Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application
<p>Titanium and titanium alloys are widely used in a variety of engineering applications.</p><p>Medical device manufacturers have also benefited from the outstanding properties of</p><p>titanium alloys. However, titanium alloys ar...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2021
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=7330 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:7330 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Siti Norsuraya Hussain Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application |
description |
<p>Titanium and titanium alloys are widely used in a variety of engineering applications.</p><p>Medical device manufacturers have also benefited from the outstanding properties of</p><p>titanium alloys. However, titanium alloys are weak in meeting all of the clinical</p><p>requirements for biomedical implants. Issues such as metal sensitivity associated with</p><p>high levels of metal ion release triggered by corrosion effects remain critical concerns.</p><p>Hence, the implant material surface has a strong role in the responses to the biological</p><p>environment the implant can be stimulated in contact with the bone. In order to</p><p>improve the biological and tribological properties of implant materials, surface</p><p>modification needed to be made. Thermal oxidation is one of the surface modification</p><p>techniques to enhance the corrosion performance of titanium alloys. This technique is</p><p>excellent for forming a thicker oxide layer on Ti and its alloys to achieve optimum</p><p>corrosion resistance. In the present study, thermal oxidation of Ti-8Mo-4Nb-2Zr alloy</p><p>was explored. Hence, experiments were carried out to investigate the effective</p><p>combination of surface modification parameters and evaluate performance corrosion</p><p>behaviour in terms of their suitability with the Ti-8Mo-4Nb-2Zr alloy surface for</p><p>biomedical implants applications. Process thermal oxidation was carried out at 500,</p><p>600 and 700C for three different durations of 6, 12 and 24 hours. It was found that</p><p>particles of oxides formed were noticeably larger after oxidation at an increased</p><p>temperature of 600C and 700C. The increase in temperature resulted in the</p><p>formation of compact particles in the oxide layer. A phase analysis showed that the</p><p>phase contents of the oxide layer showed a strong dependence on treatment conditions</p><p>with a predominance of the rutile phase over the anatase phase at temperatures ></p><p>500C and for time periods > 6h. Improved corrosion resistance had been achieved of</p><p>these alloys using thermal oxidation. EIS was employed to measure the corrosion</p><p>resistance of the Ti-8Mo-4Nb-2Zr alloys in simulated physiological solutions of a</p><p>wide pH range (namely 7.4 pH) at 37C, and the best results were obtained for the</p><p>alloys at 700C. A more positive Ecorr value (-0.125 V) and a lower Icorr value</p><p>(2.583 A x 10-6) were observed for the thermally oxidized Ti-8Mo-4Nb-2Zr alloys</p><p>when compared with the untreated alloy. This finding, the oxide scale on the</p><p>examined alloy efficiently enhances can increase the corrosion resistance of the</p><p>implant material.</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Master's degree |
author |
Siti Norsuraya Hussain |
author_facet |
Siti Norsuraya Hussain |
author_sort |
Siti Norsuraya Hussain |
title |
Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application |
title_short |
Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application |
title_full |
Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application |
title_fullStr |
Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application |
title_full_unstemmed |
Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application |
title_sort |
effect of thermal oxidation on corrosion resistance of ti-8mo4nb-2zr alloy for biomedical application |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Teknikal dan Vokasional |
publishDate |
2021 |
url |
https://ir.upsi.edu.my/detailsg.php?det=7330 |
_version_ |
1747833381426561024 |
spelling |
