Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application

<p>Titanium and titanium alloys are widely used in a variety of engineering applications.</p><p>Medical device manufacturers have also benefited from the outstanding properties of</p><p>titanium alloys. However, titanium alloys ar...

Full description

Saved in:
Bibliographic Details
Main Author: Siti Norsuraya Hussain
Format: thesis
Language:eng
Published: 2021
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=7330
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:7330
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Siti Norsuraya Hussain
Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application
description <p>Titanium and titanium alloys are widely used in a variety of engineering applications.</p><p>Medical device manufacturers have also benefited from the outstanding properties of</p><p>titanium alloys. However, titanium alloys are weak in meeting all of the clinical</p><p>requirements for biomedical implants. Issues such as metal sensitivity associated with</p><p>high levels of metal ion release triggered by corrosion effects remain critical concerns.</p><p>Hence, the implant material surface has a strong role in the responses to the biological</p><p>environment the implant can be stimulated in contact with the bone. In order to</p><p>improve the biological and tribological properties of implant materials, surface</p><p>modification needed to be made. Thermal oxidation is one of the surface modification</p><p>techniques to enhance the corrosion performance of titanium alloys. This technique is</p><p>excellent for forming a thicker oxide layer on Ti and its alloys to achieve optimum</p><p>corrosion resistance. In the present study, thermal oxidation of Ti-8Mo-4Nb-2Zr alloy</p><p>was explored. Hence, experiments were carried out to investigate the effective</p><p>combination of surface modification parameters and evaluate performance corrosion</p><p>behaviour in terms of their suitability with the Ti-8Mo-4Nb-2Zr alloy surface for</p><p>biomedical implants applications. Process thermal oxidation was carried out at 500,</p><p>600 and 700C for three different durations of 6, 12 and 24 hours. It was found that</p><p>particles of oxides formed were noticeably larger after oxidation at an increased</p><p>temperature of 600C and 700C. The increase in temperature resulted in the</p><p>formation of compact particles in the oxide layer. A phase analysis showed that the</p><p>phase contents of the oxide layer showed a strong dependence on treatment conditions</p><p>with a predominance of the rutile phase over the anatase phase at temperatures ></p><p>500C and for time periods > 6h. Improved corrosion resistance had been achieved of</p><p>these alloys using thermal oxidation. EIS was employed to measure the corrosion</p><p>resistance of the Ti-8Mo-4Nb-2Zr alloys in simulated physiological solutions of a</p><p>wide pH range (namely 7.4 pH) at 37C, and the best results were obtained for the</p><p>alloys at 700C. A more positive Ecorr value (-0.125 V) and a lower Icorr value</p><p>(2.583 A x 10-6) were observed for the thermally oxidized Ti-8Mo-4Nb-2Zr alloys</p><p>when compared with the untreated alloy. This finding, the oxide scale on the</p><p>examined alloy efficiently enhances can increase the corrosion resistance of the</p><p>implant material.</p>
format thesis
qualification_name
qualification_level Master's degree
author Siti Norsuraya Hussain
author_facet Siti Norsuraya Hussain
author_sort Siti Norsuraya Hussain
title Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application
title_short Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application
title_full Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application
title_fullStr Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application
title_full_unstemmed Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application
title_sort effect of thermal oxidation on corrosion resistance of ti-8mo4nb-2zr alloy for biomedical application
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Teknikal dan Vokasional
publishDate 2021
url https://ir.upsi.edu.my/detailsg.php?det=7330
_version_ 1747833381426561024
spelling oai:ir.upsi.edu.my:73302022-08-19 Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application 2021 Siti Norsuraya Hussain TJ Mechanical engineering and machinery <p>Titanium and titanium alloys are widely used in a variety of engineering applications.</p><p>Medical device manufacturers have also benefited from the outstanding properties of</p><p>titanium alloys. However, titanium alloys are weak in meeting all of the clinical</p><p>requirements for biomedical implants. Issues such as metal sensitivity associated with</p><p>high levels of metal ion release triggered by corrosion effects remain critical concerns.</p><p>Hence, the implant material surface has a strong role in the responses to the biological</p><p>environment the implant can be stimulated in contact with the bone. In order to</p><p>improve the biological and tribological properties of implant materials, surface</p><p>modification needed to be made. Thermal oxidation is one of the surface modification</p><p>techniques to enhance the corrosion performance of titanium alloys. This technique is</p><p>excellent for forming a thicker oxide layer on Ti and its alloys to achieve optimum</p><p>corrosion resistance. In the present study, thermal oxidation of Ti-8Mo-4Nb-2Zr alloy</p><p>was explored. Hence, experiments were carried out to investigate the effective</p><p>combination of surface modification parameters and evaluate performance corrosion</p><p>behaviour in terms of their suitability with the Ti-8Mo-4Nb-2Zr alloy surface for</p><p>biomedical implants applications. Process thermal oxidation was carried out at 500,</p><p>600 and 700C for three different durations of 6, 12 and 24 hours. It was found that</p><p>particles of oxides formed were noticeably larger after oxidation at an increased</p><p>temperature of 600C and 700C. The increase in temperature resulted in the</p><p>formation of compact particles in the oxide layer. A phase analysis showed that the</p><p>phase contents of the oxide layer showed a strong dependence on treatment conditions</p><p>with a predominance of the rutile phase over the anatase phase at temperatures ></p><p>500C and for time periods > 6h. Improved corrosion resistance had been achieved of</p><p>these alloys using thermal oxidation. EIS was employed to measure the corrosion</p><p>resistance of the Ti-8Mo-4Nb-2Zr alloys in simulated physiological solutions of a</p><p>wide pH range (namely 7.4 pH) at 37C, and the best results were obtained for the</p><p>alloys at 700C. A more positive Ecorr value (-0.125 V) and a lower Icorr value</p><p>(2.583 A x 10-6) were observed for the thermally oxidized Ti-8Mo-4Nb-2Zr alloys</p><p>when compared with the untreated alloy. This finding, the oxide scale on the</p><p>examined alloy efficiently enhances can increase the corrosion resistance of the</p><p>implant material.</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7330 https://ir.upsi.edu.my/detailsg.php?det=7330 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Teknikal dan Vokasional <p>Alansari, A., & Sun, Y. (2017). A comparative study of the mechanical behaviour of thermally</p><p>oxidised commercially pure titanium and zirconium. Journal of the mechanical behavior of biomedical</p><p>materials, 74, 221-231.</p><p></p><p>Aniolek, K., & Kupka, M. (2019). Mechanical, tribological and adhesive properties of oxide layers</p><p>obtained on the surface of the Ti6Al7Nb alloy in the thermal oxidation process. Wear, 432,</p><p>202929.</p><p></p><p>Aniolek, K., Barylski, A., & Kupka, M. (2018). Modelling the structure and mechanical properties of</p><p>oxide layers obtained on biomedical Ti-6Al-7Nb alloy in the thermal oxidation process. Vacuum, 154,</p><p>309-314.</p><p></p><p>Aniolek, K., Kupka, M., & Barylski, A. (2016). Characteristic of oxide layers obtained on titanium</p><p>in the process of thermal oxidation. Archives of Metallurgy and Materials, 61(2A), 853-856.</p><p></p><p>Aniolek, K., Kupka, M., & Barylski, A. (2016). Sliding wear resistance of oxide layers formed on a</p><p>titanium surface during thermal oxidation. Wear, 356, 23- 29.</p><p></p><p>Aniolek, K., Kupka, M., & Barylski, A. (2018). Characteristics of the tribological properties of</p><p>oxide layers obtained via thermal oxidation on titanium Grade 2. Journal of Engineering TribologyJ</p><p>0(0), 1-13.</p><p></p><p>Aniolek, K., Kupka, M., Barylski, A., & Dercz, G. (2015). Mechanical and tribological properties of</p><p>oxide layers obtained on titanium in the thermal oxidation process. Applied Surface Science, 357,</p><p>1419-1426.</p><p></p><p>Aniolek, K., Kupka, M., & Dercz, G. (2019). Cyclic oxidation of Ti6Al7Nb alloy. Vacuum, 168,</p><p>108859.</p><p></p><p>Arslan, E., Totik, Y., Demirci, E., & Alsaran, A. (2010). Influence of surface roughness on</p><p>corrosion and tribological behavior of CP-Ti after thermal oxidation treatment. Journal of </p><p>Materials Engineering and Performance, 19(3), 428-433.</p><p></p><p>Ashrafizadeh, A., & Ashrafizadeh, F. (2009). Structural features and corrosion analysis of</p><p>thermally oxidized titanium. Journal of Alloys and Compounds, 480(2), 849-852.</p><p></p><p>Bailey, R., & Sun, Y. (2013). Unlubricated sliding friction and wear characteristics</p><p>of thermally oxidized commercially pure titanium. Wear, 308(1-2), 61-70.</p><p></p><p>Balani, K., Chen, Y., Harimkar, S. P., Dahotre, N. B., & Agarwal, A. (2007).</p><p>Tribological behavior of plasma-sprayed carbon nanotube-reinforced</p><p>hydroxyapatite coating in physiological solution. Acta Biomaterialia, 3(6), 944-951.</p><p></p><p>Balazic, M., Kopac, J., Jackson, M. J., & Ahmed, W. (2007). Titanium and titanium alloy applications in medicine. International Journal of Nano and</p><p>Biomaterials, 1(1), 3-34.</p><p></p><p>Bansal, D. G., Eryilmaz, O. L., & Blau, P. J. (2011). Surface engineering to improve the durability and lubricity of Ti6Al4V alloy. Wear, 271(9-10), 2006-2015.</p><p></p><p>Bansal, R., Singh, J. K., Singh, V., Singh, D. D. N., & Das, P. (2017). Optimization of oxidation temperature for commercially pure titanium to achieve improved</p><p>corrosion resistance. Journal of Materials Engineering and Performance, 26(3), 969-977.</p><p></p><p>Bensheng, H., Ge, L., Zhongying, J., Wenfeng, Y., & Qi, X. (2015). Preparation and</p><p>Characterization of Ceramic Film on Drilling Pipe Joint. Rare Metal Materials</p><p>and Engineering, 44(6), 1357-1362.</p><p></p><p>Bharathy, P. V., Nataraj, D., Chu, P. K., Wang, H., Yang, Q., Kiran, M. S. R. N., ... & Mangalaraj, D. (2010). Effect of titanium incorporation on the structural,</p><p>mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method. Applied Surface Science, 257(1), 143-150.</p><p></p><p>Bing Zhou, Xiaohong Jiang, Zhubo liu, Ruiqi Shen, Aleksandr V. Rogachev., (2013).</p><p>Preparation and characterization of TiO2 thin film by thermal oxidation of</p><p>sputtered Ti film. Materials Science in Semiconductor Processing 16, 513</p><p>519.</p><p></p><p>Biswas, A., & Majumdar, J. D. (2009). Surface characterization and mechanical</p><p>property evaluation of thermally oxidized Ti-6Al-4V. Materials</p><p>Characterization, 60(6), 513-518.</p><p></p><p>Biswas, A., & Majumdar, J. D. (2009). Surface characterization and mechanical</p><p>property evaluation of thermally oxidized Ti-6Al-4V. Materials</p><p>Characterization, 60(6), 513-518.</p><p></p><p>Blackwood, A. D., Salter, J., Dettmar, P. W., & Chaplin, M. F. (2000). Dietary fibre,</p><p>physicochemical properties and their relationship to health. The journal of the Royal Society for the Promotion of Health, 120(4), 242-247.</p><p></p><p>Bloyce, A., Morton, P. H., & Bell, T. (1994). Surface engineering of titanium and</p><p>titanium alloys. ASM handbook, 5, 2232-2233.</p><p></p><p>Bloyce, A., Qi, P. Y., Dong, H., & Bell, T. (1998). Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surface and Coatings Technology, 107(2-3), 125-132.</p><p></p><p>Bolat, G., Izquierdo, J., Mareci, D., Sutiman, D., & Souto, R. M. (2013). Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation. Electrochimica Acta, 106, 432-439.</p><p></p><p>Boonrungsiman, S., Thongtham, N., Suwantong, O., Wutikhun, T., Soykeabkaew, N., & Nimmannit, U. (2018). An improvement of silk-based scaffold</p><p>properties using collagen type I for skin tissue engineering</p><p>applications. Polymer Bulletin, 75(2), 685-700.</p><p></p><p>Boretos, J. W., & Eden, M. (1984). Contemporary biomaterials: material and host response, clinical applications, new technology and legal aspects. Noyes Publications, Park Ridge.</p><p></p><p>Borgioli, F., Galvanetto, E., Iozzelli, F., & Pradelli, G. (2005). Improvement of wear</p><p>resistance of Ti6Al4V alloy by means of thermal oxidation. Materials Letters, 59(17), 2159-2162.</p><p></p><p>Breme, Eisenbarth & Biehl, (2005). Titanium and its Alloys for Medical Applications. Titanium and Titanium Alloys (2005). 423451.</p><p></p><p>Calderon-Moreno, J. M., Vasilescu, C., Drob, S. I., Ivanescu, S., Osiceanu, P., Drob, P., ... & Vasilescu, E. (2014). Microstructural and mechanical properties,</p><p>surface and electrochemical characterisation of a new TiZrNb alloy for implant applications. Journal of alloys and compounds, 612, 398-410.</p><p></p><p>Calderon-Moreno, J. M., Preda, S., Predoana, L., Zaharescu, M., Anastasescu, M.,</p><p>Nicolescu, M., ... & Serban, B. (2014). Effect of polyethylene glycol on porous</p><p>transparent TiO2 films prepared by solgel method. Ceramics</p><p>International, 40(1), 2209-2220.</p><p></p><p>Chui, P., Jing, R., Zhang, F., Li, J., & Feng, T. (2020). Mechanical properties and</p><p>corrosion behavior of -type Ti-Zr-Nb-Mo alloys for biomedical</p><p>application. Journal of Alloys and Compounds, 842, 155693.</p><p></p><p>Cochepin, B., Gauthier, V., Vrel, D., & Dubois, S. (2007). Crystal growth of TiC grains during SHS reactions. Journal of Crystal Growth, 304(2), 481-486.</p><p></p><p>Correa, D. R. N., Kuroda, P. A. B., & Grandini, C. R. (2014). Structure, microstructure, and selected mechanical properties of Ti-Zr-Mo alloys for biomedical applications. In Advanced Materials Research (Vol. 922, pp. 75-</p><p>80). Trans Tech Publications Ltd.</p><p></p><p>Courant, R. (2005). Dirichlet's principle, conformal mapping, and minimal surfaces.</p><p>Courier Corporation.</p><p></p><p>Cui, W. F., & Shao, C. J. (2015). The improved corrosion resistance and anti-wear performance of</p><p>ZrxTi alloys by thermal oxidation treatment. Surface and Coatings Technology, 283, 101-107.</p><p></p><p>Dabrowski, R. (2014). Effect of Heat Treatment on the Mechanical Properties of Two-Phase Titanium</p><p>Alloy Ti6al7nb/Wplyw Obrbki Cieplnej Na Wlasnosci Mechaniczne Dwufazowego Stopu Tytanu Ti6al7nb.</p><p>Archives of Metallurgy and Materials. Faculty Of Engineering, M., & Science, I. C.</p><p></p><p>Dai, J., Zhu, J., Chen, C., & Weng, F. (2016). High temperature oxidation behavior and research</p><p>status of modifications on improving high temperature oxidation resistance of titanium alloys and</p><p>titanium aluminides: A review. Journal of Alloys and Compounds, 685, 784-798.</p><p></p><p>Dalili, N., Edrisy, A., Farokhzadeh, K., Li, J., Lo, J., & Riahi, A. R. (2010). Improving the wear</p><p>resistance of Ti6Al4V/TiC composites through thermal oxidation (TO). Wear, 269(7-8), 590-601.</p><p></p><p>Dearnley, P. A., Dahm, K. L., & imenoglu, H. (2004). The corrosionwear behaviour of thermally</p><p>oxidised CP-Ti and Ti6Al4V. Wear, 256(5), 469- 479.</p><p></p><p>Delplancke, J. L., Degrez, M., Fontana, A., & Winand, R. (1982). Self-colour anodizing of titanium.</p><p>Surface Technology, 16(2), 153-162.</p><p></p><p>Daz, C., Lutz, J., Mndl, S., Garca, J. A., Martnez, R., & Rodrguez, R. J. (2009). Improved</p><p>bio-tribology of biomedical alloys by ion implantation techniques. Nuclear Instruments and</p><p>Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(8-9),</p><p>1630-1633.</p><p></p><p>Donchev, A., Richter, E., Schtze, M., & Yankov, R. (2008). Improving the oxidation resistance of</p><p>TiAl-alloys with fluorine. Journal of Alloys and Compounds, 452(1), 7-10.</p><p></p><p>Dong, H., & Bell, T. (2000). Enhanced wear resistance of titanium surfaces by a new thermal</p><p>oxidation treatment. Wear, 238(2), 131-137.</p><p></p><p>Fayeulle, S. (1986). Tribological behaviour of nitrogen-implanted materials. Wear, 107(1),</p><p>61-70.</p><p></p><p>Gabriel, S. B., Panaino, J. V. P., Santos, I. D., Araujo, L. S., Mei, P. R., De Almeida,</p><p>L. H., & Nunes, C. A. (2012). Characterization of a new beta titanium alloy, Ti12Mo3Nb, for</p><p>biomedical applications. Journal of Alloys and Compounds, 536, S208-S210.</p><p></p><p>Gaddam, R., Sefer, B., Pederson, R., & Antti, M. L. (2015). Oxidation and alpha- case formation </p><p>in Ti6Al2Sn4Zr2Mo alloy. Materials</p><p>Characterization, 99, 166-174.</p><p></p><p>Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate</p><p>choice for orthopaedic implantsa review. Progress in materials science, 54(3), 397-425.</p><p></p><p>Gepreel, M. A. H., & Niinomi, M. (2013). Biocompatibility of Ti-alloys for long- term implantation.</p><p>Journal of the mechanical behavior of biomedical materials, 20, 407-415</p><p></p><p>Gotoh, H., Shibahara, T., & Sakai, T. (2001). Sub-particle-scale turbulence model for the MPS</p><p>method Lagrangian fow model for hydraulic engineering".</p><p>Comp. Fluid Dyn. J., 9(4), 339-347.</p><p></p><p>Gleryz, H., & imenoglu, H. (2004). Effect of thermal oxidation on corrosion and corrosionwear</p><p>behaviour of a Ti6Al4V alloy. Biomaterials, 25(16), 3325- 3333.</p><p></p><p>Guleryuz, H., & Cimenoglu, H. (2005). Surface modification of a Ti6Al4V alloy by thermal</p><p>oxidation. Surface and Coatings Technology, 192(2-3), 164-170.</p><p></p><p>Hacisalioglu, I., Yildiz, F., Alsaran, A., & Purcek, G. (2017, February). Wear behavior of the</p><p>plasma and thermal oxidized Ti-15Mo and Ti-6Al-4V alloys. In IOP Conference Series: Materials</p><p>Science and Engineering (Vol. 174, No. 1, p. 012055). IOP Publishing.</p><p></p><p>Huang, H. H., Wu, C. P., Sun, Y. S., & Lee, T. H. (2013). Improvements in the corrosion resistance</p><p>and biocompatibility of biomedical Ti6Al7Nb alloy using an electrochemical anodization treatment.</p><p>Thin Solid Films, 528, 157- 162.</p><p></p><p>Huang, H., Winchester, K. J., Suvorova, A., Lawn, B. R., Liu, Y., Hu, X. Z., ... & Faraone, L.</p><p>(2006). Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon</p><p>nitride films. Materials Science and Engineering: A, 435, 453-459.</p><p></p><p>Hukovic, N., & Brown, E. S. (2003). Effects of prescription corticosteroids on mood and memory.</p><p>Advances in psychosomatic medicine, 24, 161-167.</p><p></p><p>Izman, S., Hassan, M. A., Kadir, M. R. A., Abdullah, M. R., Anwar, M., Shah, A., & Daud, R. (2012).</p><p>Effect of pretreatment process on thermal oxidation of biomedical grade cobalt based alloy. In</p><p>Advanced Materials Research (Vol. 399, pp. 1564-1567). Trans Tech Publications Ltd.</p><p></p><p>Izman, S., Shah, A., Kadir, M. R. A., Nazim, E. M., Anwar, M., Hassan, M. A., & Safari, H. (2011).</p><p>Effect of thermal oxidation temperature on rutile structure formation of biomedical TiZrNb alloy.</p><p>In Advanced Materials Research (Vol.</p><p>393, pp. 704-708). Trans Tech Publications Ltd.</p><p></p><p>Izquierdo, J., Mareci, D., Bolat, G., Santana, J. J., Rodrguez-Raposo, R., Fernndez- Mrida, L.</p><p>C., ... & Souto, R. M. (2020). Improvement of the Corrosion Resistance of Biomedical Zr-Ti</p><p>Alloys Using a Thermal Oxidation Treatment. Metals, 10(2), 166.</p><p></p><p>Jagielski, J., Piatkowska, A., Aubert, P., Thome, L., Turos, A., & Abdul Kader, A. (2006). Ion</p><p>implantation for surface modification of biomaterials. Surface and Coatings Technology, 200(22-23),</p><p>63556361.</p><p></p><p>Jamesh, M., Kumar, S., & Narayanan, T. S. (2012). Effect of thermal oxidation on corrosion</p><p>resistance of commercially pure titanium in acid medium. Journal of materials engineering and</p><p>performance, 21(6), 900-906.</p><p></p><p>Jamesh, M., Narayanan, T. S., & Chu, P. K. (2013). Thermal oxidation of titanium: Evaluation of</p><p>corrosion resistance as a function of cooling rate. Materials Chemistry and Physics, 138(2-3),</p><p>565-572.</p><p></p><p>Kalpakjian, S. (2001). Manufacturing engineering and technology. Pearson Education India.</p><p></p><p>Kalpakjian, S., & Schmid, S. R. (2001). Manufacturing Engineering and Technology. In V. P. Pat</p><p>Daly, L. Curless, R. Kernan & D. A. George (Eds.) (4th ed.). United States, of America: Pearson</p><p>Education International Edition.</p><p></p><p>Khorasani, A. M., Goldberg, M., Doeven, E. H., & Littlefair, G. (2015). Titanium in biomedical</p><p>applicationsproperties and fabrication: a review. Journal of Biomaterials and Tissue Engineering,</p><p>5(8), 593-619.</p><p></p><p>Kim, T. S., Park, Y. G., & Wey, M. Y. (2003). Characterization of Ti6Al4V alloy modified by</p><p>plasma carburizing process. Materials Science and Engineering: A, 361(1-2), 275-280.</p><p></p><p>Kobayashi, E, Wang, T. J., Doi, H., Yoneyama, T., & Hamanaka, H. (1998). Material Science. Material</p><p>Medicine, 9, 567574.</p><p></p><p>Komotori, J., Lee, B. J., Dong, H., & Dearnley, P. A. (2001). Corrosion response of surface</p><p>engineered titanium alloys damaged by prior abrasion. Wear, 251(1- 12), 1239-1249.</p><p></p><p>Konovalova, M. V., Markov, P. A., Durnev, E. A., Kurek, D. V., Popov, S. V., & Varlamov, V. P.</p><p>(2017). Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical</p><p>application. Journal of Biomedical Materials Research Part A, 105(2), 547-556.</p><p></p><p>Krishna, D. S. R., & Sun, Y. (2005). Effect of thermal oxidation conditions on tribological</p><p>behaviour of titanium films on 316L stainless steel. Surface and</p><p>Coatings Technology, 198(1-3), 447-453.</p><p></p><p>Krishna, D. S. R., & Sun, Y. (2005). Thermally oxidised rutile-TiO2 coating on stainless steel</p><p>for tribological properties and corrosion resistance enhancement. Applied Surface Science,</p><p>252(4), 1107-1116.</p><p></p><p>Krishna, D. S. R., Brama, Y. L., & Sun, Y. (2007). Thick rutile layer on titanium for tribological</p><p>applications. Tribology International, 40(2), 329-334.</p><p></p><p>Kulkarni, M., Mazare, A., Schmuki, P., & Iglic, A. (2014). Biomaterial surface modification of</p><p>titanium and titanium alloys for medical applications. Nanomedicine, 111, 111-136.</p><p></p><p>Kumar, K. R., & Narayanan, S. (2008). Active vibration control of beams with optimal placement of</p><p>piezoelectric sensor/actuator pairs. Smart Materials and Structures, 17(5), 055008.</p><p></p><p>Kumar, S., Narayanan, T. S., Raman, S. G. S., & Seshadri, S. K. (2009). Thermal oxidation of CP-Ti:</p><p>Evaluation of characteristics and corrosion resistance as a function of treatment time. Materials</p><p>Science and Engineering: C, 29(6), 1942-1949.</p><p></p><p>Kumar, S., Narayanan, T. S., Raman, S. G. S., & Seshadri, S. K. (2010). Thermal oxidation of CP</p><p> TiAn electrochemical and structural characterization. Materials Characterization, 61(6),</p><p>589-597.</p><p></p><p>Kurella, A., & Dahotre, N. B. (2005). Surface modification for bioimplants: the role of laser</p><p>surface engineering. Journal of biomaterials applications, 20(1), 5-50.</p><p></p><p>Lee, J. H., & Thadhani, N. N. (1997). Reaction synthesis mechanism in dynamically densified Ti+ C</p><p>powder compacts. Scripta materialia, 37(12), 1979-1985.</p><p></p><p>Li, X. Y., Taniguchi, S., Zhu, Y. C., Fujita, K., Iwamoto, N., Matsunaga, Y., & Nakagawa, K.</p><p>(2002). Oxidation behavior of TiAl protected by Al and Nb combined ion implantation at high</p><p>temperature. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with</p><p>Materials and Atoms, 187(2), 207-214.</p><p></p><p>Li, X., Wang, C., Zhang, W., & Li, Y. (2010). Fabrication and compressive properties of Ti6Al4V</p><p>implant with honeycomb-like structure for biomedical applications. Rapid Prototyping Journal,</p><p>16(1), 4449.</p><p></p><p>Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., & Li, Y. (2014). New developments of Ti- based alloys</p><p>for biomedical applications. Materials, 7(3), 1709-1800.</p><p></p><p>Lieblich, M., Barriuso, S., Multigner, M., Gonzlez-Doncel, G., & Gonzlez- Carrasco, J. L. (2016).</p><p>Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure,</p><p>residual stresses and mechanical properties. Journal of the mechanical behavior of biomedical</p><p>materials, 54, 173-184.</p><p></p><p>Liu, L. D., & Chen, F. S. (2004). Super-carburization of low alloy steel in a vacuum</p><p>furnace. Surface and Coatings Technology, 183(2-3), 233-238.</p><p></p><p>Liu, X., Chu, P. K., & Ding, C. (2004). Surface modification of titanium, titanium alloys, and</p><p>related materials for biomedical applications. Materials Science and Engineering: R: Reports,</p><p>47(3-4), 49-121.</p><p></p><p>Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacementa materials science</p><p>perspective. Biomaterials, 19(18), 1621-1639.</p><p></p><p>Lu, J. W., Zhao, Y. Q., Ge, P., & Niu, H. Z. (2013). Microstructure and beta grain growth behavior</p><p>of TiMo alloys solution treated. Materials characterization, 84, 105-111.</p><p></p><p>Luo, X., Zhou, G., Liu, W., Zhang, W. J., Cen, L., Cui, L., & Cao, Y. (2009). In vitro</p><p>precultivation alleviates post-implantation inflammation and enhances development of</p><p>tissue-engineered tubular cartilage. Biomedical Materials, 4(2), 025006.</p><p></p><p>Luo, L., Jiang, Z. Y., Wei, D. B., & He, X. F. (2014). Surface modification of titanium and its</p><p>alloys for biomedical application. In Advanced Materials Research (Vol. 887, pp. 1115-1120).</p><p>Trans Tech Publications Ltd.</p><p></p><p>Luo, Y., Chen, W., Tian, M., & Teng, S. (2015). Thermal oxidation of Ti6Al4V alloy and its</p><p>biotribological properties under serum lubrication. Tribology International, 89, 67-71.</p><p></p><p>Luo, Y., Jiang, H., Cheng, G., & Liu, H. (2011). Effect of carburization on the mechanical</p><p>properties of biomedical grade titanium alloys. Journal of Bionic Engineering, 8(1), 86-89.</p><p></p><p>Maitre, B., Jaber, S., Maggiore, S. M., Bergot, E., Richard, J. C., Bakthiari, H., ... & Brochard,</p><p>L. (2000). Continuous positive airway pressure during fiberoptic bronchoscopy in hypoxemic</p><p>patients: a randomized double-blind study using a new device. American journal of respiratory</p><p>and critical care medicine, 162(3), 1063-1067.</p><p></p><p>Manivasagam, G., Dhinasekaran, D., & Rajamanickam, A. (2010). Biomedical implants: corrosion and</p><p>its prevention-a review. Recent patents on corrosion science.</p><p></p><p>Manjaiah, M., & Laubscher, R. F. (2017).A Review of the Surface Modifications of Titanium Alloys</p><p>for Biomedical Application. Materials Technology, 1580- 2949.</p><p></p><p>Mas-Ayu, H., Daud, R., Shah, A., Hazwan, H. M., Tomadi, S. H., & Salwani, M. S. (2018). Effect of</p><p>Thermal Oxidation and Carbon Concentrations on Co-Cr-Mo Alloy in Enhanced Corrosion Protection. In</p><p>Materials Science Forum (Vol.</p><p>916, pp. 170-176). Trans Tech Publications Ltd.</p><p></p><p>Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N. (2013). Influence of microstructural features on</p><p>wear resistance of biomedical titanium materials. International Journal of Biomedical and</p><p>Biological Engineering, 7(1), 49-53.</p><p></p><p>Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N. (2014). Surface modifications of titanium</p><p>materials for developing corrosion behavior in human body environment: a review. Procedia Materials</p><p>Science, 6, 1610-1618.</p><p></p><p>Munirathinam, B., Narayanan, R., & Neelakantan, L. (2016). Electrochemical and semiconducting</p><p>properties of thin passive film formed on titanium in chloride medium at various pH conditions.</p><p>Thin Solid Films, 598, 260-270.</p><p></p><p>Niinomi, M. (2002). Recent metallic materials for biomedical applications.</p><p>Metallurgical and materials transactions A, 33(3), 477-486.</p><p></p><p>Niinomi, M. (2003). Fatigue performance and cyto-toxicity of low rigidity titanium alloy,</p><p>Ti29Nb13Ta4.6 Zr. Biomaterials, 24(16), 2673-2683.</p><p></p><p>Niinomi, M. (2009). Metallic biomaterials. Biomedical Material, 11, 4181</p><p></p><p>Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa,</p><p>S. (2001). Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001</p><p>Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001, 369-372,</p><p>2001. Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001, 369-</p><p>372.</p><p></p><p>Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa,</p><p>S. (2002). Development of low rigidity -type titanium alloy for biomedical applications. Materials</p><p>Transactions, 43(12), 2970-2977.</p><p></p><p>Nnamchi, P. S. (2016). First principles studies on structural, elastic and electronic properties of</p><p>new TiMoNbZr alloys for biomedical applications. Materials & Design, 108, 60-67.</p><p></p><p>Nnamchi, P. S., Obayi, C. S., Todd, I., & Rainforth, M. W. (2016). Mechanical and electrochemical</p><p>characterisation of new TiMoNbZr alloys for biomedical applications. Journal of the mechanical</p><p>behavior of biomedical materials, 60, 68-77.</p><p></p><p>Okamoto, M., Nam, P. H., Maiti, P., Kotaka, T., Nakayama, T., Takada, M., ... & Okamoto, H. (2001).</p><p>Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano</p><p>letters, 1(9), 503-505.</p><p></p><p>Oliveira, N. T. C., & Guastaldi, A. C. (2008). Electrochemical behavior of TiMo</p><p>alloys applied as biomaterial. Corrosion Science, 50(4), 938-945.</p><p></p><p>Ozan, S., Lin, J., Li, Y., Ipek, R., & Wen, C. (2015). Development of TiNbZr alloys with high</p><p>elastic admissible strain for temporary orthopedic devices. Acta biomaterialia, 20, 176-187.</p><p></p><p>Park, J., & Lakes, R. R. (1998). Biomaterials. In An Introduction (3rd ed., pp. 116).</p><p></p><p>Park, J., & Lakes, R. S. (2007). Biomaterials: an introduction. Springer Science &</p><p>Business Media.</p><p></p><p>Patel, N. R., & Gohil, P. P. (2012). A review on biomaterials: scope, applications & human anatomy</p><p>significance. International Journal of Emerging Technology and Advanced Engineering, 2(4), 91-101.</p><p></p><p>Pflumm, R., Donchev, A., Mayer, S., Clemens, H., & Schtze, M. (2014). High- temperature oxidation</p><p>behavior of multi-phase Mo-containing -TiAl-based alloys. Intermetallics, 53, 45-55.</p><p></p><p>Pilliar, R. M. (2021). Metallic biomaterials. In Biomedical materials (pp. 1-47).</p><p>Springer, Cham.</p><p></p><p>Pilliar, R. M. (ed.). Metallic biomaterials. In R. Narayan. (2009). Biomedical Materials (pp.</p><p>4181).</p><p></p><p>Prabhudev, K. H. (1988). Handbook of Heat Treatment of Steels, New Delhi, Tata.</p><p>McGraw-Hill Publishing Company Ltd.</p><p></p><p>Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications.</p><p>Materials Science and Engineering: C, 26(8), 1269-1277.</p><p></p><p>Rahmati, B., Sarhan, A. A., Zalnezhad, E., Kamiab, Z., Dabbagh, A., Choudhury, D., & Abas, W. A. B.</p><p>W. (2016). Development of tantalum oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to</p><p>enhance mechanical properties and biocompatibility. Ceramics International, 42(1), 466-480.</p><p></p><p>Ramakrishna, S., Mayer, J., Wintermantel, E., & Leong, K. W. (2001). Biomedical applications of</p><p>polymer-composite materials: a review. Composites science and technology, 61(9), 1189-1224.</p><p></p><p>Saldaa, L., Barranco, V., Gonzlez-Carrasco, J. L., Rodrguez, M., Munuera, L., & Vilaboa, N.</p><p>(2007). Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted</p><p>Ti6Al4V alloy. Journal of Biomedical Materials Research Part A: An Official Journal of The Society</p><p>for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for</p><p>Biomaterials and the Korean Society for Biomaterials, 81(2), 334- 346.</p><p></p><p>Saleh, A. F., Abboud, J. H., & Benyounis, K. Y. (2010). Surface carburizing of Ti 6Al4V alloy by</p><p>laser melting. Optics and Lasers in Engineering, 48(3), 257-</p><p>267.</p><p></p><p>Samal, S., Cho, S., Park, D. W., & Kim, H. (2012). Thermal characterization of titanium hydride in</p><p>thermal oxidation process. Thermochimica acta, 542, 46- 51.</p><p></p><p>Savaloni, H., Khojier, K., & Torabi, S. (2010). Influence of N+ ion implantation on the corrosion</p><p>and nano-structure of Ti samples. Corrosion science, 52(4), 1263-1267.</p><p></p><p>Sen, M., & Dastidar, M. G. (2010). Chromium removal using various biosorbents. Journal of</p><p>Environmental Health Science & Engineering, 7(3), 182-190.</p><p></p><p>Senopati, G., Sutowo, C., Rokhmanto, F., Kartika, I., & Suharno, B. (2020). Microstructure,</p><p>Mechanical Properties, and Corrosion Resistance of Ti-6Mo- 6Nb-xSn Alloys for Biomedical</p><p>Application. In Materials Science Forum (Vol. 988, pp. 175-181). Trans Tech Publications Ltd.</p><p></p><p>Shankar, A. R., Karthiselva, N. S., & Mudali, U. K. (2013). Thermal oxidation of titanium to</p><p>improve corrosion resistance in boiling nitric acid medium. Surface and Coatings Technology, 235,</p><p>45-53.</p><p></p><p>Sidambe, A. T. (2014). Biocompatibility of advanced manufactured titanium implantsA review.</p><p>Materials, 7(12), 8168-8188.</p><p></p><p>Somsanith, N., Narayanan, T. S., Kim, Y. K., Park, I. S., Bae, T. S., & Lee, M. H. (2015). Surface</p><p>medication of Ti15Mo alloy by thermal oxidation: Evaluation of surface characteristics and</p><p>corrosion resistance in Ringer's solution. Applied Surface Science, 356, 1117-1126.</p><p></p><p>Song, H. J., Kim, M. K., Jung, G. C., Vang, M. S., & Park, Y. J. (2007). The effects of spark</p><p>anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics.</p><p>Surface and Coatings Technology, 201(21), 8738- 8745.</p><p></p><p>Sul, Y. T., Johansson, C. B., Jeong, Y., & Albrektsson, T. (2001). The electrochemical oxide growth</p><p>behaviour on titanium in acid and alkaline electrolytes. Medical engineering & physics, 23(5),</p><p>329-346.</p><p></p><p>Sun, Q., Hu, T., Fan, H., Zhang, Y., & Hu, L. (2016). Thermal oxidation behavior and tribological</p><p>properties of textured TC4 surface: Influence of thermal oxidation temperature and time. Tribology</p><p>International, 94, 479-489.</p><p></p><p>Sun, T., Xue, N., Liu, C., Wang, C., & He, J. (2015). Bioactive (Si, O, N)/(Ti, O, N)/Ti composite</p><p>coating on NiTi shape memory alloy for enhanced wear and</p><p>corrosion performance. Applied Surface Science, 356, 599-609.</p><p></p><p>Sutowo, C., Supriadi, S., Pramono, A. W., & Suharno, B. (2020). Microstructure, Mechanical</p><p>Properties, and Corrosion Behavior of New Type TiMoNb Based Alloys by Mn Addition for Implant</p><p>Material. Eastern-European Journal of Enterprise Technologies, 1(12), 103.</p><p></p><p>Taniguchi, S., Uesaki, K., Zhu, Y. C., Matsumoto, Y., & Shibata, T. (1999). Influence of</p><p>implantation of Al, Si, Cr or Mo ions on the oxidation behaviour of TiAl under thermal cycle</p><p>conditions. Materials Science and Engineering: A, 266(1- 2), 267-275.</p><p></p><p>Tarakci, M., Korkmaz, K., Gencer, Y., & Usta, M. (2005). Plasma electrolytic surface carburizing</p><p>and hardening of pure iron. Surface and Coatings Technology, 199(2-3), 205-212.</p><p></p><p>Tsuji, N., Tanaka, S., & Takasugi, T. (2009). Effect of combined plasma-carburizing and</p><p>deep-rolling on notch fatigue property of Ti-6Al-4V alloy. Materials Science and Engineering: A,</p><p>499(1-2), 482-488.</p><p></p><p>Tsuji, N., Tanaka, S., & Takasugi, T. (2009). Effects of combined plasma-carburizing and</p><p>shot-peening on fatigue and wear properties of Ti6Al4V alloy. Surface and Coatings Technology,</p><p>203(10-11), 1400-1405.</p><p></p><p>Uwais, Z. A., Hussein, M. A., Samad, M. A., & Al-Aqeeli, N. (2017). Surface modification of</p><p>metallic biomaterials for better tribological properties: A review. Arabian Journal for Science and</p><p>Engineering, 42(11), 4493-4512.</p><p></p><p>Varlamov, V. P. (2016). Preparation and biocompatibility evaluation of pectin and chitosan cryogels</p><p>for biomedical application, 137.</p><p></p><p>Velten, D., Biehl, V., Aubertin, F., Valeske, B., Possart, W., & Breme, J. (2002). Preparation of</p><p>TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques</p><p>and their characterization. Journal of Biomedical Materials Research: An Official Journal of The</p><p>Society for Biomaterials and The Japanese Society for Biomaterials, 59(1), 18-28.</p><p></p><p>Wang, S., & Hu, J. (2014). Design of alignment-free cancelable fingerprint templates via curtailed</p><p>circular convolution. Pattern Recognition, 47(3), 1321-1329.</p><p></p><p>Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., ... & Xie, Y. M. (2016). Topological</p><p>design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A</p><p>review. Biomaterials, 83, 127-141.</p><p></p><p>Weimer, A. W. (1997). Thermochemistry and kinetics. In Carbide, nitride and boride materials</p><p>synthesis and processing (pp. 79-113). Springer, Dordrecht.</p><p></p><p>Wen, M., Wen, C., Hodgson, P., & Li, Y. (2014). Improvement of the biomedical properties of</p><p>titanium using SMAT and thermal oxidation. Colloids and</p><p>surfaces B: biointerfaces, 116, 658-665.</p><p></p><p>Whitesides, G. M., & Wong, A. P. (2006). The intersection of biology and materials</p><p>science. MRS bulletin, 31(1), 19-27.</p><p></p><p>Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials,</p><p>29(20), 2941-2953.</p><p></p><p>Wu, S. K., Lee, C. Y., & Lin, H. C. (1997). A study of vacuum carburization of an equiatomic TiNi</p><p>shape memory alloy. Scripta materialia, 37(6), 837-842.</p><p></p><p>Yetim, A. F. (2010). Investigation of wear behavior of titanium oxide films, produced by anodic</p><p>oxidation, on commercially pure titanium in vacuum conditions. Surface and Coatings</p><p>Technology, 205(6), 1757-1763.</p><p></p><p>Yildiz, F., Yetim, A. F., Alsaran, A., & Efeoglu, I. (2009). Wear and corrosion behaviour of</p><p>various surface treated medical grade titanium alloy in bio- simulated environment. Wear, 267(5-8),</p><p>695-701.</p><p></p><p>Yin, X., Gotman, I., Klinger, L., & Gutmanas, E. Y. (2005). Formation of titanium carbide on</p><p>graphite via powder immersion reaction assisted coating. Materials Science and Engineering: A,</p><p>396(1-2), 107-114.</p><p></p><p>Zhang, B. B., Wang, B. L., Li, L., & Zheng, Y. F. (2011). Corrosion behavior of Ti 5Ag alloy</p><p>with and without thermal oxidation in artificial saliva solution. Dental materials, 27(3),</p><p>214-220.</p><p></p><p>Zhang, D., Qi, Z., Wei, B., & Wang, Z. (2017). Low temperature thermal oxidation towards </p><p>hafnium-coated magnesium alloy for biomedical application. Materials Letters, 190, 181-184.</p><p></p><p>Zhou, Y. L., & Luo, D. M. (2011). Corrosion behavior of TiMo alloys cold rolled and heat treated.</p><p>Journal of Alloys and Compounds, 509(21), 6267-6272.</p><p></p><p>Zhu, . H., Cai, Z. B., Li, W., Yu, H. Y., & Zhou, Z. R. (2009). Fretting in prosthetic</p><p>devices related to human body. Tribology International, 42(9), 1360-1364.</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p>