Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste

<p>This study aimed to develop a voltammetric sensor for the determination of bisphenol</p><p>A (BPA), uric acid (UA), dopamine (DA) and acetaminophen (ACT) using multiwalled</p><p>carbon nanotubes incorporated with zinc/aluminium...

Full description

Saved in:
Bibliographic Details
Main Author: Nurashikin Abd Azis
Format: thesis
Language:chi
Published: 2021
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=7274
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:7274
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language chi
topic QE Geology
spellingShingle QE Geology
Nurashikin Abd Azis
Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste
description <p>This study aimed to develop a voltammetric sensor for the determination of bisphenol</p><p>A (BPA), uric acid (UA), dopamine (DA) and acetaminophen (ACT) using multiwalled</p><p>carbon nanotubes incorporated with zinc/aluminium layered double hydroxidequinmerac</p><p>(Sensor 1), zinc/aluminium layered double hydroxide-quinclorac (Sensor 2)</p><p>and zinc/aluminium layered double hydroxide-clopyralid (Sensor 3). The surface</p><p>morphological was determined using field emission scanning electron microscope. The</p><p>electrochemical properties were characterized by cyclic voltammetry, square wave</p><p>voltammetry and electrochemical impedance spectroscopy. Several experimental</p><p>variables of voltammetric analysis such as composition ratios, type of supporting</p><p>electrolyte, pH of the solution and square wave voltammetry parameters were</p><p>optimized. The effective surface area of electrodes was determined by</p><p>chronocoulometry. At the optimum conditions, Sensor 1 showed three linear ranges for</p><p>the single determination of BPA (30 to 700 nM, 1 to 10 M and 30 to 300 M) with</p><p>detection limit of 4.4 nM. Sensor 2 showed simultaneous determination of UA and</p><p>BPA. The linear ranges for UA is from 0.3 to 30 M and 50 to 100 M while for BPA</p><p>is from 0.3 to 5 M and 10 to 100 M with detection limit are 0.065 M and 0.049 M,</p><p>respectively. Sensor 3 showed simultaneous determination of DA, ACT and BPA with</p><p>linear ranges from 7 to 500 M, 30 to 500 M and 3 to 500 M and with detection limit</p><p>of 0.172 M, 0.179 M and 0.136 M, respectively. All the developed sensors did not</p><p>interfere by several foreign ions. In a conclusion, the proposed electrodes exhibited</p><p>good analytical performance with excellent sensitivity and selectivity. In its</p><p>implication, these fabricated electrodes are applicable for determination of BPA, UA,</p><p>ACT and DA in baby bottle, baby teether, water samples, urine and pharmaceutical</p><p>tablets.</p>
format thesis
qualification_name
qualification_level Doctorate
author Nurashikin Abd Azis
author_facet Nurashikin Abd Azis
author_sort Nurashikin Abd Azis
title Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste
title_short Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste
title_full Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste
title_fullStr Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste
title_full_unstemmed Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste
title_sort voltammetric sensors of bisphenol a, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2021
url https://ir.upsi.edu.my/detailsg.php?det=7274
_version_ 1747833373393420288
spelling oai:ir.upsi.edu.my:72742022-07-21 Voltammetric sensors of bisphenol A, uric acid, dopamine and acetaminophen using layered double hydroxide modified multiwalled carbon nanotubes paste 2021 Nurashikin Abd Azis QE Geology <p>This study aimed to develop a voltammetric sensor for the determination of bisphenol</p><p>A (BPA), uric acid (UA), dopamine (DA) and acetaminophen (ACT) using multiwalled</p><p>carbon nanotubes incorporated with zinc/aluminium layered double hydroxidequinmerac</p><p>(Sensor 1), zinc/aluminium layered double hydroxide-quinclorac (Sensor 2)</p><p>and zinc/aluminium layered double hydroxide-clopyralid (Sensor 3). The surface</p><p>morphological was determined using field emission scanning electron microscope. The</p><p>electrochemical properties were characterized by cyclic voltammetry, square wave</p><p>voltammetry and electrochemical impedance spectroscopy. Several experimental</p><p>variables of voltammetric analysis such as composition ratios, type of supporting</p><p>electrolyte, pH of the solution and square wave voltammetry parameters were</p><p>optimized. The effective surface area of electrodes was determined by</p><p>chronocoulometry. At the optimum conditions, Sensor 1 showed three linear ranges for</p><p>the single determination of BPA (30 to 700 nM, 1 to 10 M and 30 to 300 M) with</p><p>detection limit of 4.4 nM. Sensor 2 showed simultaneous determination of UA and</p><p>BPA. The linear ranges for UA is from 0.3 to 30 M and 50 to 100 M while for BPA</p><p>is from 0.3 to 5 M and 10 to 100 M with detection limit are 0.065 M and 0.049 M,</p><p>respectively. Sensor 3 showed simultaneous determination of DA, ACT and BPA with</p><p>linear ranges from 7 to 500 M, 30 to 500 M and 3 to 500 M and with detection limit</p><p>of 0.172 M, 0.179 M and 0.136 M, respectively. All the developed sensors did not</p><p>interfere by several foreign ions. In a conclusion, the proposed electrodes exhibited</p><p>good analytical performance with excellent sensitivity and selectivity. In its</p><p>implication, these fabricated electrodes are applicable for determination of BPA, UA,</p><p>ACT and DA in baby bottle, baby teether, water samples, urine and pharmaceutical</p><p>tablets.</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7274 https://ir.upsi.edu.my/detailsg.php?det=7274 text chi closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abollino, O., Giacomino, A., & Malandrino, M. (2018). Stripping Voltammetry. In</p><p>Encyclopedia of Analytical Science, (3rd ed., pp. 120). Elsevier Inc.</p><p></p><p>Abramovic, B. F., Anderluh, V. B., ojic, D. V., & Gal, F. F. (2007). Photocatalytic</p><p>removal of the herbicide clopyralid from water. Journal of the Serbian Chemical</p><p>Society, 72(12), 14771486.</p><p></p><p>Achterberg, E. P., Gledhill, M., Hawkes, J. A., & Avendano, L. C. (2013). Voltammetry</p><p>| Cathodic Stripping. Reference Module in Chemistry, Molecular Sciences and</p><p>Chemical Engineering (pp. 203-211). Elsevier Inc.</p><p></p><p>Adam, N., Mohd Ghazali, S. A. I. S., Dzulkifli, N. N., Hak, C. R. C., & Sarijo, S. H.</p><p>(2019). Intercalations and characterization of zinc/aluminium layered double</p><p>hydroxide-cinnamic acid. Bulletin of Chemical Reaction Engineering &Amp;</p><p>Catalysis, 14(1), 165172.</p><p></p><p>Adeloju, S. B. (2007). Electrochemical stripping analysis of trace and ultra-trace</p><p>concentrations of toxic metals and metalloids in foods and beverages. In Food</p><p>Toxicants Analysis: Techniques, Strategies and Developments (pp. 667696).</p><p>Woodhead Publishing Limited.</p><p></p><p>Adhikari, B.-R., Maduraiveeran, G., & Chen, A. (2014). Sensitive detection of</p><p>acetaminophen with graphene-based electrochemical sensor. Electrochimica Acta,</p><p>162, 198-204</p><p></p><p>Ahmad, M. S., Isa, I., Hashim, N., & Rosmi, M. S. (2018). Electrochemical detection</p><p>of hydroquinone by square wave voltammetry using a Zn layered hydroxideferulate</p><p>(ZLH-F) modified MWCNT paste electrode. International Journal of</p><p>Electrochemical Science, 13, 373383.</p><p></p><p>Ahmad, M. S., Isa, I., Hashim, N., Si, S. M., & Saidin, M. I. (2018). A highly sensitive</p><p>sensor of paracetamol based on zinc-layered hydroxide-L-phenylalanate-modified</p><p>multiwalled carbon nanotube paste electrode. Journal of Solid State</p><p>Electrochemistry, 22(3), 26912701.</p><p></p><p>Ahmad, M. S., Isa, I. M., Hashim, N., Saidin, M. I., Si, S. M., Zainul, R., & Mukdasai,</p><p>S. (2019). Zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb modified</p><p>multiwalled carbon nanotubes as sensor for electrochemical determination of</p><p>dopamine in alkaline medium. International Journal of Electrochemical Science,</p><p>14(9), 90809091.</p><p></p><p>Ahmadpour, S., Tashkhourian, J., & Hemmateenejad, B. (2020). A chemometric</p><p>investigation on the influence of the nature and concentration of supporting</p><p>electrolyte on charging currents in electrochemistry. Journal of Electroanalytical</p><p>Chemistry, 871, 114296.</p><p></p><p>Ahmed, J., Rahman, M. M., Siddiquey, I. A., Asiri, A. M., & Hasnat, M. A. (2017).</p><p>Efficient bisphenol-A detection based on the ternary metal oxide (TMO)</p><p>composite by electrochemical approaches. Electrochimica Acta, 246, 597605.</p><p></p><p>Alderman, M. H. (2001). Serum uric acid as a cardiovascular risk factor for heart</p><p>disease. Current Hypertension Reports, 3, 184189.</p><p></p><p>Allou, N. B., Saikia, P., Borah, A., & Goswamee, R. L. (2017). Hybrid nanocomposites</p><p>of layered double hydroxides : An update of their biological applications and</p><p>future prospects. Colloid and Polymer Science, 295(5), 725747.</p><p></p><p>Alnaimat, A. S., Barciela-Alonso, M. C., & Bermejo-Barrera, P. (2019). Determination</p><p>of bisphenol A in tea samples by solid phase extraction and liquid chromatography</p><p>coupled to mass spectrometry. Microchemical Journal, 147, 598-604.</p><p></p><p>Alvarez-Lario, B., & Macarron-Vicente, J. (2010). Uric acid and evolution.</p><p>Rheumatology, 49, 20102015.</p><p></p><p>Alves, G. M. S., Rocha, L. S., & Soares, H. M. V. M. (2017). Multi-element</p><p>determination of metals and metalloids in waters and wastewaters, at trace</p><p>concentration level, using electroanalytical stripping methods with</p><p>environmentally friendly mercury free-electrodes: A review. Talanta, 175, 53-68.</p><p></p><p>Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., & Cerd, V. (2015). Solid phase</p><p>extraction of organic compounds: A critical review. Trends in Analytical</p><p>Chemistry, 80, 655667.</p><p></p><p>Anson, F. C. (1966). Innovations in the study of adsorbed reactants by</p><p>chronocoulometry. Analytical Chemistry, 38(1), 5457.</p><p></p><p>Apetrei, C., Apetrei, I. M., Saja, J. A. De, & Rodriguez-Mendez, M. L. (2011). Carbon</p><p>paste electrodes made from different carbonaceous materials: Application in the</p><p>study of antioxidants. Sensors, 11, 13281344.</p><p></p><p>Apodaca, D. C., Pernites, R. B., Ponnapati, R., Del Mundo, F. R., & Advincula, R. C.</p><p>(2011). Electropolymerized molecularly imprinted polymer film: EIS sensing of</p><p>bisphenol A. Macromolecules, 44(17), 66696682.</p><p></p><p>Arvand, M., & Hassannezhad, M. (2014). Magnetic core-shell Fe3O4@SiO2/MWCNT</p><p>nanocomposite modified carbon paste electrode for amplified electrochemical</p><p>sensing of uric acid. Materials Science and Engineering C, 36(1), 160167.</p><p></p><p>Asadpour-Zeynali, K., & Amini, R. (2017). Nanostructured hexacyanoferrate</p><p>intercalated Ni/Al layered double hydroxide modified electrode as a sensitive</p><p>electrochemical sensor for paracetamol determination. Electroanalysis, 29(2),</p><p>635642.</p><p></p><p>Atta, N. F., Ali, S. M., El-ads, E. H., & Galal, A. (2013). Nano-perovskite carbon paste</p><p>composite electrode for the simultaneous determination of dopamine, ascorbic</p><p>acid and uric acid. Electrochimica Acta, 128, 1624.</p><p></p><p>Azis, N. A., Isa, I. M., Hashim, N., Ahmad, M. S., Yazid, S. N. A. M., & Saidin, M. I.</p><p>(2019). Voltammetric determination of bisphenol A in the presence of uric acid</p><p>using a Zn/Al-LDH-QM modified MWCNT paste electrode. International</p><p>Journal of Electrochemical Science, 14, 10607-10621.</p><p></p><p>Babaei, A., Afrasiabi, M., & Azimi, G. (2015). Nanomolar simultaneous determination</p><p>of epinephrine and acetaminophen on a glassy carbon electrode coated with a</p><p>novel Mg-Al layered double hydroxide-nickel hydroxide nanoparticles-multiwalled</p><p>carbon nanotubes composite. Analytical Methods, 7(6), 24692478.</p><p></p><p>Baccarin, M., Santos, F. A., Vicentini, F. C., Zucolotto, V., Janegitz, B. C., & Fatibello-</p><p>Filho, O. (2017). Electrochemical sensor based on reduced graphene oxide/carbon</p><p>black/chitosan composite for the simultaneous determination of dopamine and</p><p>paracetamol concentrations in urine samples. Journal of Electroanalytical</p><p>Chemistry, 799(6), 436443.</p><p></p><p>Baig, N., & Sajid, M. (2017). Applications of layered double hydroxides based</p><p>electrochemical sensors for determination of environmental pollutants : A review.</p><p>Trends in Environmental Analytical Chemistry, 16(10), 115.</p><p></p><p>Baruah, A., Mondal, S., Sahoo, L., & Gautam, U. K. (2019). Ni-Fe-layered double</p><p>hydroxide/N-doped graphene oxide nanocomposite for the highly efficient</p><p>removal of Pb(II) and Cd(II) ions from water. Journal of Solid State Chemistry,</p><p>280, 120963.</p><p></p><p>Bas, B., Bugajna, A., Jakubowska, M., Reczynski, W., & Smalec, A. (2013). The</p><p>renewable glassy carbon annular band electrode in a highly sensitive normal pulse</p><p>voltammetric determination of paracetamol with continuous wavelet</p><p>transformation. Electrochimica Acta, 99, 190197.</p><p></p><p>Bashi, A. M., Hussein, M. Z., Zainal, Z., Rahmani, M., & Tichit, D. (2012).</p><p>Simultaneous intercalation and release of 2,4-dichloro and 4-chloro-phenoxy</p><p>acetates into Zn/Al layered double hydroxide. Arabian Journal of Chemistry, 9,</p><p>S1457S1463.</p><p></p><p>Bayram, E., & Akyilmaz, E. (2016). Chemical development of a new microbial</p><p>biosensor based on conductive polymer/multiwalled carbon nanotube and its</p><p>application to paracetamol determination. Sensors & Actuators: B. Chemical, 233,</p><p>409418.</p><p></p><p>Benecyo, J. E. (2016). Simultaneous Determination of BPA and BPS Using UV/ Vis</p><p>Spectrophotometry and HPLC. Ouachita Baptist University Scholarly.</p><p></p><p>Berber, M., Hafez, I., Minagawa, K., Mori, T., & Tanaka, M. (2011). Versatile</p><p>nanocomposite formulation system of non-steroidal anti-inflammatory drugs of</p><p>the arylalkanoic acids, Advances in Nanocomposite Technology, Abbass Hashim,</p><p>IntechOpen.</p><p></p><p>Bessems, J. G. M., & Vermeulen, N. P. E. (2001). Paracetamol (acetaminophen)-</p><p>induced toxicity : Molecular and biochemical mechanisms , analogues and</p><p>protective approaches. Critical Reviews in Toxicology, 31(1), 55138.</p><p></p><p>Bhakta, A. K., Mascarenhas, R. J., DSouza, O. J., Satpati, A. K., Detriche, S.,</p><p>Mekhalif, Z., & Dalhalle, J. (2015). Iron nanoparticles decorated multi-wall</p><p>carbon nanotubes modified carbon paste electrode as an electrochemical sensor</p><p>for the simultaneous determination of uric acid in the presence of ascorbic acid,</p><p>dopamine and L-tyrosine. Materials Science & Engineering C, 57, 328377.</p><p></p><p>Bilal, S. (2014). Cyclic Voltammetry. In G. Kreysa, K. Ota, & R. F. Savinell (Eds.),</p><p>Encyclopedia of Applied Electrochemistry (pp. 285289). New York, NY:</p><p>Springer New York.</p><p></p><p>Bilewicz, R., Wikiel, K., Osteryoung, R., & Osteryoung, J. (2002). General equivalence</p><p>of linear scan and staircase voltammetry : Experimental results. Analytical</p><p>Chemistry, 61(9), 965972.</p><p></p><p>Bini, M., & Monteforte, F. (2018). Layered double hydroxides (LDHs): Versatile and</p><p>powerful hosts for different applications. Journal of Analytical & Pharmaceutical</p><p>Research, 7(1), 00206.</p><p>Bode and nyquist plot (2020). Retrieved from</p><p>https://www.palmsenscorrosion.com/knowledgebase/bode-and-nyquist-plot/</p><p></p><p>Bolat, G., Yaman, Y. T., & Abaci, S. (2018). Highly sensitive electrochemical assay</p><p>for bisphenol A detection based on poly (CTAB)/MWCNTs modified pencil</p><p>graphite electrodes. Sensors and Actuators, B: Chemical, 255, 140148.</p><p></p><p>Bontempelli, G., Dossi, N., & Toniolo, R. (2019). Polarography/Voltammetry. In</p><p>Encyclopedia of Analytical Science, (3rd ed., pp. 218-229). Elsevier Inc.</p><p></p><p>Brede, C., Fjeldal, P., Skjevrak, I., & Herikstad, H. (2003). Increased migration levels</p><p>of bisphenol A from polycarbonate baby bottles after dishwashing , boiling and</p><p>brushing. Food Additives and Contaminants, 20(7), 684689.</p><p></p><p>Brock, J. W., Yoshimura, Y., Barr, J. R., Maggio, V. L., Graiser, S. R., Nakazawa, H.,</p><p>& Needham, L. L. (2001). Measurement of bisphenol A levels in human urine.</p><p>Journal of Exposure Analysis and Environmental Epidemiology, 11, 323328.</p><p></p><p>Brownson, D. A. C., & Banks, C. E. (2014). The Handbook of Graphene</p><p>Electrochemistry (1st ed.). Springer-Verlag London.</p><p></p><p>Bruna, F., Celis, R., Pavlovic, I., Barriga, C., Cornejo, J., & Ulibarri, M. A. (2009).</p><p>Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-</p><p>2-methylphenoxy) acetic acid (MCPA): Systems MgAl, MgFe and MgAlFe.</p><p>Journal of Hazardous Materials, 168, 14761481.</p><p></p><p>Bunchorntavakul, C., & Reddy, K. R. (2013). Acetaminophen-related hepatotoxicity.</p><p>Clinics in Liver Disease, 17(4), 587607.</p><p></p><p>C. Moldoveanu, S., & David, V. (2017). Short overviews of analytical techniques not</p><p>containing an independent separation step. In Selection of the HPLC Method in</p><p>Chemical Analysis (pp. 3153). Elsevier.</p><p></p><p>Caban, M., Lis, E., Kumirska, J., & Stepnowski, P. (2015). Environment determination</p><p>of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS</p><p>( SIM ) method based on Speedisk extraction disks and DIMETRIS derivatization.</p><p>Science of the Total Environment, 538, 402411.</p><p></p><p>Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A,</p><p>nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface</p><p>water, sediments, and food : A review. Environmental Science and Pollution</p><p>Research, 22, 57115741.</p><p></p><p>Cavani, F., Trifiro, F., Vaccari, A. (1991). Hydrotalcite-type anionic clays: preparation,</p><p>properties and applications. Catalysis Today, 11, 173301.</p><p></p><p>Chapin, R. E., Adams, J., Boekelheide, K., Gray, L. E., Hayward, S. W., Lees, P. S. J.,</p><p>et al. (2008). NTP-CERHR expert panel report on the reproductive and</p><p>developmental toxicity of bisphenol A. Birth Defects Research Part B -</p><p>Developmental and Reproductive Toxicology, 83(3), 157395.</p><p></p><p>Cheemalapati, S., Palanisamy, S., Mani, V., & Chen, S. M. (2013). Simultaneous</p><p>electrochemical determination of dopamine and paracetamol on multiwalled</p><p>carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon</p><p>electrode. Talanta, 117, 297304.</p><p></p><p>Chen, X., Zhou, G., Mao, S., & Chen, J. (2018). Rapid detection of nutrients with</p><p>electronic sensors: A review. Environmental Science: Nano, 5, 837862.</p><p></p><p>Chen, Z., Guo, J., Zhou, T., Zhang, Y., & Chena, L. (2013). A novel nonenzymatic</p><p>electrochemical glucose sensor modified with Ni/Al layered double hydroxide.</p><p>Electrochimica Acta, 109(3), 532535.</p><p></p><p>Chiavazza, E., Berto, S., Giacomino, A., Malandrino, M., Barolo, C., Prenesti, E., et al</p><p>(2016). Electrocatalysis in the oxidation of acetaminophen with an</p><p>electrochemically activated glassy carbon electrode. Electrochimica Acta, 192,</p><p>139147.</p><p></p><p>Chou, J. (1999). Hazardous gas monitors : A practical guide to selection, operation</p><p>and applications (1st ed). New York: McGraw-Hill.</p><p></p><p>Christie, J. H., & Lingane, P. J. (1965). Theory of staircase voltammetry. Journal of</p><p>Electroanalytical Chemistry, 10(3), 176182.</p><p></p><p>Ciszewski, A., & Milczarek, G. (1999). Polyeugenol-modified platinum electrode for</p><p>selective detection of dopamine in the presence of ascorbic acid. Analytical</p><p>Chemistry, 71(5), 10551061.</p><p></p><p>Ciui, A. B., Tertis, M., Feurdean, C., Ilea, A., Sandulescu, R., Wang, J., et al. (2018).</p><p>Cavitas electrochemical sensor toward detection of N-epsilon</p><p>(Carboxymethyl)lysine in oral cavity. Sensors & Actuators: B. Chemical.</p><p></p><p>Conceno, G., Silva, A. F., Ferreira, E. A., Galon, L., Noldin, J. A., Aspiaz, I., et al.</p><p>(2009). Effect of dose and application site on quinclorac absorption by barnyardgrass biotypes. Planta Daninha, 27(3), 541548.</p><p></p><p>Correia-s, L., Norberto, S., Delerue-matos, C., Calhau, C., & Domingues, V. F. (2018).</p><p>Micro-QuEChERS extraction coupled to GCMS for a fast determination of</p><p>bisphenol A in human urine. Journal of Chromatography B, 1072(10), 916.</p><p></p><p>Cosio, M. S., Pellican, A., Brunetti, B., & Fuenmayor, C. A. (2017). A simple</p><p>hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for</p><p>rapid amperometric detection of bisphenol A. Sensors and Actuators, B:</p><p>Chemical, 246, 673679.</p><p></p><p>Cosio, M. S., Scampicchio, M., & Benedetti, S. (2012). Electronic noses and tongues.</p><p>In Chemical analysis of Food: Techniques and Applications (pp. 219247).</p><p>Elsevier Inc.</p><p></p><p>Costa-rama, E., & Abedul, M. T. F. (2020). Adsorptive stripping voltammetry of indigo</p><p>blue in a flow system. In Laboratory Methods in Dynamic Electroanalysis (pp.</p><p>4756). Elsevier Inc.</p><p></p><p>Costello, B. P. J. D. L., Evans, P., & Ratcliffet, N. M. (1996). Preparation of polypyrrole</p><p>composites and the effect of volatile amines on their electrical properties. Analyst,</p><p>121(June), 793797.</p><p></p><p>Courade, J.-P., Caussade, F., Martin, K., Besse, D., Delchambre, C., Hanoun, N., et al.</p><p>(2001). Effects of acetaminophen on monoaminergic systems in the rat central</p><p>nervous system. Naunyn-Schmiedebergs Archives of Pharmacology, 364, 534</p><p>537.</p><p></p><p>Cox, K. H., Gatewood, J. D., Howeth, C., & Rissman, E. F. (2010). Hormones and</p><p>behavior gestational exposure to bisphenol A and cross-fostering affect behaviors</p><p>in juvenile mice. Hormones and Behavior, 58(5), 754761.</p><p></p><p>Crepaldi, E. L., Pavan, P. C., & Valim, J. B. (2000). Anion exchange in layered double</p><p>hydroxides by surfactant salt formation. Journal of Materials Chemistry, 10,</p><p>13371343.</p><p></p><p>DSouza, O. J., Mascarenhas, R. J., Thomas, T., Basavaraja, B. M., Saxena, A. K.,</p><p>Mukhopadhyay, K., et al. (2015). Platinum decorated multi-walled carbon</p><p>nanotubes/Triton X-100 modified carbon paste electrode for the sensitive</p><p>amperometric determination of paracetamol. Journal of Electroanalytical</p><p>Chemistry, 739, 4957.</p><p></p><p>Darmapatni, K. A. G., Basori, A., & Suaniti, N. M. (2016). Pengembangan metode GCMS</p><p>untuk penetapan kadar acetaminophen pada spesimen rambut manusia. Jurnal</p><p>Biosains Pascasarjana, 18(3), 58-71.</p><p></p><p>Dawei, Q., Zhang, Q., Zhou, W., Zhao, J., Zhang, B., Sha, Y., et al. (2016).</p><p>Quantification of dopamine in brain microdialysates with high- performance</p><p>liquid chromatographytandem mass spectrometry. Analytical Sciences, 32(4),</p><p>419424.</p><p></p><p>Dejous, C., Hallil, H., Raimbault, V., Rukkumani, R., & Yakhmi, J. V. (2017). Using</p><p>microsensors to promote the development of innovative therapeutic</p><p>nanostructures. In Nanostructures for Novel Therapy (pp. 539566). Elsevier Inc.</p><p></p><p>Dekanski, A., Stevanovic, J., Stevanovic, R., Nikolic, B. Z., & Jovanovic, V. M. (2001).</p><p>Glassy carbon electrodes I . Characterization and electrochemical activation.</p><p>Carbon, 39, 11951205.</p><p></p><p>Deutch, A. Y. (1993). Prefrontal cortical dopamine systems and the elaboration of</p><p>functional corticostriatal circuits: implications for schizophrenia and Parkinsons</p><p>disease A. Journal of Neural Transmission, 91, 197221.</p><p></p><p>Dong, X., Qi, X., Liu, N., Yang, Y., & Piao, Y. (2017). Direct electrochemical detection</p><p>of bisphenol a using a highly conductive graphite nanoparticle film electrode.</p><p>Sensors, 17(4), 836-846.</p><p></p><p>Electrochemical impedance spectroscopy (2020). Retrived from</p><p>https://www.elproscan.com/secm/electrochemical-impedance-spectroscopy/</p><p></p><p>El Bouabi, Y., Farahi, A., Labjar, N., El Hajjaji, S., Bakasse, M., & El Mhammedi, M.</p><p>A. (2016). Square wave voltammetric determination of paracetamol at chitosan</p><p>modified carbon paste electrode: Application in natural water samples,</p><p>commercial tablets and human urines. Materials Science and Engineering C, 58,</p><p>7077.</p><p></p><p>El Harrad, L., Bourais, I., Mohammadi, H., & Amine, A. (2018). Recent advances in</p><p>electrochemical biosensors pharmaceutical applications. Sensors, 18(1), 164188.</p><p></p><p>Elgrishi, N., Rountree, K. J., Mccarthy, B. D., Rountree, E. S., Eisenhart, T. T., &</p><p>Dempsey, J. L. (2018). A Practical beginners guide to cyclic voltammetry.</p><p>Journal of Chemical Education, 95(2), 197206.</p><p></p><p>Ensafi, A. A., Arashpour, B., Rezaei, B., & Allafchian, A. R. (2014). Voltammetric</p><p>behavior of dopamine at a glassy carbon electrode modified with NiFe2O4</p><p>magnetic nanoparticles decorated with multiwall carbon nanotubes. Materials</p><p>Science and Engineering C, 39(1), 7885.</p><p></p><p>Ensafi, A. A., Karimi-maleh, H., Mallakpour, S., & Hatami, M. (2011). Simultaneous</p><p>determination of N-acetylcysteine and acetaminophen by modified multiwall</p><p>carbon nanotubes paste electrode. Sensors & Actuators B: Chemical, 155(2), 464</p><p>472.</p><p></p><p>Erden, P. E., Kaar, C., ztrk, F., & Kili, E. (2015). Amperometric uric acid</p><p>biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon</p><p>nanotube modified glassy carbon electrode. Talanta, 134, 488495.</p><p></p><p>Eshaq, G., & Elmetwally, A. E. (2016). (MgZn)Al layered double hydroxide as a</p><p>regenerable catalyst for the catalytic glycolysis of polyethylene terephthalate.</p><p>Journal of Molecular Liquids, 214, 16.</p><p></p><p>Evans, D. G., & Slade, R. C. T. (2006). Structural aspects of layered double hydroxides.</p><p>In Duan. X. & Evans. D.G. (Eds.), Layered Double Hydroxides. Structure and</p><p>Bonding (Vol. 119, pp. 187). Germany: Springer, Berlin, Heidelberg.</p><p></p><p>Fan, G., Li, F., Evans, D. G., & Duan, X. (2014). Catalytic applications of layered</p><p>double hydroxides: Recent advances and perspectives. Chemical Society Review,</p><p>43, 70407066.</p><p></p><p>Fan, H., Li, Y., Wu, D., Ma, H., Mao, K., Fan, D., et al. (2012). Electrochemical</p><p>bisphenol A sensor based on N-doped graphene sheets. Analytica Chimica Acta,</p><p>711, 2428.</p><p></p><p>Faridbod, F., Gupta, V. K., & Zamani, H. A. (2011). Electrochemical sensors and</p><p>biosensors. International Journal of Electrochemistry, 2011, 1-2.</p><p></p><p>Feitknecht, W. (1942). The knowledge of the double hydroxides and basic double salts.</p><p>Helvetica Chimica Acta, 25, 131137.</p><p></p><p>Feng, J., Tao, Y., Shen, X., Jin, H., Zhou, T., Zhou, Y., et al. (2018). Highly sensitive</p><p>and selective fluorescent sensor for tetrabromobisphenol-A in electronic waste</p><p>samples using molecularly imprinted polymer coated quantum dots.</p><p>Microchemical Journal, 144, 93-101.</p><p></p><p>Ferraro, P. M., & Curhan, G. C. (2017). Serum uric acid and risk of kidney stones.</p><p>American Journal of Kidney Diseases, 70(2), 158159.</p><p></p><p>Ferrer, E., Santoni, E., Vittori, S., Font, G., Maes, J., & Sagratini, G. (2011).</p><p>Simultaneous determination of bisphenol A, octylphenol, and nonylphenol by</p><p>pressurised liquid extraction and liquid chromatography-tandem mass</p><p>spectrometry in powdered milk and infant formulas. Food Chemistry, 126(1),</p><p>360367.</p><p></p><p>Flint, S., Markle, T., Thompson, S., & Wallace, E. (2012). Bisphenol A exposure,</p><p>effects, and policy : A wildlife perspective. Journal of Environmental</p><p>Management, 104, 1934.</p><p></p><p>Frye, C. A., Bo, E., Calamandrei, G., Calze, L., Dessi-Fulgheri, F., Fernandez, M., et</p><p>al. (2011). Endocrine disrupters : A review of some sources, effects, and</p><p>mechanisms of actions on behaviour and neuroendocrine systems</p><p>neuroendocrinology system. Journal of Neuroendocrinol, 24(1), 144159.</p><p></p><p>Ganesh, V., Pal, S. K., Kumar, S., & Lakshminarayanan, V. (2006). Self-assembled</p><p>monolayers (SAMs) of alkoxycyanobiphenyl thiols on goldA study of electron</p><p>transfer reaction using cyclic voltammetry and electrochemical impedance</p><p>spectroscopy. Journal of Colloid and Interface Sciene, 296, 195203.</p><p></p><p>Gao, Y., Cao, Y., Yang, D., Luo, X., Tang, Y., & Li, H. (2012). Sensitivity and</p><p>selectivity determination of bisphenol A using SWCNT-CD conjugate modified</p><p>glassy carbon electrode. Journal of Hazardous Materials, 199200, 111118.</p><p></p><p>Gautam, V., Singh, K. P., & Yadav, V. L. (2018). Preparation and characterization of</p><p>green-nano-composite material based on polyaniline, multiwalled carbon nano</p><p>tubes and carboxymethyl cellulose: For electrochemical sensor applications.</p><p>Carbohydrate Polymers, 189, 218-228</p><p></p><p>Germer, T. A., Zwinkels, J. C., & Tsai, B. K. (2014). Introduction to</p><p>Spectrophotometry. In T. A. Germer, J. C. Zwinkels, & P. S. Tsai (Eds.),</p><p>Spectrophotometry (Vol. 46, pp. 19). Academic Press.</p><p></p><p>Ghalkhani, M., & Ghorbani-Bidkorbeh, F. (2019). Development of carbon</p><p>nanostructured based electrochemical sensors for pharmaceutical analysis. Iranian</p><p>Journal of Pharmaceutical Research, 18(2), 658669.</p><p></p><p>Ghanam, A., Lahcen, A. A., & Amine, A. (2017). Electroanalytical determination of</p><p>bisphenol A: Investigation of electrode surface fouling using various carbon</p><p>materials. Journal of Electroanalytical Chemistry, 789, 5866.</p><p></p><p>Ghazali, S. A. I. S. M., Hussein, M. Z., & Sarijo, S. H. (2013). 3,4-</p><p>Dichlorophenoxyacetate interleaved into anionic clay for controlled release</p><p>formulation of a new environmentally friendly agrochemical. Nanoscale Research</p><p>Letters, 8, 362369.</p><p></p><p>Ghiaci, M., Rezaei, B., & Arshadi, M. (2009). Characterization of modified carbon</p><p>paste electrode by using Salen Schiff base ligand immobilized on SiO2-Al2O3 as a</p><p>highly sensitive sensor for anodic stripping voltammetric determination of</p><p>copper(II). Sensors and Actuators, B: Chemical, 139(2), 494500.</p><p></p><p>Gorkina, A. L., Tsapenko, A. P., Gilshteyn, E. P., Koltsova, T. S., Larionova, T. V,</p><p>Talyzin, A., et al. (2016). Transparent and Conductive Hybrid Graphene/Carbon</p><p>Nanotube Films. Carbon. Elsevier Ltd.</p><p></p><p>Grossmann, K., & Scheltrup, F. (1998). Studies on the mechanism of selectivity of the</p><p>auxin herbicide quinmerac. Pesticide Science, 52(2), 111118.</p><p></p><p>Gulaboski, R., Mirceski, V., Komorsky-Lovric, S., & Lovric. M. (2004). Square-wave</p><p>voltammetry of cathodic stripping reactions. Diagnostic criteria , redox kinetic</p><p>measurements, and analytical applications. Electroanalysis, 16(10), 832842.</p><p></p><p>Guo, X. M., Guo, B., Li, C., & Wang, Y. L. (2016). Amperometric highly sensitive uric</p><p>acid sensor based on manganese(III)porphyrin-graphene modified glassy carbon</p><p>electrode. Journal of Electroanalytical Chemistry, 783, 814.</p><p></p><p>Hao, Y., Xiao, F., Xiao-Xia, C., Jin-Li, Q., Xiao-Ling, G., Na, X., et al. (2017).</p><p>Electrochemical determination of bisphenol a on a glassy carbon electrode</p><p>modified with gold nanoparticles loaded on reduced graphene oxide-multi walled</p><p>carbon nanotubes composite. Chinese Journal of Analytical Chemistry, 45(5),</p><p>713720.</p><p></p><p>Hashim, N., Hussein, M. Z., Yahaya, A. H., & Zainal, Z. (2007). Formation of zinc</p><p>aluminium layered double hydroxides-4(2,4-dichlorophenoxy)butyrate</p><p>nanocomposites by direct and indirect methods. The Malaysian Journal of</p><p>Analytical Sciences, 11(1), 17.</p><p></p><p>Hashim, N., Sharif, S. N. M., md isa, I., Mamat, M., Mohd Ali, N., Suriani, A. B., et al.</p><p>(2019). Intercalation and characterisation of novel broad-leaved herbicide</p><p>nanocomposite from zinc/aluminium layered double hydroxide and quinmerac.</p><p>Research Journal of Chemistry And Environment, 23, 3645.</p><p></p><p>He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., & Duan, X. (2006). Preparation of</p><p>layered double hydroxides. In X. Duan & D. G. Evans (Eds.), Layered Double</p><p>Hydroxides. Structure and Bonding (pp. 89119). New York: Springer, Berlin,</p><p>Heidelberg.</p><p></p><p>Hernndez, M., Fernndez, L., Borrs, C., Mostany, J., & Carrero, H. (2007).</p><p>Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified</p><p>electrodes: Oxidation of phenol. Analytica Chimica Acta, 597(2), 245256.</p><p></p><p>Hochstetter, C. (1842). Investigation of the composition of some minerals. Journal for</p><p>Practical Chemistry, 27, 375378.</p><p></p><p>Honeychurch, K. C. (2012). Printed thick-film biosensors. In Printed Films (pp. 366</p><p>409). Woodhead Publishing.</p><p></p><p>Howes, O., Mccutcheon, R., & Stone, J. (2015). Glutamate and dopamine in</p><p>schizophrenia : An update for the 21 st century. Journal of Psychopharmacology,</p><p>29(2), 97-115.</p><p></p><p>Huang, H., Mao, L., Li, Z., Liu, Y., Fan, S., Jin, Y., et al. (2019). Multifunctional</p><p>Polypyrrole-silver coated layered double hydroxides embedded into a</p><p>biodegradable polymer matrix for enhanced antibacterial and gas barrier</p><p>properties. Journal of Bioresources and Bioproducts, 4(4), 231241.</p><p></p><p>Huang, L., Jiao, S., & Li, M. (2014). Determination of uric acid in human urine by</p><p>eliminating ascorbic acid interference on copper(II)-polydopamine immobilized</p><p>electrode surface. Electrochimica Acta, 121, 233239.</p><p></p><p>Huang, Y., Cheng, C., Tian, X., Zheng, B., Li, Y., Yuan, H., et al. (2013). Low-potential</p><p>amperometric detection of dopamine based on MnO2 nanowires/chitosan modified</p><p>gold electrode. Electrochimica Acta, 89, 832839.</p><p></p><p>Huang, Y., Li, X., & Zheng, S. (2016). A novel and label-free immunosensor for</p><p>bisphenol A using rutin as the redox probe. Talanta, 160, 241246.</p><p></p><p>Huang, Y. Q., Wong, C. K. C., Zheng, J. S., Bouwman, H., Barra, R., Wahlstrm, B.,</p><p>et al. (2012). Bisphenol A (BPA) in China: A review of sources, environmental</p><p>levels, and potential human health impacts. Environment International, 42, 9199.</p><p></p><p>Hudari, F. F., Duarte, E. H., Pereira, A. C., DallAntonia, L. H., Kubota, L. T., & Tarley,</p><p>C. R. T. (2013). Voltammetric method optimized by multi-response assays for the</p><p>simultaneous measurements of uric acid and acetaminophen in urine in the</p><p>presence of surfactant using MWCNT paste electrode. Journal of</p><p>Electroanalytical Chemistry, 696, 5258.</p><p></p><p>Hussein, M. Z., Hashim, N., Yahaya, A. H., & Zainal, Z. (2010). Synthesis of an</p><p>herbicidesinorganic nanohybrid compound by ion exchange-intercalation of 3(2-</p><p>chlorophenoxy) propionate into layered double hydroxide. Journal of</p><p>Experimental Nanoscience, 5(6), 548558.</p><p></p><p>Hussein, M. Z., Rahman, N. S. S. A., Sarijo, S. H., & Zainal, Z. (2012). Synthesis of a</p><p>monophasic nanohybrid for a controlled release formulation of two active agents</p><p>simultaneously. Applied Clay Science, 58, 6066.</p><p></p><p>Hyllested, M., Jones, S., Pedersen, J. L., & Kehlet, H. (2002). Comparative effect of</p><p>paracetamol, NSAIDs or their combination in postoperative pain management: A</p><p>qualitative review. British Journal of Anaesthesia, 88(2), 199214.</p><p></p><p>Inzelt, G. (2014). Chronoamperometry, chronocoulometry, and chronopotentiometry.</p><p>In G. Kreysa, K. Ota, & R. F. Savinell (Eds.), Encyclopedia of Applied</p><p>Electrochemistry (pp. 207214). New York, NY: Springer New York.</p><p></p><p>Irdemez, S., & Tosunoglu, N. D. V. (2011). The effects of supporting electrolyte type</p><p>and concentration on the phosphate removal from wastewater by</p><p>electrocoagulation with aluminum plate electrodes. Igdir University Journal of the</p><p>Institute of Science and Technology, 1(2), 3540.</p><p></p><p>Isa, I., Fasyir, M. R., Hashim, N., Ghani, S. A., Bakar, S. A., Mohamed, A., & Kamari,</p><p>A. (2015). A highly sensitive mercury (II) sensor using Zn/Al layered double</p><p>hydroxide-3(4-hydroxyphenyl) propionate modified multi-walled carbon</p><p>nanotube paste electrode. International Journal of Electrochemical Science, 10,</p><p>62276240.</p><p></p><p>Isa, I. M., Saidin, M. I., Ahmad, M., Hashim, N., Bakar, S. A., Ali, N. M., & Si, S. M.</p><p>(2017). Chloroplatinum(II) complex-modified MWCNTs paste electrode for</p><p>electrochemical determination of mercury in skin lightening cosmetics.</p><p>Electrochimica Acta, 253, 463-471.</p><p></p><p>Isa, I. M., Saruddin, S., Hashim, N., Ahmad, M., & Ghani, S. A. (2016). Determination</p><p>of hydrazine in various water samples by square wave voltammetry with zinclayered</p><p>hydroxide-3(4-methoxyphenyl) propionate nanocomposite modified</p><p>glassy carbon electrode. International Journal of Electrochemical Science, 11(6),</p><p>46194631.</p><p></p><p>Isa, I. M., Sharif, S. N. M., Hashim, N., & Ghani, S. A. (2015). Amperometric</p><p>determination of nanomolar mercury(II) by layered double nanocomposite of</p><p>zinc/aluminium hydroxide-3(4-methoxyphenyl)propionate modified singlewalled</p><p>carbon nanotube paste electrode. Ionics, 21(10), 29492958.</p><p></p><p>Jemelkova, Z., Barek, J., & Zima, J. (2010). Determination of epinephrine at different</p><p>types of carbon paste electrodes. Analytical Letters, 43(7), 13671376.</p><p></p><p>Kalambate, P. K., & Srivastava, A. K. (2016). Simultaneous voltammetric</p><p>determination of paracetamol, cetirizine and phenylephrine using a multiwalled</p><p>carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste</p><p>electrode. Sensors and Actuators, B: Chemical, 233, 237248.</p><p></p><p>Kalcher, K. (1990). Chemically Modified carbon paste electrodes in voltammetric</p><p>analysis. Electroanalysis, 2(6), 419433.</p><p></p><p>Kalcher, K., Kauffmann, J.-M., Wang, J., Svancara, I., Vytras, K., Neuhold, C., &</p><p>Yang, Z. (1995). Sensors based on carbon paste in electrochemical analysis: A</p><p>review with particular emphasis on the period 1990-1993. Electroanalysis, 7(1),</p><p>522.</p><p></p><p>Kalimuthu, P., & John, S. A. (2011). Selective determination of 3,4-</p><p>dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using</p><p>polymer film modified electrode. Journal of Chemical Sciences, 123(3), 349355.</p><p></p><p>Kameda, T., Takeuchi, H., & Yoshioka, T. (2009). Hybrid inorganic/organic</p><p>composites of MgAl layered double hydroxides intercalated with citrate, malate,</p><p>and tartrate prepared by co-precipitation. Materials Research Bulletin, 44, 840</p><p>845.</p><p></p><p>Kang, J.-H., Kito, K., & Kondo, F. (2003). Factors influencing the migration of</p><p>bisphenol A from cans. Journal of Food Protection, 66(8), 14441447.</p><p></p><p>Kannan, P. K., Hu, C., Morgan, H., Moshkalev, S., A. & Rout, C. S. (2016).</p><p>Electrochemical sensing of bisphenol using a multilayer graphene nanobelt</p><p>modified photolithography patterned platinum electrode. Nanotechnology, 27,</p><p>37504.</p><p></p><p>Kannan, A., & Sevvel, R. (2017). A highly selective and simultaneous determination</p><p>of paracetamol and dopamine using poly-4-amino-6-hydroxy-2-</p><p>mercaptopyrimidine (Poly-AHMP) film modified glassy carbon electrode.</p><p>Journal of Electroanalytical Chemistry, 791, 816.</p><p></p><p>Karimi-maleh, H., Karimi, F., Alizadeh, M., & Sanati, A. L. (2020). Electrochemical</p><p>sensors, a bright future in the fabrication of portable kits in analytical systems. The</p><p>Chemical Record, 20(7), 112.</p><p></p><p>Kaya, S. I., Karabulut, T. C., Kurbanoglu, S., & Ozkan, S. A. (2020). Chemically</p><p>modified electrodes in electrochemical drug analysis. Current Pharmaceutical</p><p>Analysis, 16(6), 641-660.</p><p></p><p>Kesebir, S., Yaylaci, E. T., Sner, ., & Gltekin, B. K. (2014). Uric acid levels may</p><p>be a biological marker for the differentiation of unipolar and bipolar disorder: The</p><p>role of affective temperament. Journal of Affective Disorders, 165, 131134.</p><p></p><p>Keyvanfard, M., Shakeri, R., Karimi-Maleh, H., & Alizad, K. (2013). Highly selective</p><p>and sensitive voltammetric sensor based on modified multiwall carbon nanotube</p><p>paste electrode for simultaneous determination of ascorbic acid, acetaminophen</p><p>and tryptophan. Materials Science and Engineering C, 33(2), 811816.</p><p></p><p>Khan, M. I., Haque, A. J., & Kim, K. (2013). Electrochemical determination of uric</p><p>acid in the presence of ascorbic acid on electrochemically reduced graphene oxide</p><p>modified electrode. Journal of Electroanalytical Chemistry, 700, 54-59.</p><p></p><p>Khaskheli, A. R., Fischer, J., Barek, J., Vysko?cil, V., Sirajuddin, & Bhanger, M. I.</p><p>(2013). Differential pulse voltammetric determination of paracetamol in tablet and</p><p>urine samples at a micro-crystalline natural graphitepolystyrene composite film</p><p>modified electrode. Electrochimica Acta, 101, 238242.