oai:ir.upsi.edu.my:73302022-08-19 Effect of thermal oxidation on corrosion resistance of Ti-8Mo4Nb-2Zr alloy for biomedical application 2021 Siti Norsuraya Hussain TJ Mechanical engineering and machinery <p>Titanium and titanium alloys are widely used in a variety of engineering applications.</p><p>Medical device manufacturers have also benefited from the outstanding properties of</p><p>titanium alloys. However, titanium alloys are weak in meeting all of the clinical</p><p>requirements for biomedical implants. Issues such as metal sensitivity associated with</p><p>high levels of metal ion release triggered by corrosion effects remain critical concerns.</p><p>Hence, the implant material surface has a strong role in the responses to the biological</p><p>environment the implant can be stimulated in contact with the bone. In order to</p><p>improve the biological and tribological properties of implant materials, surface</p><p>modification needed to be made. Thermal oxidation is one of the surface modification</p><p>techniques to enhance the corrosion performance of titanium alloys. This technique is</p><p>excellent for forming a thicker oxide layer on Ti and its alloys to achieve optimum</p><p>corrosion resistance. In the present study, thermal oxidation of Ti-8Mo-4Nb-2Zr alloy</p><p>was explored. Hence, experiments were carried out to investigate the effective</p><p>combination of surface modification parameters and evaluate performance corrosion</p><p>behaviour in terms of their suitability with the Ti-8Mo-4Nb-2Zr alloy surface for</p><p>biomedical implants applications. Process thermal oxidation was carried out at 500,</p><p>600 and 700C for three different durations of 6, 12 and 24 hours. It was found that</p><p>particles of oxides formed were noticeably larger after oxidation at an increased</p><p>temperature of 600C and 700C. The increase in temperature resulted in the</p><p>formation of compact particles in the oxide layer. A phase analysis showed that the</p><p>phase contents of the oxide layer showed a strong dependence on treatment conditions</p><p>with a predominance of the rutile phase over the anatase phase at temperatures ></p><p>500C and for time periods > 6h. Improved corrosion resistance had been achieved of</p><p>these alloys using thermal oxidation. EIS was employed to measure the corrosion</p><p>resistance of the Ti-8Mo-4Nb-2Zr alloys in simulated physiological solutions of a</p><p>wide pH range (namely 7.4 pH) at 37C, and the best results were obtained for the</p><p>alloys at 700C. A more positive Ecorr value (-0.125 V) and a lower Icorr value</p><p>(2.583 A x 10-6) were observed for the thermally oxidized Ti-8Mo-4Nb-2Zr alloys</p><p>when compared with the untreated alloy. This finding, the oxide scale on the</p><p>examined alloy efficiently enhances can increase the corrosion resistance of the</p><p>implant material.</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7330 https://ir.upsi.edu.my/detailsg.php?det=7330 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Teknikal dan Vokasional <p>Alansari, A., & Sun, Y. (2017). A comparative study of the mechanical behaviour of thermally</p><p>oxidised commercially pure titanium and zirconium. Journal of the mechanical behavior of biomedical</p><p>materials, 74, 221-231.</p><p></p><p>Aniolek, K., & Kupka, M. (2019). Mechanical, tribological and adhesive properties of oxide layers</p><p>obtained on the surface of the Ti6Al7Nb alloy in the thermal oxidation process. Wear, 432,</p><p>202929.</p><p></p><p>Aniolek, K., Barylski, A., & Kupka, M. (2018). Modelling the structure and mechanical properties of</p><p>oxide layers obtained on biomedical Ti-6Al-7Nb alloy in the thermal oxidation process. Vacuum, 154,</p><p>309-314.</p><p></p><p>Aniolek, K., Kupka, M., & Barylski, A. (2016). Characteristic of oxide layers obtained on titanium</p><p>in the process of thermal oxidation. Archives of Metallurgy and Materials, 61(2A), 853-856.</p><p></p><p>Aniolek, K., Kupka, M., & Barylski, A. (2016). Sliding wear resistance of oxide layers formed on a</p><p>titanium surface during thermal oxidation. Wear, 356, 23- 29.</p><p></p><p>Aniolek, K., Kupka, M., & Barylski, A. (2018). Characteristics of the tribological properties of</p><p>oxide layers obtained via thermal oxidation on titanium Grade 2. Journal of Engineering TribologyJ</p><p>0(0), 1-13.</p><p></p><p>Aniolek, K., Kupka, M., Barylski, A., & Dercz, G. (2015). Mechanical and tribological properties of</p><p>oxide layers obtained on titanium in the thermal oxidation process. Applied Surface Science, 357,</p><p>1419-1426.</p><p></p><p>Aniolek, K., Kupka, M., & Dercz, G. (2019). Cyclic oxidation of Ti6Al7Nb alloy. Vacuum, 168,</p><p>108859.</p><p></p><p>Arslan, E., Totik, Y., Demirci, E., & Alsaran, A. (2010). Influence of surface roughness on</p><p>corrosion and tribological behavior of CP-Ti after thermal oxidation treatment. Journal of </p><p>Materials Engineering and Performance, 19(3), 428-433.</p><p></p><p>Ashrafizadeh, A., & Ashrafizadeh, F. (2009). Structural features and corrosion analysis of</p><p>thermally oxidized titanium. Journal of Alloys and Compounds, 480(2), 849-852.</p><p></p><p>Bailey, R., & Sun, Y. (2013). Unlubricated sliding friction and wear characteristics</p><p>of thermally oxidized commercially pure titanium. Wear, 308(1-2), 61-70.</p><p></p><p>Balani, K., Chen, Y., Harimkar, S. P., Dahotre, N. B., & Agarwal, A. (2007).</p><p>Tribological behavior of plasma-sprayed carbon nanotube-reinforced</p><p>hydroxyapatite coating in physiological solution. Acta Biomaterialia, 3(6), 944-951.</p><p></p><p>Balazic, M., Kopac, J., Jackson, M. J., & Ahmed, W. (2007). Titanium and titanium alloy applications in medicine. International Journal of Nano and</p><p>Biomaterials, 1(1), 3-34.</p><p></p><p>Bansal, D. G., Eryilmaz, O. L., & Blau, P. J. (2011). Surface engineering to improve the durability and lubricity of Ti6Al4V alloy. Wear, 271(9-10), 2006-2015.</p><p></p><p>Bansal, R., Singh, J. K., Singh, V., Singh, D. D. N., & Das, P. (2017). Optimization of oxidation temperature for commercially pure titanium to achieve improved</p><p>corrosion resistance. Journal of Materials Engineering and Performance, 26(3), 969-977.</p><p></p><p>Bensheng, H., Ge, L., Zhongying, J., Wenfeng, Y., & Qi, X. (2015). Preparation and</p><p>Characterization of Ceramic Film on Drilling Pipe Joint. Rare Metal Materials</p><p>and Engineering, 44(6), 1357-1362.</p><p></p><p>Bharathy, P. V., Nataraj, D., Chu, P. K., Wang, H., Yang, Q., Kiran, M. S. R. N., ... & Mangalaraj, D. (2010). Effect of titanium incorporation on the structural,</p><p>mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method. Applied Surface Science, 257(1), 143-150.</p><p></p><p>Bing Zhou, Xiaohong Jiang, Zhubo liu, Ruiqi Shen, Aleksandr V. Rogachev., (2013).</p><p>Preparation and characterization of TiO2 thin film by thermal oxidation of</p><p>sputtered Ti film. Materials Science in Semiconductor Processing 16, 513</p><p>519.</p><p></p><p>Biswas, A., & Majumdar, J. D. (2009). Surface characterization and mechanical</p><p>property evaluation of thermally oxidized Ti-6Al-4V. Materials</p><p>Characterization, 60(6), 513-518.</p><p></p><p>Biswas, A., & Majumdar, J. D. (2009). Surface characterization and mechanical</p><p>property evaluation of thermally oxidized Ti-6Al-4V. Materials</p><p>Characterization, 60(6), 513-518.</p><p></p><p>Blackwood, A. D., Salter, J., Dettmar, P. W., & Chaplin, M. F. (2000). Dietary fibre,</p><p>physicochemical properties and their relationship to health. The journal of the Royal Society for the Promotion of Health, 120(4), 242-247.</p><p></p><p>Bloyce, A., Morton, P. H., & Bell, T. (1994). Surface engineering of titanium and</p><p>titanium alloys. ASM handbook, 5, 2232-2233.</p><p></p><p>Bloyce, A., Qi, P. Y., Dong, H., & Bell, T. (1998). Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surface and Coatings Technology, 107(2-3), 125-132.</p><p></p><p>Bolat, G., Izquierdo, J., Mareci, D., Sutiman, D., & Souto, R. M. (2013). Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation. Electrochimica Acta, 106, 432-439.</p><p></p><p>Boonrungsiman, S., Thongtham, N., Suwantong, O., Wutikhun, T., Soykeabkaew, N., & Nimmannit, U. (2018). An improvement of silk-based scaffold</p><p>properties using collagen type I for skin tissue engineering</p><p>applications. Polymer Bulletin, 75(2), 685-700.</p><p></p><p>Boretos, J. W., & Eden, M. (1984). Contemporary biomaterials: material and host response, clinical applications, new technology and legal aspects. Noyes Publications, Park Ridge.</p><p></p><p>Borgioli, F., Galvanetto, E., Iozzelli, F., & Pradelli, G. (2005). Improvement of wear</p><p>resistance of Ti6Al4V alloy by means of thermal oxidation. Materials Letters, 59(17), 2159-2162.</p><p></p><p>Breme, Eisenbarth & Biehl, (2005). Titanium and its Alloys for Medical Applications. Titanium and Titanium Alloys (2005). 423451.</p><p></p><p>Calderon-Moreno, J. M., Vasilescu, C., Drob, S. I., Ivanescu, S., Osiceanu, P., Drob, P., ... & Vasilescu, E. (2014). Microstructural and mechanical properties,</p><p>surface and electrochemical characterisation of a new TiZrNb alloy for implant applications. Journal of alloys and compounds, 612, 398-410.</p><p></p><p>Calderon-Moreno, J. M., Preda, S., Predoana, L., Zaharescu, M., Anastasescu, M.,</p><p>Nicolescu, M., ... & Serban, B. (2014). Effect of polyethylene glycol on porous</p><p>transparent TiO2 films prepared by solgel method. Ceramics</p><p>International, 40(1), 2209-2220.</p><p></p><p>Chui, P., Jing, R., Zhang, F., Li, J., & Feng, T. (2020). Mechanical properties and</p><p>corrosion behavior of -type Ti-Zr-Nb-Mo alloys for biomedical</p><p>application. Journal of Alloys and Compounds, 842, 155693.</p><p></p><p>Cochepin, B., Gauthier, V., Vrel, D., & Dubois, S. (2007). Crystal growth of TiC grains during SHS reactions. Journal of Crystal Growth, 304(2), 481-486.</p><p></p><p>Correa, D. R. N., Kuroda, P. A. B., & Grandini, C. R. (2014). Structure, microstructure, and selected mechanical properties of Ti-Zr-Mo alloys for biomedical applications. In Advanced Materials Research (Vol. 922, pp. 75-</p><p>80). Trans Tech Publications Ltd.</p><p></p><p>Courant, R. (2005). Dirichlet's principle, conformal mapping, and minimal surfaces.</p><p>Courier Corporation.</p><p></p><p>Cui, W. F., & Shao, C. J. (2015). The improved corrosion resistance and anti-wear performance of</p><p>ZrxTi alloys by thermal oxidation treatment. Surface and Coatings Technology, 283, 101-107.</p><p></p><p>Dabrowski, R. (2014). Effect of Heat Treatment on the Mechanical Properties of Two-Phase Titanium</p><p>Alloy Ti6al7nb/Wplyw Obrbki Cieplnej Na Wlasnosci Mechaniczne Dwufazowego Stopu Tytanu Ti6al7nb.</p><p>Archives of Metallurgy and Materials. Faculty Of Engineering, M., & Science, I. C.</p><p></p><p>Dai, J., Zhu, J., Chen, C., & Weng, F. (2016). High temperature oxidation behavior and research</p><p>status of modifications on improving high temperature oxidation resistance of titanium alloys and</p><p>titanium aluminides: A review. Journal of Alloys and Compounds, 685, 784-798.</p><p></p><p>Dalili, N., Edrisy, A., Farokhzadeh, K., Li, J., Lo, J., & Riahi, A. R. (2010). Improving the wear</p><p>resistance of Ti6Al4V/TiC composites through thermal oxidation (TO). Wear, 269(7-8), 590-601.</p><p></p><p>Dearnley, P. A., Dahm, K. L., & imenoglu, H. (2004). The corrosionwear behaviour of thermally</p><p>oxidised CP-Ti and Ti6Al4V. Wear, 256(5), 469- 479.</p><p></p><p>Delplancke, J. L., Degrez, M., Fontana, A., & Winand, R. (1982). Self-colour anodizing of titanium.</p><p>Surface Technology, 16(2), 153-162.</p><p></p><p>Daz, C., Lutz, J., Mndl, S., Garca, J. A., Martnez, R., & Rodrguez, R. J. (2009). Improved</p><p>bio-tribology of biomedical alloys by ion implantation techniques. Nuclear Instruments and</p><p>Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(8-9),</p><p>1630-1633.</p><p></p><p>Donchev, A., Richter, E., Schtze, M., & Yankov, R. (2008). Improving the oxidation resistance of</p><p>TiAl-alloys with fluorine. Journal of Alloys and Compounds, 452(1), 7-10.</p><p></p><p>Dong, H., & Bell, T. (2000). Enhanced wear resistance of titanium surfaces by a new thermal</p><p>oxidation treatment. Wear, 238(2), 131-137.</p><p></p><p>Fayeulle, S. (1986). Tribological behaviour of nitrogen-implanted materials. Wear, 107(1),</p><p>61-70.</p><p></p><p>Gabriel, S. B., Panaino, J. V. P., Santos, I. D., Araujo, L. S., Mei, P. R., De Almeida,</p><p>L. H., & Nunes, C. A. (2012). Characterization of a new beta titanium alloy, Ti12Mo3Nb, for</p><p>biomedical applications. Journal of Alloys and Compounds, 536, S208-S210.</p><p></p><p>Gaddam, R., Sefer, B., Pederson, R., & Antti, M. L. (2015). Oxidation and alpha- case formation </p><p>in Ti6Al2Sn4Zr2Mo alloy. Materials</p><p>Characterization, 99, 166-174.</p><p></p><p>Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate</p><p>choice for orthopaedic implantsa review. Progress in materials science, 54(3), 397-425.</p><p></p><p>Gepreel, M. A. H., & Niinomi, M. (2013). Biocompatibility of Ti-alloys for long- term implantation.</p><p>Journal of the mechanical behavior of biomedical materials, 20, 407-415</p><p></p><p>Gotoh, H., Shibahara, T., & Sakai, T. (2001). Sub-particle-scale turbulence model for the MPS</p><p>method Lagrangian fow model for hydraulic engineering".</p><p>Comp. Fluid Dyn. J., 9(4), 339-347.</p><p></p><p>Gleryz, H., & imenoglu, H. (2004). Effect of thermal oxidation on corrosion and corrosionwear</p><p>behaviour of a Ti6Al4V alloy. Biomaterials, 25(16), 3325- 3333.</p><p></p><p>Guleryuz, H., & Cimenoglu, H. (2005). Surface modification of a Ti6Al4V alloy by thermal</p><p>oxidation. Surface and Coatings Technology, 192(2-3), 164-170.</p><p></p><p>Hacisalioglu, I., Yildiz, F., Alsaran, A., & Purcek, G. (2017, February). Wear behavior of the</p><p>plasma and thermal oxidized Ti-15Mo and Ti-6Al-4V alloys. In IOP Conference Series: Materials</p><p>Science and Engineering (Vol. 174, No. 1, p. 012055). IOP Publishing.</p><p></p><p>Huang, H. H., Wu, C. P., Sun, Y. S., & Lee, T. H. (2013). Improvements in the corrosion resistance</p><p>and biocompatibility of biomedical Ti6Al7Nb alloy using an electrochemical anodization treatment.</p><p>Thin Solid Films, 528, 157- 162.</p><p></p><p>Huang, H., Winchester, K. J., Suvorova, A., Lawn, B. R., Liu, Y., Hu, X. Z., ... & Faraone, L.</p><p>(2006). Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon</p><p>nitride films. Materials Science and Engineering: A, 435, 453-459.</p><p></p><p>Hukovic, N., & Brown, E. S. (2003). Effects of prescription corticosteroids on mood and memory.</p><p>Advances in psychosomatic medicine, 24, 161-167.</p><p></p><p>Izman, S., Hassan, M. A., Kadir, M. R. A., Abdullah, M. R., Anwar, M., Shah, A., & Daud, R. (2012).</p><p>Effect of pretreatment process on thermal oxidation of biomedical grade cobalt based alloy. In</p><p>Advanced Materials Research (Vol. 399, pp. 1564-1567). Trans Tech Publications Ltd.</p><p></p><p>Izman, S., Shah, A., Kadir, M. R. A., Nazim, E. M., Anwar, M., Hassan, M. A., & Safari, H. (2011).</p><p>Effect of thermal oxidation temperature on rutile structure formation of biomedical TiZrNb alloy.</p><p>In Advanced Materials Research (Vol.</p><p>393, pp. 704-708). Trans Tech Publications Ltd.</p><p></p><p>Izquierdo, J., Mareci, D., Bolat, G., Santana, J. J., Rodrguez-Raposo, R., Fernndez- Mrida, L.</p><p>C., ... & Souto, R. M. (2020). Improvement of the Corrosion Resistance of Biomedical Zr-Ti</p><p>Alloys Using a Thermal Oxidation Treatment. Metals, 10(2), 166.</p><p></p><p>Jagielski, J., Piatkowska, A., Aubert, P., Thome, L., Turos, A., & Abdul Kader, A. (2006). Ion</p><p>implantation for surface modification of biomaterials. Surface and Coatings Technology, 200(22-23),</p><p>63556361.</p><p></p><p>Jamesh, M., Kumar, S., & Narayanan, T. S. (2012). Effect of thermal oxidation on corrosion</p><p>resistance of commercially pure titanium in acid medium. Journal of materials engineering and</p><p>performance, 21(6), 900-906.</p><p></p><p>Jamesh, M., Narayanan, T. S., & Chu, P. K. (2013). Thermal oxidation of titanium: Evaluation of</p><p>corrosion resistance as a function of cooling rate. Materials Chemistry and Physics, 138(2-3),</p><p>565-572.</p><p></p><p>Kalpakjian, S. (2001). Manufacturing engineering and technology. Pearson Education India.</p><p></p><p>Kalpakjian, S., & Schmid, S. R. (2001). Manufacturing Engineering and Technology. In V. P. Pat</p><p>Daly, L. Curless, R. Kernan & D. A. George (Eds.) (4th ed.). United States, of America: Pearson</p><p>Education International Edition.</p><p></p><p>Khorasani, A. M., Goldberg, M., Doeven, E. H., & Littlefair, G. (2015). Titanium in biomedical</p><p>applicationsproperties and fabrication: a review. Journal of Biomaterials and Tissue Engineering,</p><p>5(8), 593-619.</p><p></p><p>Kim, T. S., Park, Y. G., & Wey, M. Y. (2003). Characterization of Ti6Al4V alloy modified by</p><p>plasma carburizing process. Materials Science and Engineering: A, 361(1-2), 275-280.</p><p></p><p>Kobayashi, E, Wang, T. J., Doi, H., Yoneyama, T., & Hamanaka, H. (1998). Material Science. Material</p><p>Medicine, 9, 567574.</p><p></p><p>Komotori, J., Lee, B. J., Dong, H., & Dearnley, P. A. (2001). Corrosion response of surface</p><p>engineered titanium alloys damaged by prior abrasion. Wear, 251(1- 12), 1239-1249.</p><p></p><p>Konovalova, M. V., Markov, P. A., Durnev, E. A., Kurek, D. V., Popov, S. V., & Varlamov, V. P.</p><p>(2017). Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical</p><p>application. Journal of Biomedical Materials Research Part A, 105(2), 547-556.</p><p></p><p>Krishna, D. S. R., & Sun, Y. (2005). Effect of thermal oxidation conditions on tribological</p><p>behaviour of titanium films on 316L stainless steel. Surface and</p><p>Coatings Technology, 198(1-3), 447-453.</p><p></p><p>Krishna, D. S. R., & Sun, Y. (2005). Thermally oxidised rutile-TiO2 coating on stainless steel</p><p>for tribological properties and corrosion resistance enhancement. Applied Surface Science,</p><p>252(4), 1107-1116.</p><p></p><p>Krishna, D. S. R., Brama, Y. L., & Sun, Y. (2007). Thick rutile layer on titanium for tribological</p><p>applications. Tribology International, 40(2), 329-334.</p><p></p><p>Kulkarni, M., Mazare, A., Schmuki, P., & Iglic, A. (2014). Biomaterial surface modification of</p><p>titanium and titanium alloys for medical applications. Nanomedicine, 111, 111-136.</p><p></p><p>Kumar, K. R., & Narayanan, S. (2008). Active vibration control of beams with optimal placement of</p><p>piezoelectric sensor/actuator pairs. Smart Materials and Structures, 17(5), 055008.</p><p></p><p>Kumar, S., Narayanan, T. S., Raman, S. G. S., & Seshadri, S. K. (2009). Thermal oxidation of CP-Ti:</p><p>Evaluation of characteristics and corrosion resistance as a function of treatment time. Materials</p><p>Science and Engineering: C, 29(6), 1942-1949.</p><p></p><p>Kumar, S., Narayanan, T. S., Raman, S. G. S., & Seshadri, S. K. (2010). Thermal oxidation of CP</p><p> TiAn electrochemical and structural characterization. Materials Characterization, 61(6),</p><p>589-597.</p><p></p><p>Kurella, A., & Dahotre, N. B. (2005). Surface modification for bioimplants: the role of laser</p><p>surface engineering. Journal of biomaterials applications, 20(1), 5-50.</p><p></p><p>Lee, J. H., & Thadhani, N. N. (1997). Reaction synthesis mechanism in dynamically densified Ti+ C</p><p>powder compacts. Scripta materialia, 37(12), 1979-1985.</p><p></p><p>Li, X. Y., Taniguchi, S., Zhu, Y. C., Fujita, K., Iwamoto, N., Matsunaga, Y., & Nakagawa, K.</p><p>(2002). Oxidation behavior of TiAl protected by Al and Nb combined ion implantation at high</p><p>temperature. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with</p><p>Materials and Atoms, 187(2), 207-214.</p><p></p><p>Li, X., Wang, C., Zhang, W., & Li, Y. (2010). Fabrication and compressive properties of Ti6Al4V</p><p>implant with honeycomb-like structure for biomedical applications. Rapid Prototyping Journal,</p><p>16(1), 4449.</p><p></p><p>Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., & Li, Y. (2014). New developments of Ti- based alloys</p><p>for biomedical applications. Materials, 7(3), 1709-1800.</p><p></p><p>Lieblich, M., Barriuso, S., Multigner, M., Gonzlez-Doncel, G., & Gonzlez- Carrasco, J. L. (2016).</p><p>Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure,</p><p>residual stresses and mechanical properties. Journal of the mechanical behavior of biomedical</p><p>materials, 54, 173-184.</p><p></p><p>Liu, L. D., & Chen, F. S. (2004). Super-carburization of low alloy steel in a vacuum</p><p>furnace. Surface and Coatings Technology, 183(2-3), 233-238.</p><p></p><p>Liu, X., Chu, P. K., & Ding, C. (2004). Surface modification of titanium, titanium alloys, and</p><p>related materials for biomedical applications. Materials Science and Engineering: R: Reports,</p><p>47(3-4), 49-121.</p><p></p><p>Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacementa materials science</p><p>perspective. Biomaterials, 19(18), 1621-1639.</p><p></p><p>Lu, J. W., Zhao, Y. Q., Ge, P., & Niu, H. Z. (2013). Microstructure and beta grain growth behavior</p><p>of TiMo alloys solution treated. Materials characterization, 84, 105-111.</p><p></p><p>Luo, X., Zhou, G., Liu, W., Zhang, W. J., Cen, L., Cui, L., & Cao, Y. (2009). In vitro</p><p>precultivation alleviates post-implantation inflammation and enhances development of</p><p>tissue-engineered tubular cartilage. Biomedical Materials, 4(2), 025006.</p><p></p><p>Luo, L., Jiang, Z. Y., Wei, D. B., & He, X. F. (2014). Surface modification of titanium and its</p><p>alloys for biomedical application. In Advanced Materials Research (Vol. 887, pp. 1115-1120).</p><p>Trans Tech Publications Ltd.</p><p></p><p>Luo, Y., Chen, W., Tian, M., & Teng, S. (2015). Thermal oxidation of Ti6Al4V alloy and its</p><p>biotribological properties under serum lubrication. Tribology International, 89, 67-71.</p><p></p><p>Luo, Y., Jiang, H., Cheng, G., & Liu, H. (2011). Effect of carburization on the mechanical</p><p>properties of biomedical grade titanium alloys. Journal of Bionic Engineering, 8(1), 86-89.</p><p></p><p>Maitre, B., Jaber, S., Maggiore, S. M., Bergot, E., Richard, J. C., Bakthiari, H., ... & Brochard,</p><p>L. (2000). Continuous positive airway pressure during fiberoptic bronchoscopy in hypoxemic</p><p>patients: a randomized double-blind study using a new device. American journal of respiratory</p><p>and critical care medicine, 162(3), 1063-1067.</p><p></p><p>Manivasagam, G., Dhinasekaran, D., & Rajamanickam, A. (2010). Biomedical implants: corrosion and</p><p>its prevention-a review. Recent patents on corrosion science.</p><p></p><p>Manjaiah, M., & Laubscher, R. F. (2017).A Review of the Surface Modifications of Titanium Alloys</p><p>for Biomedical Application. Materials Technology, 1580- 2949.</p><p></p><p>Mas-Ayu, H., Daud, R., Shah, A., Hazwan, H. M., Tomadi, S. H., & Salwani, M. S. (2018). Effect of</p><p>Thermal Oxidation and Carbon Concentrations on Co-Cr-Mo Alloy in Enhanced Corrosion Protection. In</p><p>Materials Science Forum (Vol.</p><p>916, pp. 170-176). Trans Tech Publications Ltd.</p><p></p><p>Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N. (2013). Influence of microstructural features on</p><p>wear resistance of biomedical titanium materials. International Journal of Biomedical and</p><p>Biological Engineering, 7(1), 49-53.</p><p></p><p>Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N. (2014). Surface modifications of titanium</p><p>materials for developing corrosion behavior in human body environment: a review. Procedia Materials</p><p>Science, 6, 1610-1618.</p><p></p><p>Munirathinam, B., Narayanan, R., & Neelakantan, L. (2016). Electrochemical and semiconducting</p><p>properties of thin passive film formed on titanium in chloride medium at various pH conditions.</p><p>Thin Solid Films, 598, 260-270.</p><p></p><p>Niinomi, M. (2002). Recent metallic materials for biomedical applications.</p><p>Metallurgical and materials transactions A, 33(3), 477-486.</p><p></p><p>Niinomi, M. (2003). Fatigue performance and cyto-toxicity of low rigidity titanium alloy,</p><p>Ti29Nb13Ta4.6 Zr. Biomaterials, 24(16), 2673-2683.</p><p></p><p>Niinomi, M. (2009). Metallic biomaterials. Biomedical Material, 11, 4181</p><p></p><p>Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa,</p><p>S. (2001). Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001</p><p>Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001, 369-372,</p><p>2001. Proc. 4th Pacific Rim Int. Comf. on Advanced Materials and Processing (PRICM4), 2001, 369-</p><p>372.</p><p></p><p>Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., & Niwa,</p><p>S. (2002). Development of low rigidity -type titanium alloy for biomedical applications. Materials</p><p>Transactions, 43(12), 2970-2977.</p><p></p><p>Nnamchi, P. S. (2016). First principles studies on structural, elastic and electronic properties of</p><p>new TiMoNbZr alloys for biomedical applications. Materials & Design, 108, 60-67.</p><p></p><p>Nnamchi, P. S., Obayi, C. S., Todd, I., & Rainforth, M. W. (2016). Mechanical and electrochemical</p><p>characterisation of new TiMoNbZr alloys for biomedical applications. Journal of the mechanical</p><p>behavior of biomedical materials, 60, 68-77.</p><p></p><p>Okamoto, M., Nam, P. H., Maiti, P., Kotaka, T., Nakayama, T., Takada, M., ... & Okamoto, H. (2001).</p><p>Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano</p><p>letters, 1(9), 503-505.</p><p></p><p>Oliveira, N. T. C., & Guastaldi, A. C. (2008). Electrochemical behavior of TiMo</p><p>alloys applied as biomaterial. Corrosion Science, 50(4), 938-945.</p><p></p><p>Ozan, S., Lin, J., Li, Y., Ipek, R., & Wen, C. (2015). Development of TiNbZr alloys with high</p><p>elastic admissible strain for temporary orthopedic devices. Acta biomaterialia, 20, 176-187.</p><p></p><p>Park, J., & Lakes, R. R. (1998). Biomaterials. In An Introduction (3rd ed., pp. 116).</p><p></p><p>Park, J., & Lakes, R. S. (2007). Biomaterials: an introduction. Springer Science &</p><p>Business Media.</p><p></p><p>Patel, N. R., & Gohil, P. P. (2012). A review on biomaterials: scope, applications & human anatomy</p><p>significance. International Journal of Emerging Technology and Advanced Engineering, 2(4), 91-101.</p><p></p><p>Pflumm, R., Donchev, A., Mayer, S., Clemens, H., & Schtze, M. (2014). High- temperature oxidation</p><p>behavior of multi-phase Mo-containing -TiAl-based alloys. Intermetallics, 53, 45-55.</p><p></p><p>Pilliar, R. M. (2021). Metallic biomaterials. In Biomedical materials (pp. 1-47).</p><p>Springer, Cham.</p><p></p><p>Pilliar, R. M. (ed.). Metallic biomaterials. In R. Narayan. (2009). Biomedical Materials (pp.</p><p>4181).</p><p></p><p>Prabhudev, K. H. (1988). Handbook of Heat Treatment of Steels, New Delhi, Tata.</p><p>McGraw-Hill Publishing Company Ltd.</p><p></p><p>Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications.</p><p>Materials Science and Engineering: C, 26(8), 1269-1277.</p><p></p><p>Rahmati, B., Sarhan, A. A., Zalnezhad, E., Kamiab, Z., Dabbagh, A., Choudhury, D., & Abas, W. A. B.</p><p>W. (2016). Development of tantalum oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to</p><p>enhance mechanical properties and biocompatibility. Ceramics International, 42(1), 466-480.</p><p></p><p>Ramakrishna, S., Mayer, J., Wintermantel, E., & Leong, K. W. (2001). Biomedical applications of</p><p>polymer-composite materials: a review. Composites science and technology, 61(9), 1189-1224.</p><p></p><p>Saldaa, L., Barranco, V., Gonzlez-Carrasco, J. L., Rodrguez, M., Munuera, L., & Vilaboa, N.</p><p>(2007). Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted</p><p>Ti6Al4V alloy. Journal of Biomedical Materials Research Part A: An Official Journal of The Society</p><p>for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for</p><p>Biomaterials and the Korean Society for Biomaterials, 81(2), 334- 346.</p><p></p><p>Saleh, A. F., Abboud, J. H., & Benyounis, K. Y. (2010). Surface carburizing of Ti 6Al4V alloy by</p><p>laser melting. Optics and Lasers in Engineering, 48(3), 257-</p><p>267.</p><p></p><p>Samal, S., Cho, S., Park, D. W., & Kim, H. (2012). Thermal characterization of titanium hydride in</p><p>thermal oxidation process. Thermochimica acta, 542, 46- 51.</p><p></p><p>Savaloni, H., Khojier, K., & Torabi, S. (2010). Influence of N+ ion implantation on the corrosion</p><p>and nano-structure of Ti samples. Corrosion science, 52(4), 1263-1267.</p><p></p><p>Sen, M., & Dastidar, M. G. (2010). Chromium removal using various biosorbents. Journal of</p><p>Environmental Health Science & Engineering, 7(3), 182-190.</p><p></p><p>Senopati, G., Sutowo, C., Rokhmanto, F., Kartika, I., & Suharno, B. (2020). Microstructure,</p><p>Mechanical Properties, and Corrosion Resistance of Ti-6Mo- 6Nb-xSn Alloys for Biomedical</p><p>Application. In Materials Science Forum (Vol. 988, pp. 175-181). Trans Tech Publications Ltd.</p><p></p><p>Shankar, A. R., Karthiselva, N. S., & Mudali, U. K. (2013). Thermal oxidation of titanium to</p><p>improve corrosion resistance in boiling nitric acid medium. Surface and Coatings Technology, 235,</p><p>45-53.</p><p></p><p>Sidambe, A. T. (2014). Biocompatibility of advanced manufactured titanium implantsA review.</p><p>Materials, 7(12), 8168-8188.</p><p></p><p>Somsanith, N., Narayanan, T. S., Kim, Y. K., Park, I. S., Bae, T. S., & Lee, M. H. (2015). Surface</p><p>medication of Ti15Mo alloy by thermal oxidation: Evaluation of surface characteristics and</p><p>corrosion resistance in Ringer's solution. Applied Surface Science, 356, 1117-1126.</p><p></p><p>Song, H. J., Kim, M. K., Jung, G. C., Vang, M. S., & Park, Y. J. (2007). The effects of spark</p><p>anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics.</p><p>Surface and Coatings Technology, 201(21), 8738- 8745.</p><p></p><p>Sul, Y. T., Johansson, C. B., Jeong, Y., & Albrektsson, T. (2001). The electrochemical oxide growth</p><p>behaviour on titanium in acid and alkaline electrolytes. Medical engineering & physics, 23(5),</p><p>329-346.</p><p></p><p>Sun, Q., Hu, T., Fan, H., Zhang, Y., & Hu, L. (2016). Thermal oxidation behavior and tribological</p><p>properties of textured TC4 surface: Influence of thermal oxidation temperature and time. Tribology</p><p>International, 94, 479-489.</p><p></p><p>Sun, T., Xue, N., Liu, C., Wang, C., & He, J. (2015). Bioactive (Si, O, N)/(Ti, O, N)/Ti composite</p><p>coating on NiTi shape memory alloy for enhanced wear and</p><p>corrosion performance. Applied Surface Science, 356, 599-609.</p><p></p><p>Sutowo, C., Supriadi, S., Pramono, A. W., & Suharno, B. (2020). Microstructure, Mechanical</p><p>Properties, and Corrosion Behavior of New Type TiMoNb Based Alloys by Mn Addition for Implant</p><p>Material. Eastern-European Journal of Enterprise Technologies, 1(12), 103.</p><p></p><p>Taniguchi, S., Uesaki, K., Zhu, Y. C., Matsumoto, Y., & Shibata, T. (1999). Influence of</p><p>implantation of Al, Si, Cr or Mo ions on the oxidation behaviour of TiAl under thermal cycle</p><p>conditions. Materials Science and Engineering: A, 266(1- 2), 267-275.</p><p></p><p>Tarakci, M., Korkmaz, K., Gencer, Y., & Usta, M. (2005). Plasma electrolytic surface carburizing</p><p>and hardening of pure iron. Surface and Coatings Technology, 199(2-3), 205-212.</p><p></p><p>Tsuji, N., Tanaka, S., & Takasugi, T. (2009). