., Pedraza, J. L., Rodr, S., . . . Zamorano, J. (2010). Argos: An</p><p>Advanced In-Vehicle Data Recorder on a Massively Sensorized Vehicle for Car Driver</p><p>Behavior Experimentation. IEEE Transactions on Intelligent Transportation Systems,</p><p>11(2), 463-473. doi:10.1109/TITS.2010.2046323</p><p></p><p>AbuAli, N. (2015). Advanced vehicular sensing of road artifacts and driver behavior. Paper</p><p>presented at the 2015 IEEE Symposium on Computers and Communication (ISCC).</p><p>Acarman, T. (2012). Monitoring Driver's Authority: Simulator Study*. IFAC Proceedings</p><p>Volumes, 45(24), 249-255. doi:http://dx.doi.org/10.3182/20120912-3-BG-</p><p>2031.00052</p><p></p><p>Albert, G., Musicant, O., Oppenheim, I., & Lotan, T. (2016). Which smartphone's apps may</p><p>contribute to road safety? An AHP model to evaluate experts' opinions. Transport</p><p>Policy, 50, 54-62. doi:http://dx.doi.org/10.1016/j.tranpol.2016.06.004</p><p></p><p>Ali, N. A., AbuElkhair, M., & Bouktif, S. (2016, 3-6 April 2016). Utilizing VIN for improved</p><p>vehicular sensing. Paper presented at the 2016 IEEE Wireless Communications and</p><p>Networking Conference.</p><p></p><p>Amsalu, S. B., & Homaifar, A. (2016). Driver behavior modeling near intersections using</p><p>Hidden Markov Model based on genetic algorithm. Paper presented at the 2016 IEEE</p><p>International Conference on Intelligent Transportation Engineering (ICITE).</p><p></p><p>Amsalu, S. B., Homaifar, A., Afghah, F., Ramyar, S., & Kurt, A. (2015). Driver behavior</p><p>modeling near intersections using support vector machines based on statistical</p><p>feature extraction. Paper presented at the 2015 IEEE intelligent vehicles symposium</p><p>(IV).</p><p></p><p>Andria, G., Attivissimo, F., Di Nisio, A., Lanzolla, A. M. L., & Pellegrino, A. (2016).</p><p>Development of an automotive data acquisition platform for analysis of driving</p><p>behavior. Measurement, 93, 278-287.</p><p>doi:http://dx.doi.org/10.1016/j.measurement.2016.07.035</p><p></p><p>Angkititrakul, P., Miyajima, C., & Takeda, K. (2012, 24-27 July 2012). Impact of driving</p><p>context on stochastic driver-behavior model: Quantitative analysis of car following</p><p>task. Paper presented at the Vehicular Electronics and Safety (ICVES), 2012 IEEE</p><p>International Conference on.</p><p></p><p>Angkititrakul, P., Miyajima, C., & Takeda, K. (2012). Impact of driving context on stochastic</p><p>driver-behavior model: Quantitative analysis of car following task. Paper presented</p><p>at the 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES</p><p>2012).</p><p></p><p>Ara, R., x00Fa, jo, x00C, Igreja, Castro, R. d., . . . jo. (2012, 3-7 June 2012). Driving coach: A</p><p>smartphone application to evaluate driving efficient patterns. Paper presented at the</p><p>Intelligent Vehicles Symposium (IV), 2012 IEEE.</p><p></p><p>Aria, E., Olstam, J., & Schwietering, C. (2016). Investigation of Automated Vehicle Effects on</p><p>Driver's Behavior and Traffic Performance. Transportation Research Procedia, 15,</p><p>761-770. doi:http://dx.doi.org/10.1016/j.trpro.2016.06.063</p><p></p><p>Auberlet, J.-M., Rosey, F., Anceaux, F., Aubin, S., Briand, P., Pacaux, M.-P., & Plainchault, P.</p><p>(2012). The impact of perceptual treatments on driver's behavior: From driving</p><p>simulator studies to field testsFirst results. Accident Analysis & Prevention, 45, 91-</p><p>98. doi:http://dx.doi.org/10.1016/j.aap.2011.11.020</p><p></p><p>Bagdadi, O. (2013). Assessing safety critical braking events in naturalistic driving studies.</p><p>Transportation Research Part F: Traffic Psychology and Behaviour, 16, 117-126.</p><p>doi:http://dx.doi.org/10.1016/j.trf.2012.08.006</p><p></p><p>Bando, T., Takenaka, K., Nagasaka, S., & Taniguchi, T. (2013, 23-26 June 2013). Unsupervised</p><p>drive topic finding from driving behavioral data. Paper presented at the 2013 IEEE</p><p>Intelligent Vehicles Symposium (IV).</p><p></p><p>Banjanovic-Mehmedovic, L., Stojak, R., & Kasapovic, S. (2016, 12-16 June 2016). Driving</p><p>behavior simulator of lane changing using user-designed interface. Paper presented</p><p>at the 2016 5th Mediterranean Conference on Embedded Computing (MECO).</p><p></p><p>Baptista, P., Duarte, G., Goncalves, G., & Rolim, C. (2014, 27-30 Oct. 2014). ICT for Mobility</p><p>Pattern and Driver Behavior Characterization: Trial Case-Study in the City of Lisbon,</p><p>Portugal. Paper presented at the 2014 IEEE Vehicle Power and Propulsion</p><p>Conference (VPPC).</p><p></p><p>Begum, S. (2013, 6-9 Oct. 2013). Intelligent driver monitoring systems based on physiological</p><p>sensor signals: A review. Paper presented at the 16th International IEEE Conference</p><p>on Intelligent Transportation Systems (ITSC 2013).</p><p></p><p>Bender, A., Agamennoni, G., Ward, J. R., Worrall, S., & Nebot, E. M. (2015). An Unsupervised</p><p>Approach for Inferring Driver Behavior From Naturalistic Driving Data. IEEE</p><p>Transactions on Intelligent Transportation Systems, 16(6), 3325-3336.</p><p>doi:10.1109/TITS.2015.2449837</p><p>Bender, A., Agamennoni, G., Ward, J. R., Worrall, S., & Nebot, E. M. J. I. T. o. I. T. S. (2015).</p><p>An unsupervised approach for inferring driver behavior from naturalistic driving</p><p>data. 16(6), 3325-3336.</p><p></p><p>Bifulco, G. N., Pariota, L., Brackstione, M., & McDonald, M. (2013a). Driving behaviour</p><p>models enabling the simulation of Advanced Driving Assistance Systems: revisiting</p><p>the Action Point paradigm. Transportation Research Part C: Emerging Technologies,</p><p>36, 352-366. doi:http://dx.doi.org/10.1016/j.trc.2013.09.009</p><p></p><p>Bifulco, G. N., Pariota, L., Brackstione, M., & Mcdonald, M. J. T. R. P. C. E. T. (2013b). Driving</p><p>behaviour models enabling the simulation of Advanced Driving Assistance Systems:</p><p>revisiting the Action Point paradigm. 36, 352-366.</p><p></p><p>Botzer, A., Musicant, O., & Perry, A. (2017). Driver behavior with a smartphone collision</p><p>warning application A field study. Safety Science, 91, 361-372.</p><p>doi:http://dx.doi.org/10.1016/j.ssci.2016.09.003</p><p></p><p>Bruwer, F. J., & Booysen, M. J. (2015, 7-10 Dec. 2015). Comparison of GPS and MEMS</p><p>Support for Smartphone-Based Driver Behavior Monitoring. Paper presented at the</p><p>2015 IEEE Symposium Series on Computational Intelligence.</p><p></p><p>Carmona, J., Garca, F., Martn, D., Escalera, A., & Armingol, J. J. S. (2015a). Data fusion for</p><p>driver behaviour analysis. 15(10), 25968-25991.</p><p></p><p>Carmona, J., Garca, F., Martn, D., Escalera, A. d. l., & Armingol, J. M. (2015b). Data fusion</p><p>for driver behaviour analysis. Sensors, 15(10), 25968-25991.</p><p></p><p>Carmona, J., Miguel, M. A. d., Martin, D., Garcia, F., & Escalera, A. d. l. (2016, 19-22 June</p><p>2016). Embedded system for driver behavior analysis based on GMM. Paper</p><p>presented at the 2016 IEEE Intelligent Vehicles Symposium (IV).</p><p></p><p>Carsten, O., Kircher, K., & Jamson, S. (2013). Vehicle-based studies of driving in the real</p><p>world: The hard truth? Accident Analysis & Prevention, 58, 162-174.</p><p>doi:http://dx.doi.org/10.1016/j.aap.2013.06.006</p><p></p><p>Castignani, G., Derrmann, T., Frank, R., & Engel, T. (2015a). Driver Behavior Profiling Using</p><p>Smartphones: A Low-Cost Platform for Driver Monitoring. IEEE Intelligent</p><p>Transportation Systems Magazine, 7(1), 91-102. doi:10.1109/MITS.2014.2328673</p><p></p><p>Castignani, G., Derrmann, T., Frank, R., & Engel, T. (2015b, 24-24 Nov. 2015). Validation</p><p>study of risky event classification using driving pattern factors. Paper presented at</p><p>the 2015 IEEE Symposium on Communications and Vehicular Technology in the</p><p>Benelux (SCVT).</p><p></p><p>Castignani, G., Frank, R., & Engel, T. (2013a, 6-9 Oct. 2013). Driver behavior profiling using</p><p>smartphones. Paper presented at the 16th International IEEE Conference on</p><p>Intelligent Transportation Systems (ITSC 2013).</p><p></p><p>Castignani, G., Frank, R., & Engel, T. (2013b, 7-10 Oct. 2013). An evaluation study of driver</p><p>profiling fuzzy algorithms using smartphones. Paper presented at the 2013 21st IEEE</p><p>International Conference on Network Protocols (ICNP).</p><p></p><p>Chuang, C. F., Yang, C. H., & Lin, Y. H. (2015, 6-8 June 2015). HMM-based driving behavior</p><p>recognition for in-car control service. Paper presented at the 2015 IEEE International</p><p>Conference on Consumer Electronics - Taiwan.</p><p></p><p>Craye, C., Rashwan, A., Kamel, M. S., & Karray, F. (2016). A multi-modal driver fatigue and</p><p>distraction assessment system. International Journal of Intelligent Transportation</p><p>Systems Research, 14(3), 173-194.</p><p></p><p>Daptardar, S., Lakshminarayanan, V., Reddy, S., Nair, S., Sahoo, S., & Sinha, P. (2015, 1-4 Nov.</p><p>2015). Hidden Markov Model based driving event detection and driver profiling from</p><p>mobile inertial sensor data. Paper presented at the 2015 IEEE SENSORS.</p><p></p><p>Das, D., Zhou, S., & Lee, J. D. (2012). Differentiating Alcohol-Induced Driving Behavior Using</p><p>Steering Wheel Signals. IEEE Transactions on Intelligent Transportation Systems,</p><p>13(3), 1355-1368. doi:10.1109/TITS.2012.2188891</p><p></p><p>Dehzangi, O., & Williams, C. (2015, 9-12 June 2015). Towards multi-modal wearable driver</p><p>monitoring: Impact of road condition on driver distraction. Paper presented at the</p><p>2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor</p><p>Networks (BSN).</p><p></p><p>Ding, J., Wang, J., Liu, C., Lu, M., & Li, K. (2014). Driver steering behavior model based on</p><p>lane-keeping characteristics analysis. Paper presented at the 17th International IEEE</p><p>Conference on Intelligent Transportation Systems (ITSC).</p><p></p><p>Doshi, A., & Trivedi, M. M. (2011, 5-7 Oct. 2011). Tactical driver behavior prediction and</p><p>intent inference: A review. Paper presented at the 2011 14th International IEEE</p><p>Conference on Intelligent Transportation Systems (ITSC).</p><p></p><p>Engelbrecht, J., Booysen, M. J., Rooyen, G. J. v., & Bruwer, F. J. (2015a, 7-10 Dec. 2015).</p><p>Performance Comparison of Dynamic Time Warping (DTW) and a Maximum</p><p>Likelihood (ML) Classifier in Measuring Driver Behavior with Smartphones. Paper</p><p>presented at the 2015 IEEE Symposium Series on Computational Intelligence.</p><p></p><p>Engelbrecht, J., Booysen, M. J., Rooyen, G. J. v., & Bruwer, F. J. (2015b). Survey of</p><p>smartphone-based sensing in vehicles for intelligent transportation system</p><p>applications. IET Intelligent Transport Systems, 9(10), 924-935. doi:10.1049/ietits.</p><p>2014.0248</p><p></p><p>Eren, H., Makinist, S., Akin, E., & Yilmaz, A. (2012, 3-7 June 2012). Estimating driving</p><p>behavior by a smartphone. Paper presented at the Intelligent Vehicles Symposium</p><p>(IV), 2012 IEEE.</p><p></p><p>Espinosa, F., Jimnez, J. A., Santiso, E., Gardel, A., Prez, D., Casanova, J., & Santos, C. (2011).</p><p>Design and implementation of a portable electronic system for vehicledriverroute</p><p>activity measurement. Measurement, 44(2), 326-337.</p><p>doi:http://dx.doi.org/10.1016/j.measurement.2010.10.006</p><p></p><p>Farah, H., & Koutsopoulos, H. N. (2014). Do cooperative systems make drivers car-following</p><p>behavior safer? Transportation Research Part C: Emerging Technologies, 41, 61-72.</p><p>doi:http://dx.doi.org/10.1016/j.trc.2014.01.015</p><p></p><p>Farah, H., Koutsopoulos, H. N., Saifuzzaman, M., Klbl, R., Fuchs, S., & Bankosegger, D.</p><p>(2012a). Evaluation of the effect of cooperative infrastructure-to-vehicle systems on</p><p>driver behavior. Transportation Research Part C: Emerging Technologies, 21(1), 42-</p><p>56. doi:http://dx.doi.org/10.1016/j.trc.2011.08.006</p><p></p><p>Farah, H., Koutsopoulos, H. N., Saifuzzaman, M., Klbl, R., Fuchs, S., & Bankosegger, D. J. T. r.</p><p>p. C. e. t. (2012b). Evaluation of the effect of cooperative infrastructure-to-vehicle</p><p>systems on driver behavior. 21(1), 42-56.</p><p></p><p>Fridman, L., Brown, D. E., Angell, W., Abdi, I., Reimer, B., & Noh, H. Y. (2016). Automated</p><p>synchronization of driving data using vibration and steering events. Pattern</p><p>Recognition Letters, 75, 9-15.</p><p></p><p>Ghandour, R., Cunha, F. H. R. d., Victorino, A., Charara, A., & Lechner, D. (2011, 20-23 June</p><p>2011). Risk indicators prediction based on the estimation of tire/road forces and the</p><p>maximum friction coefficient: Experimental validation. Paper presented at the</p><p>Control & Automation (MED), 2011 19th Mediterranean Conference on.</p><p></p><p>Goto, K., Tsutsumi, S., Wada, T., Doi, S., & Suzuki, K. (2012, 20-23 Aug. 2012). Investigation of</p><p>driving behavior in different dependence on Rear Obstacle Warning System. Paper</p><p>presented at the SICE Annual Conference (SICE), 2012 Proceedings of.</p><p></p><p>Gupta, A., Sharma, V., Ruparam, N. K., Jain, S., Alhammad, A., & Ripon, M. A. K. (2014, 24-27</p><p>Sept. 2014). Context-awareness based intelligent driver behavior detection:</p><p>Integrating Wireless Sensor networks and Vehicle ad hoc networks. Paper presented</p><p>at the 2014 International Conference on Advances in Computing, Communications</p><p>and Informatics (ICACCI).</p><p></p><p>Henze, D. I. R., Atabay, D. I. O., & Raksincharoensak, a. P. D. P. (2016). Monitoring Driver -</p><p>Vehicle Control in Automated Driving Applications. IFAC-PapersOnLine, 49(3), 285-</p><p>290. doi:http://dx.doi.org/10.1016/j.ifacol.2016.07.048</p><p></p><p>Higgs, B., & Abbas, M. (2014, 8-11 Oct. 2014). Experimental design for a psychophysiological</p><p>driving simulator study. Paper presented at the 17th International IEEE Conference</p><p>on Intelligent Transportation Systems (ITSC).</p><p></p><p>Jackson, S. L. (2014). Research methods: A modular approach: Cengage Learning.</p><p></p><p>Jagannath, M., & Balasubramanian, V. (2014). Assessment of early onset of driver fatigue</p><p>using multimodal fatigue measures in a static simulator. Applied Ergonomics, 45(4),</p><p>1140-1147. doi:http://dx.doi.org/10.1016/j.apergo.2014.02.001</p><p></p><p>Jamson, A. H., Merat, N., Carsten, O. M. J., & Lai, F. C. H. (2013). Behavioural changes in</p><p>drivers experiencing highly-automated vehicle control in varying traffic conditions.</p><p>Transportation Research Part C: Emerging Technologies, 30, 116-125.</p><p>doi:http://dx.doi.org/10.1016/j.trc.2013.02.008</p><p></p><p>Jasinski, M. G., & Baldo, F. A Method to Identify Aggressive Driver Behaviour Based on</p><p>Enriched GPS Data Analysis.</p><p></p><p>Jia, X., Hu, Z., & Guan, H. (2011, 21-25 June 2011). A new multi-sensor platform for adaptive</p><p>driving assistance system (ADAS). Paper presented at the Intelligent Control and</p><p>Automation (WCICA), 2011 9th World Congress on.</p><p></p><p>Jiang, L., Chen, X., & He, W. (2016, 14-19 March 2016). SafeCam: Analyzing intersectionrelated</p><p>driver behaviors using multi-sensor smartphones. Paper presented at the</p><p>2016 IEEE International Conference on Pervasive Computing and Communications</p><p>(PerCom).</p><p></p><p>Jieyun, D., Jianqiang, W., Changchun, L., Meng, L., & Keqiang, L. (2014, 8-11 Oct. 2014).</p><p>Driver steering behavior model based on lane-keeping characteristics analysis. Paper</p><p>presented at the 17th International IEEE Conference on Intelligent Transportation</p><p>Systems (ITSC).</p><p></p><p>Jimnez, F., Naranjo, J. E., Serradilla, F., Prez, E., Hernndez, M. J., Ruiz, T., . . . Daz, A.</p><p>(2016). Intravehicular, short-and long-range communication information fusion for</p><p>providing safe speed warnings. Sensors, 16(1), 131.</p><p></p><p>Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and</p><p>prospects. Science, 349(6245), 255-260.</p><p></p><p>Jurecki, R. S., & Staczyk, T. L. (2014). Driver reaction time to lateral entering pedestrian in a</p><p>simulated crash traffic situation. Transportation Research Part F: Traffic Psychology</p><p>and Behaviour, 27, Part A, 22-36. doi:http://dx.doi.org/10.1016/j.trf.2014.08.006</p><p></p><p>Jurecki, R. S., Staczyk, T. L. J. T. r. p. F. t. p., & behaviour. (2014). Driver reaction time to</p><p>lateral entering pedestrian in a simulated crash traffic situation. 27, 22-36.</p><p></p><p>Kaber, D. B., Liang, Y., Zhang, Y., Rogers, M. L., & Gangakhedkar, S. (2012). Driver</p><p>performance effects of simultaneous visual and cognitive distraction and adaptation</p><p>behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 15(5),</p><p>491-501. doi:http://dx.doi.org/10.1016/j.trf.2012.05.004</p><p></p><p>Kang, H. B. (2013, 2-8 Dec. 2013). Various Approaches for Driver and Driving Behavior</p><p>Monitoring: A Review. Paper presented at the 2013 IEEE International Conference on</p><p>Computer Vision Workshops.</p><p></p><p>Kaplan, S., Guvensan, M. A., Yavuz, A. G., & Karalurt, Y. (2015). Driver Behavior Analysis for</p><p>Safe Driving: A Survey. IEEE Transactions on Intelligent Transportation Systems,</p><p>16(6), 3017-3032. doi:10.1109/TITS.2015.2462084</p><p></p><p>Karimi, H. A., Zimmerman, B., Nawn, D., & Sutovsky, P. (2010, 9-12 Oct. 2010). Collaborative</p><p>navigation systems for collision avoidance. Paper presented at the Collaborative</p><p>Computing: Networking, Applications and Worksharing (CollaborateCom), 2010 6th</p><p>International Conference on.</p><p></p><p>Kim, S., Song, T.-J., Rouphail, N. M., Aghdashi, S., Amaro, A., & Gonalves, G. (2016a).</p><p>Exploring the association of rear-end crash propensity and micro-scale driver</p><p>behavior. Safety Science, 89, 45-54. doi:http://dx.doi.org/10.1016/j.ssci.2016.05.016</p><p></p><p>Kim, S., Song, T.-J., Rouphail, N. M., Aghdashi, S., Amaro, A., & Gonalves, G. J. S. s. (2016b).</p><p>Exploring the association of rear-end crash propensity and micro-scale driver</p><p>behavior. 89, 45-54.</p><p></p><p>Klimke, J., Themann, P., Klas, C., & Eckstein, L. (2014, 14-17 July 2014). Definition of an</p><p>embedded driver model for driving behavior prediction within the DESERVE platform.</p><p>Paper presented at the 2014 International Conference on Embedded Computer</p><p>Systems: Architectures, Modeling, and Simulation (SAMOS XIV).</p><p></p><p>Kondyli, A., Sisiopiku, V. P., Zhao, L., & Barmpoutis, A. (2015). Computer Assisted Analysis of</p><p>Drivers' Body Activity Using a Range Camera. IEEE Intelligent Transportation Systems</p><p>Magazine, 7(3), 18-28. doi:10.1109/MITS.2015.2439179</p><p></p><p>Lee, B.-L., Lee, B.-G., & Chung, W.-Y. (2016). Standalone Wearable Driver Drowsiness</p><p>Detection System in a Smartwatch. IEEE Sensors Journal, 16(13), 5444-5451.</p><p></p><p>Leonhardt, V., Pech, T., & Wanielik, G. (2016, 5-8 July 2016). Data fusion and assessment for</p><p>maneuver prediction including driving situation and driver behavior. Paper presented</p><p>at the 2016 19th International Conference on Information Fusion (FUSION).</p><p></p><p>Li, N., & Busso, C. (2015). Predicting Perceived Visual and Cognitive Distractions of Drivers</p><p>With Multimodal Features. IEEE Transactions on Intelligent Transportation Systems,</p><p>16(1), 51-65. doi:10.1109/TITS.2014.2324414</p><p></p><p>Li, N., & Busso, C. (2016). Detecting Drivers&#x0027; Mirror&#x002D;Checking Actions and</p><p>Its Application to Maneuver and Secondary Task Recognition. IEEE Transactions on</p><p>Intelligent Transportation Systems, 17(4), 980-992. doi:10.1109/TITS.2015.2493451</p><p></p><p>Li, N., & Busso, C. J. I. T. o. I. T. S. (2014). Predicting perceived visual and cognitive</p><p>distractions of drivers with multimodal features. 16(1), 51-65.</p><p></p><p>Markelic, I., Kjaer-Nielsen, A., Pauwels, K., Jensen, L. B. W., Chumerin, N., Vidugiriene, A., . . .</p><p>Worgotter, F. (2011). The Driving School System: Learning Basic Driving Skills From a</p><p>Teacher in a Real Car. IEEE Transactions on Intelligent Transportation Systems, 12(4),1135-1146. doi:10.1109/TITS.2011.2157690</p><p></p><p>Martin, S., Tawari, A., & Trivedi, M. M. (2014). Toward Privacy-Protecting Safety Systems for</p><p>Naturalistic Driving Videos. IEEE Transactions on Intelligent Transportation Systems,</p><p>15(4), 1811-1822. doi:10.1109/TITS.2014.2308543</p><p></p><p>Meseguer, J. E., Calafate, C. T., Cano, J. C., & Manzoni, P. (2013, 7-10 July 2013).</p><p>DrivingStyles: A smartphone application to assess driver behavior. Paper presented</p><p>at the 2013 IEEE Symposium on Computers and Communications (ISCC).</p><p></p><p>Meseguer, J. E., Calafate, C. T., Cano, J. C., & Manzoni, P. (2015, 9-12 Jan. 2015). Assessing</p><p>the impact of driving behavior on instantaneous fuel consumption. Paper presented</p><p>at the 2015 12th Annual IEEE Consumer Communications and Networking</p><p>Conference (CCNC).</p><p></p><p>Mihly, A., & Gspr, P. (2016). Simulator based driver categorization and linear model</p><p>identification*. IFAC-PapersOnLine, 49(3), 255-260.</p><p>doi:http://dx.doi.org/10.1016/j.ifacol.2016.07.043</p><p></p><p>Murphy-Chutorian, E., & Trivedi, M. M. (2010). Head Pose Estimation and Augmented</p><p>Reality Tracking: An Integrated System and Evaluation for Monitoring Driver</p><p>Awareness. IEEE Transactions on Intelligent Transportation Systems, 11(2), 300-311.</p><p>doi:10.1109/TITS.2010.2044241</p><p></p><p>Musicant, O., Bar-Gera, H., & Schechtman, E. (2010). Electronic records of undesirable</p><p>driving events. Transportation Research Part F: Traffic Psychology and Behaviour,</p><p>13(2), 71-79. doi:http://dx.doi.org/10.1016/j.trf.2009.11.001</p><p></p><p>Musicant, O., Bar-Gera, H., Schechtman, E. J. T. r. p. F. t. p., & behaviour. (2010). Electronic</p><p>records of undesirable driving events. 13(2), 71-79.</p><p></p><p>Nadai, S. D., Benza, M., Inc, M. D., Parodi, F., & Sacile, R. (2015, 28-30 Sept. 2015). A system</p><p>of systems approach to evaluate at-risk human behaviour in the transport by road.</p><p>Paper presented at the 2015 IEEE International Symposium on Systems Engineering</p><p>(ISSE).</p><p></p><p>Ohn-Bar, E., Tawari, A., Martin, S., & Trivedi, M. M. (2014, 8-11 June 2014). Predicting driver</p><p>maneuvers by learning holistic features. Paper presented at the 2014 IEEE Intelligent</p><p>Vehicles Symposium Proceedings.</p><p></p><p>Ortiz, M. G., Kummert, F., Schm, J., x00Fc, & dderich. (2012, 16-19 Sept. 2012). Prediction of</p><p>driver behavior on a limited sensory setting. Paper presented at the 2012 15th</p><p>International IEEE Conference on Intelligent Transportation Systems.</p><p></p><p>Ortiz, M. G., Kummert, F., & Schmdderich, J. (2012). Prediction of driver behavior on a</p><p>limited sensory setting. Paper presented at the 2012 15th International IEEE</p><p>Conference on Intelligent Transportation Systems.</p><p></p><p>Pech, T., Lindner, P., & Wanielik, G. (2014, 8-11 Oct. 2014). Head tracking based glance area</p><p>estimation for driver behaviour modelling during lane change execution. Paper</p><p>presented at the 17th International IEEE Conference on Intelligent Transportation</p><p>Systems (ITSC).</p><p></p><p>Philipsen, M. P., Jensen, M. B., Satzoda, R. K., Trivedi, M. M., Mgelmose, A., & Moeslund,</p><p>T. B. (2015, June 28 2015-July 1 2015). Day and night-time drive analysis using stereo</p><p>vision for naturalistic driving studies. Paper presented at the 2015 IEEE Intelligent</p><p>Vehicles Symposium (IV).</p><p></p><p>Philipsen, M. P., Jensen, M. B., Satzoda, R. K., Trivedi, M. M., Mgelmose, A., & Moeslund, T.</p><p>B. (2015). Day and night-time drive analysis using stereo vision for naturalistic</p><p>driving studies. Paper presented at the 2015 IEEE Intelligent Vehicles Symposium</p><p>(IV).</p><p></p><p>Piotr, B., Turek, W., Byrski, A., & Cetnarowicz, K. (2015, 15-18 Sept. 2015). Towards Credible</p><p>Driver Behavior Modeling. Paper presented at the 2015 IEEE 18th International</p><p>Conference on Intelligent Transportation Systems.</p><p></p><p>Rakotonirainy, A., Schroeter, R., & Soro, A. (2014). Three social car visions to improve driver</p><p>behaviour. Pervasive and Mobile Computing, 14, 147-160.</p><p>doi:http://dx.doi.org/10.1016/j.pmcj.2014.06.004</p><p></p><p>Ramyar, S., Sefidmazgi, M. G., Amsalu, S., Anzagira, A., Homaifar, A., Karimoddini, A., & Kurt,</p><p>A. (2015, 15-18 Sept. 2015). Modeling Driver Behavior at Intersections with Takagi-</p><p>Sugeno Fuzzy Models. Paper presented at the 2015 IEEE 18th International</p><p>Conference on Intelligent Transportation Systems.</p><p></p><p>Rodrigues, J. G., Kaiseler, M., Aguiar, A., Cunha, J. P. S., & Barros, J. J. I. T. o. I. T. S. (2015). A</p><p>mobile sensing approach to stress detection and memory activation for public bus</p><p>drivers. 16(6), 3294-3303.</p><p></p><p>Rodrigues, J. G., Vieira, F., Vinhoza, T. T., Barros, J., & Cunha, J. P. S. (2010). A non-intrusive</p><p>multi-sensor system for characterizing driver behavior. Paper presented at the 13th</p><p>International IEEE Conference on Intelligent Transportation Systems.</p><p></p><p>Rodrigues, J. G. P., Aguiar, A., Vieira, F., Barros, J., & Cunha, J. P. S. (2011, 5-7 Oct. 2011). A</p><p>mobile sensing architecture for massive urban scanning. Paper presented at the</p><p>2011 14th International IEEE Conference on Intelligent Transportation Systems</p><p>(ITSC).</p><p></p><p>Rodrigues, J. G. P., Kaiseler, M., Aguiar, A., Cunha, J. P. S., & Barros, J. (2015). A Mobile</p><p>Sensing Approach to Stress Detection and Memory Activation for Public Bus Drivers.</p><p>IEEE Transactions on Intelligent Transportation Systems, 16(6), 3294-3303.</p><p>doi:10.1109/TITS.2015.2445314</p><p></p><p>Rodrigues, J. G. P., Vieira, F., Vinhoza, T. T. V., Barros, J., & Cunha, J. P. S. (2010, 19-22 Sept.</p><p>2010). A non-intrusive multi-sensor system for characterizing driver behavior. Paper</p><p>presented at the Intelligent Transportation Systems (ITSC), 2010 13th International</p><p>IEEE Conference on.</p><p></p><p>Russo, J.-N., Sproesser, T., Drouhin, F., & Basset, M. (2016). Risks Level Assessments for</p><p>Automotive Application. IFAC-PapersOnLine, 49(15), 163-168.</p><p>doi:http://dx.doi.org/10.1016/j.ifacol.2016.07.726</p><p></p><p>Sathyanarayana, A., Sadjadi, S. O., & Hansen, J. H. (2012). Leveraging sensor information</p><p>from portable devices towards automatic driving maneuver recognition. Paper</p><p>presented at the 2012 15th International IEEE Conference on Intelligent</p><p>Transportation Systems.</p><p></p><p>Sathyanarayana, A., Sadjadi, S. O., & Hansen, J. H. L. (2012, 16-19 Sept. 2012). Leveraging</p><p>sensor information from portable devices towards automatic driving maneuver</p><p>recognition. Paper presented at the 2012 15th International IEEE Conference on</p><p>Intelligent Transportation Systems.</p><p></p><p>Sato, T., & Akamatsu, M. (2007). Influence of traffic conditions on driver behavior before</p><p>making a right turn at an intersection: Analysis of driver behavior based on</p><p>measured data on an actual road. Transportation Research Part F: Traffic Psychology</p><p>and Behaviour, 10(5), 397-413. doi:http://dx.doi.org/10.1016/j.trf.2007.03.001</p><p></p><p>Sato, T., & Akamatsu, M. (2011, 13-18 Sept. 2011). Analysis of drivers control methods of</p><p>task demands based on behavioral data in actual road environments. Paper</p><p>presented at the SICE Annual Conference (SICE), 2011 Proceedings of.</p><p></p><p>Sato, T., & Akamatsu, M. (2011). Analysis of drivers control methods of task demands based</p><p>on behavioral data in actual road environments. Paper presented at the SICE Annual</p><p>Conference 2011.</p><p></p><p>Sato, T., & Akamatsu, M. (2012). Understanding driver car-following behavior using a fuzzy</p><p>logic car-following model. Paper presented at the Fuzzy Logic-Algorithms,</p><p>Techniques and Implementations.</p><p></p><p>Sato, T., Akamatsu, M. J. T. R. P. F. T. P., & Behaviour. (2007). Influence of traffic conditions</p><p>on driver behavior before making a right turn at an intersection: Analysis of driver</p><p>behavior based on measured data on an actual road. 10(5), 397-413.</p><p></p><p>Satzoda, R. K., & Trivedi, M. M. (2015). Drive Analysis Using Vehicle Dynamics and Vision-</p><p>Based Lane Semantics. IEEE Transactions on Intelligent Transportation Systems,</p><p>16(1), 9-18. doi:10.1109/TITS.2014.2331259</p><p></p><p>Shi, J., Wei, H., & Shi, S. (2012, 16-19 Sept. 2012). Driving motion capture based driver</p><p>behavior analysis. Paper presented at the 2012 15th International IEEE Conference</p><p>on Intelligent Transportation Systems.</p><p></p><p>Shier, R. (2004). Statistics: 1.1 Paired t-tests. Mathematics Learning Support Centre, 12.</p><p></p><p>Suzuki, S., Raksincharoensak, P., Shimizu, I., Nagai, M., & Adomat, R. (2010). Sensor fusionbased</p><p>pedestrian collision warning system with crosswalk detection. Paper</p><p>presented at the 2010 IEEE Intelligent Vehicles Symposium.</p><p></p><p>Suzuki, S., Raksincharoensak, P., Shimizu, I., Nagai, M., & Adomat, R. (2010, 21-24 June</p><p>2010). Sensor fusion-based pedestrian collision warning system with crosswalk</p><p>detection. Paper presented at the Intelligent Vehicles Symposium (IV), 2010 IEEE.</p><p></p><p>Tada, M., Noma, H., Utsumi, A., Segawa, M., Okada, M., & Renge, K. (2014). Elderly driver</p><p>retraining using automatic evaluation system of safe driving skill. IET Intelligent</p><p>Transport Systems, 8(3), 266-272. doi:10.1049/iet-its.2013.0027</p><p></p><p>Takeda, K., Miyajima, C., Suzuki, T., Angkititrakul, P., Kurumida, K., Kuroyanagi, Y., . . .</p><p>Komada, Y. (2012). Self-Coaching System Based on Recorded Driving Data: Learning</p><p>From One's Experiences. IEEE Transactions on Intelligent Transportation Systems,</p><p>13(4), 1821-1831. doi:10.1109/TITS.2012.2205917</p><p></p><p>Takeda, K., Miyajima, C., Suzuki, T., Angkititrakul, P., Kurumida, K., Kuroyanagi, Y., . . .</p><p>Oikawa, M. J. I. T. o. I. T. S. (2012). Self-coaching system based on recorded driving</p><p>data: Learning from one's experiences. 13(4), 1821-1831.</p><p></p><p>Takeda, K., Miyajima, C., Suzuki, T., Kurumida, K., Kuroyanagi, Y., Ishikawa, H., . . . Oikawa, M.</p><p>(2011). Improving driving behavior by allowing drivers to browse their own recorded</p><p>driving data. Paper presented at the 2011 14th International IEEE Conference on</p><p>Intelligent Transportation Systems (ITSC).</p><p></p><p>Takeda, K., Miyajima, C., Suzuki, T., Kurumida, K., Kuroyanagi, Y., Ishikawa, H., . . . Komada, Y.</p><p>(2011, 5-7 Oct. 2011). Improving driving behavior by allowing drivers to browse their</p><p>own recorded driving data. Paper presented at the 2011 14th International IEEE</p><p>Conference on Intelligent Transportation Systems (ITSC).</p><p></p><p>Terada, R., Okuda, H., Suzuki, T., Isaji, K., & Tsuru, N. (2010, 19-22 Sept. 2010). Multi-scale</p><p>driving behavior modeling using hierarchical PWARX model. Paper presented at the</p><p>Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference</p><p>on.</p><p></p><p>Terada, R., Okuda, H., Suzuki, T., Isaji, K., & Tsuru, N. (2010). Multi-scale driving behavior</p><p>modeling using hierarchical PWARX model. Paper presented at the 13th</p><p>International IEEE Conference on Intelligent Transportation Systems.</p><p></p><p>Utsugi, A., & Akamatsu, M. (2007). LANE-CHANGE BEHAVIOR MODELING OF LONG-HAUL</p><p>TRUCK DRIVER USING DRIVING DATABASE. IFAC Proceedings Volumes, 40(16), 425-</p><p>430. doi:http://dx.doi.org/10.3182/20070904-3-KR-2922.00075</p><p></p><p>Utsugi, A., & Akamatsu, M. J. I. P. V. (2007). Lane-change behavior modeling of long-haul</p><p>truck driver using driving database. 40(16), 425-430.</p><p></p><p>Vrhelyi, A., Kaufmann, C., & Persson, A. (2015). User-related assessment of a Driver</p><p>Assistance System for Continuous Support A field trial. Transportation Research</p><p>Part F: Traffic Psychology and Behaviour, 30, 128-144.</p><p>doi:http://dx.doi.org/10.1016/j.trf.2015.02.008</p><p></p><p>Vrhelyi, A., Kaufmann, C., Persson, A. J. T. r. p. F. t. p., & behaviour. (2015). User-related</p><p>assessment of a Driver Assistance System for Continuous SupportA field trial. 30,</p><p>128-144.</p><p></p><p>Wallace, B., Goubran, R., Knoefel, F., Marshall, S., Porter, M., & Smith, A. (2016, June 27</p><p>2016-July 2 2016). Driver Unique Acceleration Behaviours and Stability over Two</p><p>Years. Paper presented at the 2016 IEEE International Congress on Big Data (BigData</p><p>Congress).</p><p></p><p>Wang, H., Tian, X., Wu, S., & Hu, Z. (2016). Growth disparity of motherless children might be</p><p>attributed to a deficient intake of high-quality nutrients. Nutrition Research, 36(12),</p><p>1370-1378.</p><p></p><p>Wang, J., Xiong, C., Lu, M., & Li, K. (2015). Longitudinal driving behaviour on different</p><p>roadway categories: an instrumented-vehicle experiment, data collection and case</p><p>study in China. IET Intelligent Transport Systems, 9(5), 555-563. doi:10.1049/ietits.</p><p>2014.0157</p><p></p><p>Wang, J., Yu, C., Li, S. E., & Wang, L. (2016). A Forward Collision Warning Algorithm With</p><p>Adaptation to Driver Behaviors. IEEE Transactions on Intelligent Transportation</p><p>Systems, 17(4), 1157-1167. doi:10.1109/TITS.2015.2499838</p><p></p><p>Wang, J., Yu, C., Li, S. E., & Wang, L. J. I. T. o. I. T. S. (2015). A forward collision warning</p><p>algorithm with adaptation to driver behaviors. 17(4), 1157-1167.</p><p></p><p>Wang, J., Zhang, L., Zhang, D., & Li, K. (2013). An Adaptive Longitudinal Driving Assistance</p><p>System Based on Driver Characteristics. IEEE Transactions on Intelligent</p><p>Transportation Systems, 14(1), 1-12. doi:10.1109/TITS.2012.2205143</p><p></p><p>Wei, L., Mukhopadhyay, S. C., Jidin, R., & Chen, C. P. (2013, 3-5 Dec. 2013). Multi-source</p><p>information fusion for drowsy driving detection based on wireless sensor networks.</p><p>Paper presented at the 2013 Seventh International Conference on Sensing</p><p>Technology (ICST).</p><p></p><p>Wu, B.-F., Chen, Y.-H., & Yeh, C.-H. J. I. I. T. S. (2013). Driving behaviour-based event data</p><p>recorder. 8(4), 361-367.</p><p></p><p>Wu, B. F., Chen, Y. H., & Yeh, C. H. (2014). Driving behaviour-based event data recorder. IET</p><p>Intelligent Transport Systems, 8(4), 361-367. doi:10.1049/iet-its.2013.0009</p><p></p><p>Wu, C., Peng, L., Huang, Z., Zhong, M., & Chu, D. (2014). A method of vehicle motion</p><p>prediction and collision risk assessment with a simulated vehicular cyber physical</p><p>system. Transportation Research Part C: Emerging Technologies, 47, Part 2, 179-191.</p><p>doi:http://dx.doi.org/10.1016/j.trc.2014.07.002</p><p></p><p>Yang, J., Chang, T. N., & Hou, E. (2010, 7-10 Nov. 2010). Driver distraction detection for</p><p>vehicular monitoring. Paper presented at the IECON 2010 - 36th Annual Conference</p><p>on IEEE Industrial Electronics Society.</p><p></p><p>Yang, J., Chang, T. N., Hou, E., & Ansari, N. (2010, 21-24 Aug. 2010). Longitude force</p><p>estimation for bandwidth conservative communication and vehicular monitoring.</p><p>Paper presented at the 2010 IEEE International Conference on Automation Science</p><p>and Engineering.</p><p></p><p>Zhang, A. (2006). Advanced analysis of gene expression microarray data (Vol. 1): World</p><p>Scientific Publishing Company.</p><p></p><p>Zhou, Y., Wang, G., Xu, G., & Fu, G. (2014, 5-10 Dec. 2014). Safety driving assistance system</p><p>design in intelligent vehicles. Paper presented at the 2014 IEEE International</p><p>Conference on Robotics and Biomimetics (ROBIO 2014).</p><p></p> |