</p><p></p><p>Kim, D., Lee, S., & Piao, Y. (2017a). Electrochemical determination of dopamine and</p><p>acetaminophen using activated graphene-Nafion modified glassy carbon</p><p>electrode. Journal of Electroanalytical Chemistry, 794, 221228.</p><p></p><p>Kim, M., Eun, Y., Xiong, J., Kim, K., Jang, M., Jeon, B., et al. (2021). Electrochemical</p><p>detection and simultaneous removal of endocrine disruptor , bisphenol A using a</p><p>carbon felt electrode. Journal of Electroanalytical Chemistry, 880, 114907.</p><p></p><p>Kong, R. (2005). LC/MS application in high-throughput ADME Screen. In S. Ahuja &</p><p>M. W. Dong (Eds.), Handbook of Pharmaceutical Analysis by HPLC (Vol. 6, pp.</p><p>413446). Academic Press.</p><p></p><p>Kounaves, S. P. (1998). Voltammetric techniques. In Handbook of Instrumental</p><p>Techniques for Analytical Chemistry (pp. 709726). Taylor & Francis.</p><p></p><p>Krulic, D., & Fatouros, N. (2011). Peak heights and peak widths at half-height in square</p><p>wave voltammetry without and with ohmic potential drop for reversible and</p><p>irreversible systems. Journal of Electroanalytical Chemistry, 652, 26-31.</p><p></p><p>Kumar, Y., Pramanik, P., & Das, D. K. (2019). Electrochemical detection of</p><p>paracetamol and dopamine molecules using nano-particles of cobalt ferrite and</p><p>manganese ferrite modified with graphite. Heliyon, 5(7), e02031.</p><p></p><p>Kuramoto, K., Intasa-Ard, S. (Grace), Bureekaew, S., & Ogawa, M. (2017).</p><p>Mechanochemical synthesis of finite particle of layered double hydroxide-acetate</p><p>intercalation compound: Swelling, thin film and ion exchange. Journal of Solid</p><p>State Chemistry, 253, 147153.</p><p></p><p>Kuthati, Y., Kankala, R. K., & Lee, C. (2015). Layered double hydroxide nanoparticles</p><p>for biomedical applications: Current status and recent prospects. Applied Clay</p><p>Science, 112113, 100116.</p><p></p><p>Kutzing, M. K., & Firestein, B. L. (2008). Altered uric acid levels and disease states.</p><p>Perspective in Pharmacology, 324(1), 17.</p><p></p><p>Lakshmi, D., Whitcombe, M. J., Davis, F., Sharma, S., & Prasad, B. (2011).</p><p>Electrochemical detection of uric acid in mixed and clinical samples: A Review.</p><p>Electroanalysis, 23(2), 305320.</p><p></p><p>Lasia, A. (1999). Electrochemical impedance spectroscopy and its applications. In</p><p>Modern Aspects of Electrochemistry (pp. 143248). Boston: Springer.</p><p></p><p>Laviron, E., & Roullier, L. (1983). Electrochemical reactions with protonations at</p><p>equilibrium. Journal of Electroanalytical Chemistry and Interfacial</p><p>Electrochemistry, 157(1), 718.</p><p></p><p>Lee, J. (2014). Electrochemical Sensing of Oxygen Gas in Ionic Liquids on Screen</p><p>Printed Electrodes. Curtin University.</p><p></p><p>Lehotay, S. J., & Schenck, F. J. (2000). Multiresidue methods: Extraction. In</p><p>Encyclopedia of Separation Science (pp. 34093415). Oxford: Academic Press.</p><p></p><p>Li, F., Wang, Y., Yang, Q., Evans, D. G., Forano, C., & Duan, X. (2005). Study on</p><p>adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAllayered</p><p>double hydroxides in aqueous solution. Journal of Hazardous Materials,</p><p>125, 8995.</p><p></p><p>Li, L., Qi, G., Fukushima, M., Wang, B., Xu, H., & Wang, Y. (2017). Insight into the</p><p>preparation of Fe3O4 nanoparticle pillared layered double hydroxides composite</p><p>via thermal decomposition and reconstruction. Applied Clay Science, 140, 8895.</p><p></p><p>Li, M., Zhu, J. E., Zhang, L., Chen, X., Zhang, H., Zhang, F., et al. (2011). Facile</p><p>synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced</p><p>electrochemical properties for detection of dopamine. Nanoscale, 3(10), 4240</p><p>4246.</p><p></p><p>Li, Q., Qiu, Y., Han, W., Zheng, Y., Wang, X., Xiao, D., et al. (2018). Determination</p><p>of uric acid in biological samples by high performance liquid chromatographyelectrospray</p><p>ionization-tandem mass spectrometry and study on pathogenesis of</p><p>pulmonary arterial hypertension in pulmonary artery endothelium cells. Royal</p><p>Society of Chemistry, 8, 2580825814.</p><p></p><p>Li, S., Zhang, J., Li, J., Yang, H., Meng, J., & Zhang, B. (2017). A 3D sandwich</p><p>structured hybrid of gold nanoparticles decorated MnO2/graphene-carbon</p><p>nanotubes as high performance H2O2 sensors. Sensors & Actuators B: Chemical,</p><p>260, 1-11.</p><p></p><p>Li, X., Li, S., Bai, J., Peng, Y., Ning, B., Shi, H., et al. (2019). Determination of</p><p>bisphenol A by high-performance liquid chromatography based on graphene</p><p>magnetic dispersion solid phase extraction. Journal of Chromatographic Science,</p><p>58(3), 280-286.</p><p></p><p>Li, Y., Gao, Y., Cao, Y., & Li, H. (2012). Electrochemical sensor for bisphenol A</p><p>determination based on MWCNT/melamine complex modified GCE. Sensors &</p><p>Actuators B: Chemical, 171172, 726733.</p><p></p><p>Li, Y., Liu, J., Liu, M., Yu, F., Zhang, L., Tang, H., et al. (2016). Fabrication of ultrasensitive</p><p>and selective dopamine electrochemical sensor based on molecularly</p><p>imprinted polymer modified graphene@carbon nanotube foam. Electrochemistry</p><p>Communications, 64, 4245.</p><p></p><p>Li, Y., Xu, W., Zhao, X., Huang, Y., Kang, J., Qi, Q., & Zhong, C. (2018).</p><p>Electrochemical sensors based on molecularly imprinted polymer on</p><p>Fe3O4/graphene modified by gold nanoparticles for highly selective and sensitive</p><p>detection of trace ractopamine in water. Analyst, 143(21), 5094-5102.</p><p></p><p>Li, Y., Zhai, X., Liu, X., Wang, L., Liu, H., & Wang, H. (2016). Electrochemical</p><p>determination of bisphenol A at ordered mesoporous carbon modified nanocarbon</p><p>ionic liquid paste electrode. Talanta, 148, 362369.</p><p></p><p>Lian, H., Sun, Z., Sun, X. & Liu, B. (2012). Graphene doped molecularly imprinted</p><p>electrochemical sensor for uric acid. Analytical Letters, 45, 2717-2727.</p><p></p><p>Lin, C., Li, P., Yang, M., Ye, J., & Huang, X. (2019). Metal replacement causing</p><p>interference in stripping analysis of multiple heavy metal analytes: Kinetic study</p><p>on Cd(II) and Cu(II) electroanalysis via experiment and simulation. Analytical</p><p>Chemistry, 91(15), 9978-9985.</p><p></p><p>Lisdat, F., & Schfer, D. (2008). The use of electrochemical impedance spectroscopy</p><p>for biosensing. Analytical and Bioanalytical Chemistry, 391(5), 15551567.</p><p></p><p>Liu, Q., Kang, X., Xing, L., Ye, Z., & Yang, Y. (2020). A facile synthesis of</p><p>nanostructured CoFe2O4 for the electrochemical sensing of bisphenol A. Royal</p><p>Society of Chemistry Advances, 10(11), 61566162.</p><p></p><p>Locke, C. J., Fox, S. A., Caldwell, G. A., & Caldwell, K. A. (2008). Acetaminophen</p><p>attenuates dopamine neuron degeneration in animal models of Parkinsons</p><p>disease. Neuroscience Letters, 439, 129133.</p><p></p><p>Lubert, K., & Kalcher, K. (2010). History of electroanalytical methods.</p><p>Electroanalysis, 22, 19371946.</p><p></p><p>Ma, B., Guo, H., Wang, M., Li, L., Jia, X., Chen, H., et la. (2019). Electrocatalysis of</p><p>CuMOF/graphene composite and its sensing application for electrochemical</p><p>simultaneous determination of dopamine and paracetamol. Electroanalysis, 31(6),</p><p>10021008.</p><p></p><p>Mabbott, G. A. (1983). An introduction to cyclic voltammetry. Journal of Chemical</p><p>Education, 60(9), 697702.</p><p></p><p>Macdonald, A. A., Seergobin, K. N., Owen, A. M., Tamjeedi, R., Monchi, O., Ganjavi,</p><p>H., et al. (2013). Differential effects of Parkinsons disease and dopamine</p><p>replacement on memory encoding and retrieval. PLoS One, 8(9), e74044.</p><p></p><p>Black, M. (1984). Acetaminophen hepatotoxicity. Annual Reviews of Medicine, 35(5),</p><p>577593.</p><p></p><p>Mashhadizadeh, M. H., & Akbarian, M. (2009). Voltammetric determination of some</p><p>anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nanowire.</p><p>Talanta, 78, 14401445.</p><p></p><p>Mazloum-Ardakani, M., Rajabzadeh, N., Deghani-Firouzabadi, A., Sheikh-Mohseni,</p><p>M. A., Benvidi, A., Naeimi, H., et al. (2012). Analytical methods carbon</p><p>nanoparticles and a new derivative of hydroquinone for modification of a carbon</p><p>paste electrode for simultaneous determination of epinephrine and acetaminophen.</p><p>Analytical Methods, 4, 21272133.</p><p></p><p>McDonald, J. G., Ivanova, P. T., & Brown, H. A. (2016). Approaches to lipid analysis.</p><p>In Biochemistry of Lipids, Lipoproteins and Membranes: Sixth edition (pp. 41</p><p>72). Elsevier Inc.</p><p></p><p>Mehri-Talarposhti, F., Saraei, A. G. H., Karimi-Maleh, H., Golestan, L., & Shahidi, S.</p><p>A. (2020). Determination of bisphenol in food samples using an electrochemical</p><p>method based on modification of a carbon paste electrode with CdO</p><p>nanoparticle/ionic liquid. International Journal of Electrochemical Science, 15(3),</p><p>19041914.</p><p></p><p>Mendoza-Huizar, L. H. (2014). Chemical reactivity of quinmerac herbicide through the</p><p>Fukui function. Acta Chimica Slovenica, 61(4), 694702.</p><p></p><p>Messaoud, N. Ben, Ghica, M. E., Ali, M. Ben, & Brett, C. M. A. (2017).</p><p>Electrochemical sensor based on multiwalled carbon nanotube and gold</p><p>nanoparticle modified electrode for the sensitive detection of bisphenol A. Sensors</p><p>& Actuators B: Chemical, 253, 513522.</p><p></p><p>Mirceski, V., Gulaboski, R., Lovric, M., Bogeski, I., & Kappl, R. (2013). Square-wave</p><p>voltammetry: A review on the recent progress. Electroanalysis, 25(11), 2411</p><p>2422.</p><p></p><p>Mirzahosseini, A., Palla, T., Orgovan, G., Toth, G., Noszal, B. (2018). Dopamine:</p><p>Acid-base properties and membrane penetration capacity. Journal of</p><p>Pharmaceutical and Biomedical Analysis, 158, 346350.</p><p></p><p>Mishra, G., Dash, B., & Pandey, S. (2018). Layered double hydroxides: A brief review</p><p>from fundamentals to application as evolving biomaterials. Applied Clay Science,</p><p>153, 172186.</p><p></p><p>Molaakbari, E., Mostafavi, A., & Beitollahi, H. (2014). Simultaneous electrochemical</p><p>determination of dopamine, melatonin, methionine and caffeine. Sensors &</p><p>Actuators B: Chemical, 208, 195203.</p><p></p><p>Morel-Desrosiers, N., Pisson, J., Israeli, Y., Taviot-Gueho, C., Besse, J.-P., & Morel,</p><p>J.-P. (2003). Intercalation of dicarboxylate anions into a ZnAlCl layered double</p><p>hydroxide: Microcalorimetric determination of the enthalpies of anion exchange.</p><p>Journal of Materials Chemistry, 13, 25822585.</p><p></p><p>Morris, R. (2015). Spectrophotometry. Current Protocols Essential Laboratory</p><p>Techniques, 11(1), 130.</p><p></p><p>Moscatello, J. P., Prasad, A., Chintala, R., & Yap, Y. K. (2012). A simple scheme of</p><p>molecular electronic devices with multiwalled carbon nanotubes as the top</p><p>electrodes. Carbon, 50(10), 35303534.</p><p></p><p>Musshoff, F., Schmidt, P., Dettmeyer, R., Priemer, F., Jachau, K., & Madea, B. (2000).</p><p>Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and</p><p>norsalsolinol in various human brain areas using solid-phase extraction and gas</p><p>chromatography/mass spectrometry. Forensic Science International, 113, 359</p><p>366.</p><p></p><p>Naegeli, R., Redepenning, J., & Anson, F. C. (1986). Influence of supporting electrolyte</p><p>concentration and composition on formal potentials and entropies of redox couples</p><p>incorporated in nafion coatings on electrodes. Journal of Physical Chemistry,</p><p>90(23), 62276232.</p><p></p><p>Najafi, M., Khalilzadeh, M. A., & Karimi-maleh, H. (2014). A new strategy for</p><p>determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic</p><p>liquid paste electrode in food samples. Food Chemistry, 158, 125131.</p><p></p><p>Nakamura, K., Itoh, K., Dai, H., Han, L., Wang, X., Kato, S., et al. (2012). Prenatal and</p><p>lactational exposure to low-doses of bisphenol A alters adult mice behavior. Brain</p><p>and Development, 34(1), 5763.</p><p></p><p>Nakayama, H., Wada, N., & Tsuhako, M. (2004). Intercalation of amino acids and</p><p>peptides into MgAl layered double hydroxide by reconstruction method.</p><p>International Journal of Pharmaceutics, 269, 469478.</p><p></p><p>Nambudumada, P. S., Manjunatha, J. G., & Chenthattil, R. (2019). Electrocatalytic</p><p>analysis of dopamine, uric acid and ascorbic acid at poly(adenine) modified carbon</p><p>nanotube paste electrode: A Cyclic voltammetric study. Analytical &</p><p>Bioanalytical Electrochemistry, 11(6), 742756.</p><p></p><p>Narayana, P. V., Reddy, T. M., Gopal, P., & Naidu, G. R. (2014). Electrochemical</p><p>sensing of paracetamol and its simultaneous resolution in the presence of</p><p>dopamine and folic acid at a multi-walled carbon nanotubes/poly(glycine)</p><p>composite modified electrode. Analytical Methods, 6(23), 94599468.</p><p></p><p>Newman, S. P., & Jones, W. (1998). Synthesis, characterization and applications of</p><p>layered double hydroxides containing organic guests. New Journal of Chemistry,</p><p>22, 105115.</p><p></p><p>Ni, F., Wang, Y., Zhang, D., Gao, F., & Li, M. (2010). Electrochemical oxidation of</p><p>epinephrine and uric acid at a layered double hydroxide film modified glassy</p><p>carbon electrode and its application. Electroanalysis, 22(10), 11301135.</p><p></p><p>Nieszporek, J., Gugala-Fekner, D., & Nieszporek, K. (2019). The effect of supporting</p><p>electrolyte concentration on zinc electrodeposition kinetics from methimazole</p><p>solutions. Electroanalysis, 31(6), 11411149.</p><p></p><p>Nikahd, B., & Khalilzadeh, M. A. (2016). Liquid phase determination of bisphenol A</p><p>in food samples using novel nanostructure ionic liquid modified sensor. Journal</p><p>of Molecular Liquids, 215, 253257.</p><p></p><p>Niu, X., Yang, W., Wang, G., Ren, J., Guo, H., & Gao, J. (2013). A novel</p><p>electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold</p><p>nanoparticles composite modified glassy carbon electrode. Electrochimica Acta,</p><p>98, 167175.</p><p></p><p>Nkunu, Z. N., Kamau, G. N., Kithure, J. G., & Muya, C. N. (2017). Electrochemical</p><p>studies of potassium ferricyanide in acetonitrile-water media (1:1) using cyclic</p><p>voltammetry method. International Journal of Scientific Research and Innovative</p><p>Technology, 4(5), 23133759.</p><p></p><p>Noroozifar, M., Khorasani-motlagh, M., Jahromi, F. Z., & Rostami, S. (2013). Sensitive</p><p>and selective determination of uric acid in real samples by modified glassy carbon</p><p>electrode with holmium fluoride nanoparticles/multi-walled carbon nanotube as a</p><p>new biosensor. Sensors & Actuators: B. Chemical, 188, 6572.</p><p></p><p>Nuki, G., & Simkin, P. A. (2006). A concise history of gout and hyperuricemia and</p><p>their treatment. Arthritis Research & Therapy, 8, 15.</p><p></p><p>Olaleye, M. T., & Rocha, B. T. J. (2008). Acetaminophen-induced liver damage in</p><p>mice: Effects of some medicinal plants on the oxidative defense system.</p><p>Experimental and Toxicologic Pathology, 59, 319327.</p><p></p><p>Osteryoung, J. G., & Osteryoung, R. A. (1985). Square wave voltammetry. Analytical</p><p>Chemistry, 57(1), 101102.</p><p></p><p>Ostoji, J., Herenda, S., Besic, Z., Milos, M., & Galic, B. (2017). Advantages of an</p><p>electrochemical method compared to the spectrophotometric kinetic study of</p><p>peroxidase inhibition by boroxine derivative. Molecules, 22, 11201128.</p><p></p><p>tles, S. (2016). Handbook of food analysis instruments. (S. Otles, Ed.). Boca Raton:</p><p>CRC Press.</p><p></p><p>Ouassif, H., Moujahid, E. M., Lahkale, R., Sadik, R., Bouragba, F. Z., Sabbar, E.</p><p>mouloudi, & Diouri, M. (2020). Zinc-aluminum layered double hydroxide: High</p><p>efficient removal by adsorption of tartrazine dye from aqueous solution. Surfaces</p><p>and Interfaces, 18, 100401.</p><p></p><p>Palza, H., Delgado, K., & Govan, J. (2019). Novel magnetic CoFe2O4/layered double</p><p>hydroxide nanocomposites for recoverable anionic adsorbents for water treatment.</p><p>Applied Clay Science, 183(4), 105350.</p><p></p><p>Panahi, Y., Motaharian, A., Reza, M., Hosseini, M., & Mehrpour, O. (2018). High</p><p>sensitive and selective nano-molecularly imprinted polymer based</p><p>electrochemical sensor for midazolam drug detection in pharmaceutical</p><p>formulation and human urine samples. Sensors & Actuators B: Chemical, 273(2),</p><p>15791586.</p><p></p><p>Hkov, M., Havlkov, L. C., Chvojka, J., Solich, P., & atnsk, D. (2018). An online</p><p>coupling of nanofibrous extraction with column-switching high performance</p><p>liquid chromatography-A case study on the determination of bisphenol A in</p><p>environmental water samples. Talanta, 178(2), 141-146.</p><p></p><p>Podlipna, D., & Cichna-Markl, M. (2007). Determination of bisphenol A in canned fish</p><p>by sol-gel immunoaffinity chromatography, HPLC and fluorescence detection.</p><p>European Food Research and Technology, 224(5), 629634.</p><p></p><p>Prabakar, S. J. R., & Narayanan, S. S. (2007). Amperometric determination of</p><p>paracetomol by a surface modified cobalt hexacyanoferrate graphite wax</p><p>composite electrode. Talanta, 72(5), 18181827.</p><p></p><p>Price, H. (2019). Air analysis: Field portable instruments for the measurement of</p><p>airborne hazards. In Encyclopedia of Analytical Science (3rd ed., pp. 4043).</p><p>Stirling, United Kingdom: Elsevier Inc.</p><p></p><p>Qiu, D., Hou, W., Xu, J., Liu, J., & Liu, S. (2009). Synthesis and characterization of</p><p>imidacloprid/hydrotalcite-like compound nanohybrids. Chinese Journal of</p><p>Chemistry, 27, 18791885.</p><p></p><p>Qu, W., & Meyer, J.-U. (1997). Thick-film humidity sensor based on porous MnWO4</p><p>material. Measurement Science and Technology, 8(6), 593600.</p><p></p><p>Rais, N. S. M., Isa, I. M., Hashim, N., Saidin, M. I., Yazid, S. N. A. M., Ahmad, M. S.,</p><p>et al. (2019). Simultaneously determination of bisphenol A and uric acid by</p><p>zinc/aluminum-layered double hydroxide-2-(2,4-dichlorophenoxy) propionate</p><p>paste electrode. International Journal of Electrochemical Science, 14(8), 7911</p><p>7924.</p><p></p><p>Raj, C. R., & Ohsaka, T. (2003). Voltammetric detection of uric acid in the presence of</p><p>ascorbic acid at a gold electrode modified with a self-assembled monolayer of</p><p>heteroaromatic thiol. Journal of Electroanalytical Chemistry, 540, 6977.</p><p></p><p>Rajakumaran, R., Ramki, S., Chen, S. M., Chen, T. W., Veerasankar, S., Tseng, T. W.,</p><p>& Huang, C. C. (2019). Rose-petal-like morphology of yttrium molybdate</p><p>nanosheets (YMoO4) anchored on functionalized carbon nanofibers: An efficient</p><p>electrocatalyst for the electrochemical sensing of bisphenol-A. International</p><p>Journal of Electrochemical Science, 14(7), 65716585.</p><p></p><p>Ramesh, P., & Sampath, S. (2004). Selective determination of uric acid in presence of</p><p>ascorbic acid and dopamine at neutral pH using exfoliated graphite electrodes.</p><p>Electroanalysis, 16(10), 866869.</p><p></p><p>Raoof, J. B., Baghayeri, M., & Ojani, R. (2012). A high sensitive voltammetric sensor</p><p>for qualitative and quantitative determination of phenobarbital as an antiepileptic</p><p>drug in presence of acetaminophen. Colloids and Surfaces B: Biointerfaces, 95,</p><p>121128.</p><p></p><p>Rezaei, B., & Irannejad, N. (2019). Electrochemical detection techniques in biosensor</p><p>applications. In E. Ensafi (Ed.), Electrochemical Biosensors (pp. 1143). Elsevier</p><p>Inc.</p><p></p><p>Rives, V. (2001). Layered double hydroxides: Present and Future. New York: Nova</p><p>Publishers.</p><p></p><p>Rives, V., Arco, M. del, & Martn, C. (2014). Intercalation of drugs in layered double</p><p>hydroxides and their controlled release: A review. Applied Clay Science, 8889,</p><p>239269.</p><p></p><p>Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature.</p><p>Reproductive Toxicology, 42, 132155.</p><p></p><p>Rosu, D., Mustata, F., Tudorachi, N., Musteata, V. E., Rosu, L., & Varganici, C. D.</p><p>(2015). Novel bio-based flexible epoxy resin from diglycidyl ether of bisphenol A</p><p>cured with castor oil maleate. Royal Society of Chemistry Advances, 5(57), 45679</p><p>45687.</p><p></p><p>Saal, F. S. vom, & Hughes, C. (2005). Commentary an extensive new literature</p><p>concerning low-dose effects of bisphenol A shows the need for a new risk</p><p>assessment. Environmental Health Perspectives, 113(8), 926933.</p><p></p><p>Sabatani, E., & Rubinstein, I. (1987). Organized self-assembling monolayers on</p><p>electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very</p><p>electrode kinetics. Journal of Electroanalytical Chemistry, 91, 66636669.</p><p></p><p>Saifullah, B., Zowalaty, M. E. El, Arulselvan, P., Fakurazi, S., Webster, T. J., Geilich,</p><p>B. M., & Hussein, M. Z. (2014). Antimycobacterial, antimicrobial and</p><p>biocompatibility properties of para-aminosalicylic acid with zinc layered</p><p>hydroxide and Zn/Al layered double hydroxide nanocomposites. Drug Design,</p><p>Development and Therapy, 8, 10291036.</p><p></p><p>Sapari, S., Hidayah, N., Razak, A., Aishah, S., & Yook, L. (2020). A regenerable</p><p>screen-printed voltammetric Hg (II) ion sensor based on tris-thiourea organic</p><p>chelating ligand grafted graphene nanomaterial. Journal of Electroanalytical</p><p>Chemistry, 878, 114670.</p><p></p><p>Sappia, L., Felice, B., Sanchez, M. A., Marti, M., R, M., & Pividori, I. (2019).</p><p>Electrochemical sensor for alkaline phosphatase as biomarker for clinical and in</p><p>vitro applications. Sensors & Actuators B: Chemical, 281(10), 221228.</p><p></p><p>Sarijo, S. H., Hussein, M. Z., Yahaya, A. H. J., & Zainal, Z. (2010). Effect of incoming</p><p>and outgoing exchangeable anions on the release kinetics of phenoxyherbicides</p><p>nanohybrids. Journal of Hazardous Materials, 182(13), 563569.</p><p></p><p>Sathisha, T. V, Swamy, B. E. K., Schell, M., & Eswarappa, B. (2014). Synthesis and</p><p>characterization of carbon nanoparticles and their modified carbon paste electrode</p><p>for the determination of dopamine. Journal of Electroanalytical Chemistry, 720</p><p>721, 18.</p><p></p><p>Scholz, F. (2010). Electroanalytical methods: Guide to experiments and applications</p><p>(2nd ed.). Berlin: Springer-Verlag.</p><p></p><p>Segner, H., Navas, J. M., Schfers, C., & Wenzel, A. (2003). Potencies of estrogenic</p><p>compounds in in vitro screening assays and in life cycle tests with zebrafish in</p><p>vivo. Ecotoxicology and Environmental Safety, 54(3), 315322.</p><p></p><p>Shah, N., Arain, M. B., & Soylak, M. (2020). Historical background: milestones in the</p><p>field of development of analytical instrumentation. In New Generation Green</p><p>Solvents for Separation and Preconcentration of Organic and Inorganic Species</p><p>(pp. 4573). Elsevier.</p><p></p><p>Shahmiri, M. R., Bahari, A., Karimi-maleh, H., Hosseinzadeh, R., & Mirnia, N. (2013).</p><p>EthynylferroceneNiO/MWCNT nanocomposite modified carbon paste electrode</p><p>as a novel voltammetric sensor for simultaneous determination of glutathione and</p><p>acetaminophen. Sensors & Actuators B: Chemical, 177, 7077.</p><p></p><p>Shahrokhian, S., & Asadian, E. (2010). Simultaneous voltammetric determination of</p><p>ascorbic acid , acetaminophen and isoniazid using thionine immobilized multiwalled</p><p>carbon nanotube modified carbon paste electrode. Electrochimica Acta, 55,</p><p>666672.</p><p></p><p>Sharif, S. N. M., Hashim, N., Isa, I. M., Ali, N. M., Bakar, S. A., Hussein, M. Z., et al.</p><p>(2018). Preparation and characterisation of novel paddy cultivation herbicide</p><p>nanocomposite from zinc/aluminium layered double hydroxide and quinclorac</p><p>anion. Materials Research Innovations, 23(5), 260265.</p><p></p><p>Sharif, S. N. M., Hashim, N., Md Isa, I., Mamat, M., Mohd Ali, N., Abu Bakar, S., et</p><p>al. (2020). The intercalation behaviour and physico-chemical characterisation of</p><p>novel intercalated nanocomposite from zinc/aluminium layered double hydroxides</p><p>and broadleaf herbicide clopyralid. Chemistry & Chemical Technology, 14(1), 38</p><p>46.</p><p></p><p>Sharma, A., Bhattarai, J. K., Nigudkar, S. S., Pistorio, S. G., Demchenko, A. V, & Stine,</p><p>K. J. (2016). Electrochemical impedance spectroscopy study of carbohydrateterminated</p><p>alkanethiol monolayers on nanoporous gold: Implications for pore</p><p>wetting. Journal of Electroanalytical Chemistry, 782, 174181.</p><p></p><p>Shetti, N. P., Nayak, D. S., Malode, S. J., Kakarla, R. R., Shukla, S. S., & Aminabhavi,</p><p>T. M. (2018). Sensors based on ruthenium-doped TiO2 nanoparticles loaded into</p><p>multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic</p><p>acid. Analytica Chimica Acta, 1051, 58-72.</p><p></p><p>Shiffman, S., Battista, D. R., Kelly, J. P., Malone, M. K., Weinstein, R. B., & Kaufman,</p><p>D. W. (2018). Exceeding the maximum daily dose of acetaminophen with use of</p><p>different single-ingredient OTC formulations. Journal of the American</p><p>Pharmacists Association, 58(5), 499-504.</p><p></p><p>Skoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of Instrumental Analysis</p><p>(6th ed.). USA: Thomson Brooks/Cole.</p><p></p><p>Smyntyna, V., Golovanov, V., Kaeiulis, S., Mattogno, G., & Righini, G. (1995).</p><p>Influence of chemical composition on sensitivity and signal reproducibility of CdS</p><p>sensors of oxygen. Sensors & Actuator B: Chemical, 25, 628630.</p><p></p><p>Sparkman, O. D., Penton, Z. E., & Kitson, F. G. (2011). The Fundamentals of GC/MS.</p><p>In Gas Chromatography and Mass Spectrometry (pp. 213). Amsterdam:</p><p>Academic Press.</p><p></p><p>Srinivas, J., Mascarenhas, R. J., DSouza, O., Satpati, A. K., & Mekhalif, Z. (2017).</p><p>Electrocatalytic oxidation of bisphenol A at oxidized multi-walled carbon</p><p>nanotube modified carbon paste electrode. Analytical Chemistry Letters, 7(1), 52</p><p>64.</p><p></p><p>Staples, C. A., Dom, P. B., Klecka, G. M., Sandra, T. O., & Harris, L. R. (1998). A</p><p>review of the environmental fate, effects and exposures of bisphenol A.Chemosphere, 36(10), 21492173.</p><p></p><p>Steventon, G. B., Heafield, M. T. E., Waring, R. H., Williams, A. C., Sturman, S., &</p><p>Green, M. (1990). Metabolism of low-dose paracetamol in patients with chronic</p><p>neurological disease. Xenobiotica, 20, 117122.</p><p></p><p>Stradiotto, N. R., Yamanaka, H., & Zanoni, M. V. B. (2003). Electrochemical sensors:</p><p>A powerful tool in analytical chemistry. Journal of Brazilian Chemical Society,</p><p>14(2), 159173.</p><p></p><p>Su, W. Y., & Cheng, S. H. (2010). Electrochemical oxidation and sensitive</p><p>determination of acetaminophen in pharmaceuticals at poly(3,4-ethylenedioxythiophene)-</p><p>modified screen-printed electrodes. Electroanalysis, 22(6), 707</p><p>714.</p><p></p><p>Suni, I. I. (2008). Impedance methods for electrochemical sensors using nanomaterials.</p><p>Trends in Analytical Chemistry, 27(7), 604611.</p><p></p><p>Suroviec, A. H. (2013). Introduction to electrochemistry. Journal of Laboratory</p><p>Chemical Education, 1(3), 4548.</p><p></p><p>vancara, I., Vytras, K., Barek, J., & Zima, J. (2001). Carbon paste electrodes in</p><p>modern electroanalysis electroanalysis. Critical Reviews in Analytical Chemistry,</p><p>31(4), 311345.</p><p></p><p>Svancara, I., Vytras, K., Kalcher, K., Walcarius, A., & Wang, J. (2009). Carbon paste</p><p>electrodes in facts, numbers, and notes: A review on the occasion of the 50-years</p><p>jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis,</p><p>21(1), 728.</p><p></p><p>Syahida, N., Rais, M., Isa, I., Hashim, N., Saidin, M. I., Yazid, S. N. A. M., et al. (2019).</p><p>Simultaneously determination of bisphenol A and uric acid by dichlorophenoxy)</p><p>propionate paste electrode. International Journal of Electrochemical Science, 14,</p><p>79117924.</p><p></p><p>Taei, M., Salavati, H., Hasanpour, F., Habibollahi, S., & Baghlani, H. (2016).</p><p>Simultaneous determination of ascorbic acid, acetaminophen and codeine based</p><p>on multi-walled carbon nanotubes modified magnetic nanoparticles paste</p><p>electrode. Materials Science & Engineering C, 69, 111.</p><p></p><p>Tanida, T., Warita, K., Ishihara, K., Fukui, S., Mitsuhashi, T., Sugawara, T., et al.</p><p>(2009). Fetal and neonatal exposure to three typical environmental chemicals with</p><p>different mechanisms of action: Mixed exposure to phenol, phthalate, and dioxin</p><p>cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei.</p><p>Toxicology Letters, 189, 4047.</p><p></p><p>Tehrani, R. M. A., & Ab Ghani, S. (2012). MWCNT-ruthenium oxide composite paste</p><p>electrode as non-enzymatic glucose sensor. Biosensors and Bioelectronics, 38(1),</p><p>278283.</p><p></p><p>Teixeira, M. A., Mageste, A. B., Dias, A., Virtuoso, L. S., & Siqueira, K. P. F. (2018).</p><p>Layered double hydroxides for remediation of industrial wastewater containing</p><p>manganese and fluoride. Journal of Cleaner Production, 171, 275284.</p><p></p><p>Telegdi, J., Shaban, A., & Vastag, G. (2018). Biocorrosion-Steel. In Encyclopedia of</p><p>Interfacial Chemistry (pp. 2842). Elsevier Inc.</p><p></p><p>Temerk, Y., & Ibrahim, H. (2015). A new sensor based on In doped CeO2 nanoparticles</p><p>modified glassy carbon paste electrode for sensitive determination of uric acid in</p><p>biological fluid. Sensors & Actuators B: Chemical. 224, 868-877.</p><p></p><p>Thayer, K., Doerge, D. R., Hunt, D., Schurman, S. H., Twaddle, N. C., Churchwell, M.</p><p>I., et al. (2018). Pharmacokinetics of bisphenol A in humans following a single</p><p>oral administration pharmacokinetics of bisphenol A in humans following a single</p><p>oral administration. Environment International, 83(6), 107115.</p><p></p><p>Theiss, F. L., Ayoko, G. A., & Frost, R. L. (2013). Removal of boron species by layered</p><p>double hydroxides: A review. Journal of Colloid and Interface Science, 402, 114</p><p>121.</p><p></p><p>Therias, S., & Mousty, C. (1995). Electrodes modified with synthetic anionic clays.</p><p>Applied Clay Science, 10, 147162.</p><p></p><p>Tian, J., Qu, J., Wan, L., Zhang, Q., & Gao, H. (2018). Boron removal using Li-Al-OH</p><p>layered double hydroxide prepared by one-step mechanochemical approach.</p><p>doi:10.20944/preprints201811.0477.v1.</p><p></p><p>Tiwari, J. N., Vij, V., Kemp, K. C., & Kim, K. S. (2015). Engineered carbonnanomaterial</p><p>based electrochemical sensors for biomolecules. American Chemical</p><p>Society, 10(1), 4680.</p><p></p><p>Tonelli, D., Scavetta, E., & Giorgetti, M. (2013). Layered-double-hydroxide-modified</p><p>electrodes: electroanalytical applications. Analytical and Bioanalytical Chemistry,</p><p>405(2), 603614.</p><p></p><p>Tsierkezos, N. G., & Ritter, U. (2012). Influence of concentration of supporting</p><p>electrolyte on electrochemistry of redox systems on multi-walled carbon</p><p>nanotubes. Physics and Chemistry of Liquids, 50(5), 661668.</p><p></p><p>Karabiberoglu, S. U. (2019). Sensitive voltammetric determination of bisphenol A</p><p>based on a glassy carbon electrode modified with copper oxide-zinc oxide</p><p>decorated on graphene oxide. Electroanalysis, 31(1), 91102.</p><p></p><p>Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N., & Welshons, W. V. (2007).</p><p>Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24(2), 139</p><p>177.</p><p></p><p>Verma, D., Chauhan, D., Das Mukherjee, M., Ranjan, K. R., Yadav, A. K., & Solanki,</p><p>P. R. (2021). Development of MWCNT decorated with green synthesized AgNpsbased</p><p>electrochemical sensor for highly sensitive detection of BPA. Journal of</p><p>Applied Electrochemistry. doi: 10.1007/s10800-020-01511-3.</p><p></p><p>Vicente-mart, Y., Caravaca, M., & Soto-Meca, A. (2020). Determination of very low</p><p>concentration of bisphenol A in toys and baby pacifiers using dispersive liquid</p><p>liquid microextraction by in situ ionic liquid formation and high- performance</p><p>liquid chromatography. Pharmaceuticals, 13, 301313.</p><p></p><p>Vytras, K., vancara, I., & Metelka, R. (2009). Carbon paste electrodes in</p><p>electroanalytical chemistry. Journal of the Serbian Chemical Society, 74(10),</p><p>10211033.</p><p></p><p>Wang, B., Zhang, H., Evans, D. G., & Duan, X. (2005). Surface modification of layered</p><p>double hydroxides and incorporation of hydrophobic organic compounds.</p><p>Materials Chemistry and Physics, 92, 190196.</p><p></p><p>Wang, C., Liu, L., Xue, H., Hu, X., & Wang, G. (2013). Fabrication of nanoelectrode</p><p>ensembles formed via PAN-co-PAA self-assembly and selective voltammetric</p><p>detection of uric acid in biologic samples. Sensors and Actuators B: Chemical,</p><p>181, 194201.</p><p></p><p>Wang, J. (2000). Potentiometry. In Analytical Electrochemistry (2nd ed., Vol. 3, pp.</p><p>140170). Wiley-VCH.</p><p></p><p>Wang, J. (2006). Analytical Electrochemistry (3rd ed.). New York: Wiley-VCH.</p><p></p><p>Wang, J., Fang, X., Zhang, Y., Cui, X., Zhao, H., Li, X., & Li, Z. (2018). A simple and</p><p>rapid colorimetric probe for uric acid detection based on redox reaction of</p><p>3,3?,5,5?-tetramethylbenzidine with HAuCl4. Colloids and Surfaces A, 555, 565</p><p>571.</p><p></p><p>Wang, X., You, Z., Sha, H., Cheng, Y., Zhu, H., & Sun, W. (2014). Sensitive</p><p>electrochemical detection of dopamine with a DNA/graphene bi-layer modified</p><p>carbon ionic liquid electrode. Talanta, 128, 373378.</p><p></p><p>Wang, Y., Peng, W., Liu, L., Tang, M., Gao, F., & Li, M. (2011). Enhanced</p><p>conductivity of a glassy carbon electrode modified with a graphene-doped film of</p><p>layered double hydroxides for selectively sensing of dopamine. Microchimica</p><p>Acta, 173, 4146.</p><p></p><p>Wardani, N. I., Isa, I. M., Hashim, N., & Ghani, S. A. (2014). Zinc layered hydroxide-</p><p>2(3-chlorophenoxy)propionate modified multi-walled carbon nanotubes paste</p><p>electrode for the determination of nano-molar levels copper(II). Sensors and</p><p>Actuators B: Chemical, 198, 243248.</p><p></p><p>Welshons, W. V, Nagel, S. C., & Saal, F. S. (2006). Large effects from small exposures</p><p>. III . Endocrine mechanisms mediating effects of bisphenol A at levels of human</p><p>exposure. Endocrinology, 147(6), S56S69.</p><p></p><p>Westbrook, A., & Frank, M. (2018). Dopamine and proximity in motivation and</p><p>cognitive control. Current Opinion in Behavioral Sciences, 22, 2834.</p><p></p><p>Wijeratne, K. (2018). Conducting Polymer Electrodes for Thermogalvanic Cells.</p><p>Linkping University, Sweden.</p><p></p><p>Winiarski, J. P., Rampanelli, R., Bassani, J. C., Mezalira, D. Z., & Jost, C. L. (2020).</p><p>Multi-walled carbon nanotubes/nickel hydroxide composite applied as</p><p>electrochemical sensor for folic acid (vitamin B9) in food samples. Journal of</p><p>Food Composition and Analysis, 92, 103511.</p><p></p><p>Xin, X., Sun, S., Li, H., Wang, M., & Jia, R. (2015). Chemical Electrochemical</p><p>bisphenol A sensor based on coreshell multiwalled carbon nanotubes/graphene</p><p>oxide nanoribbons. Sensors & Actuators B: Chemical, 209, 275280.</p><p></p><p>Xu, Y., Liu, X., Ding, Y., Luo, L., Wang, Y., Zhang, Y., & Xu, Y. (2011). Preparation</p><p>and electrochemical investigation of a nano-structured material Ni2+/MgFe layered</p><p>double hydroxide as a glucose biosensor. Applied Clay Science, 52(3), 322327.</p><p></p><p>Xu, Y., Shan, Y., Cong, H., Shen, Y., & Yu, B. (2018). Advanced carbon-based</p><p>nanoplatforms combining drug delivery and thermal therapy for cancer treatment.</p><p>Current Pharmaceutical Design, 24(34), 4060-4076.</p><p></p><p>Xu, Z., Fan, J., Zheng, S., Ma, F., & Yin, D. (2009). On the adsorption of tetracycline</p><p>by calcined magnesium-aluminum hydrotalcites. Journal of Environmental</p><p>Quality, 38(3), 13021310.</p><p></p><p>Xu, Z., Wu, Q., Duan, Y., Yang, M., Ou, M., & Xu, X. (2017). Development of a novel</p><p>spectrophotometric method based on diazotization-coupling reaction for</p><p>determination of bisphenol A. Journal of the Brazilian Chemical Society, 28(8),</p><p>14751482.</p><p></p><p>Yan, Q., Zhi, N., Yang, L., Xu, G., Feng, Q., Zhang, Q., & Sun, S. (2020). A highly</p><p>sensitive uric acid electrochemical biosensor based on a nano-cube cuprous</p><p>oxide/ferrocene/uricase modified glassy carbon electrode. Scientific Reports,</p><p>10(1), 10607.</p><p></p><p>Yang, Y., Zhang, H., Huang, C., & Jia, N. (2016). MWCNTs-PEI composites-based</p><p>electrochemical sensor for sensitive detection of bisphenol A. Sensors & Actuators</p><p>B: Chemical, 235, 408413.</p><p></p><p>Yao, Y., Wu, H., & Ping, J. (2018). Simultaneous determination of Cd(II) and Pb(II)</p><p>ions in honey and milk samples using a single-walled carbon nanohorns modified</p><p>screen-printed electrochemical sensor. Food Chemistry, 274, 8-15.</p><p></p><p>Yin, H., Zhou, Y., Ai, S., Han, R., Tang, T. & Zhu, L. (2010). Electrochemical behavior</p><p>of bishpenol A at glassy carbon electrode modified with gold nanoparticles, silk</p><p>fibroin, and PAMAM dendrimers. Microchimica Acra, 170, 99-105.</p><p></p><p>Yin, H., Cui, L., Ai, S., Fan, H., & Zhu, L. (2010). Electrochemical determination of</p><p>bisphenol A at Mg-Al-CO3 layered double hydroxide modified glassy carbon</p><p>electrode. Electrochimica Acta, 55(3), 603610.</p><p></p><p>Yin, H., Shang, K., Meng, X., & Ai, S. (2011). Voltammetric sensing of paracetamol,</p><p>dopamine and 4-aminophenol at a glassy carbon electrode coated with gold</p><p>nanoparticles and an organophillic layered double hydroxide. Microchimica Acta,</p><p>175, 3946.</p><p></p><p>Yin, H., Zhou, Y., Cui, L., Liu, X., Ai, S., & Zhu, L. (2011). Electrochemical oxidation</p><p>behavior of bisphenol A at surfactant/layered double hydroxide modified glassy</p><p>carbon electrode and its determination. Journal of Solid State Electrochemistry,</p><p>15(1), 167173.</p><p></p><p>Yomthiangthae, P., Kondo, T., Chailapakul, O., & Siangproh, W. (2020). The effects</p><p>of the supporting electrolyte on the simultaneous determination of vitamin B2,</p><p>vitamin B6, and vitamin C using a modification-free screen-printed carbon</p><p>electrode. New Journal of Chemistry, 44(29), 1260312612.</p><p></p><p>Yoon, E., Babar, A., Choudhary, M., Kutner, M., & Pyrsopoulos, N. (2016).</p><p>Acetaminophen-induced hepatotoxicity: A comprehensive update. Journal of</p><p>Clinical and Translational Hepatology, 4, 131142.</p><p></p><p>Zeng, S., Xu, X., Wang, S., Gong, Q., Liu, R., & Yu, Y. (2013). Sand flower layered</p><p>double hydroxides synthesized by co-precipitation for CO2 capture: Morphology</p><p>evolution mechanism , agitation effect and stability. Materials Chemistry and</p><p>Physics, 140(1), 159167.</p><p></p><p>Zhan, T., Song, Y., Li, X., & Hou, W. (2016). Electrochemical sensor for bisphenol A</p><p>based on ionic liquid functionalized Zn-Al layered double hydroxide modified</p><p>electrode. Materials Science and Engineering C, 64, 354361.</p><p></p><p>Zhan, T., Song, Y., Tan, Z., & Hou, W. (2017). Electrochemical bisphenol A sensor</p><p>based on exfoliated Ni2Al-layered double hydroxide nanosheets modified</p><p>electrode. Sensors and Actuators B: Chemical, 238, 962971.</p><p></p><p>Zhang, B., Huang, D., Xu, X., Alemu, G., Zhang, Y., Zhan, F., et al. (2013).</p><p>Simultaneous electrochemical determination of ascorbic acid, dopamine and uric</p><p>acid with helical carbon nanotubes. Electrochimica Acta, 91, 261266.</p><p></p><p>Zhang, L., & Lin, X. (2001). Covalent modification of glassy carbon electrode with</p><p>glutamic acid for simultaneous determination of uric acid and ascorbic acid.</p><p>Analyst, 126(3), 367370.</p><p></p><p>Zhang, S., Fu, Y., Sheng, Q., & Zheng, J. (2017). Nickel-cobalt double hydroxide</p><p>nanosheets wrapped amorphous Ni(OH)2 nanoboxes: Development of dopamine</p><p>sensor with enhanced electrochemical properties. New Journal of Chemistry,</p><p>41(21), 1307613084.</p><p></p><p>Zhang, S., Yan, Y., Wang, W., Gu, X., Li, H., Li, J., & Sun, J. (2017). Intercalation of</p><p>phosphotungstic acid into layered double hydroxides by reconstruction method</p><p>and its application in intumescent flame retardant poly (lactic acid) composites.</p><p>Polymer Degradation and Stability, 147, 142150.</p><p></p><p>Zhang, X., Cui, Y., Lv, Z., Li, M., Ma, S., Cui, Z., & Kong, Q. (2011). Carbon</p><p>nanotubes, conductive carbon black and graphite powder based paste electrodes.</p><p>International Journal of Electrochemical Science, 6, 60636073.</p><p></p><p>Zhao, Q., Gan, Z., & Zhuang, Q. (2002). Electrochemical sensors based on carbon</p><p>nanotubes. Electroanalysis, 14(23), 16091613.</p><p></p><p>Zhou, W., Wang, C., Liu, Y., Zhang, W., & Chen, Z. (2017). Layered double</p><p>hydroxides based ion exchange extraction for high sensitive analysis of nonsteroidal</p><p>anti-inflammatory drugs. Journal of Chromatography A, 1515, 2329.</p><p></p><p>Zhou, Y., Yan, H., Xie, Q., Huang, S., Liu, J., Li, Z., et al. (2013). Simultaneous</p><p>analysis of dopamine and homovanillic acid by high-performance liquid</p><p>chromatography with wall-jet/thin-layer electrochemical detection. Royal Society</p><p>of Chemistry, 138, 72467253.</p><p></p><p>Zhu, Z., Qu, L., Guo, Y., Zeng, Y., Sun, W., & Huang, X. (2010). Electrochemical</p><p>detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic</p><p>liquid electrode. Sensors and Actuators B: Chemical, 151(1), 146152.</p><p></p><p></p><p></p><p></p>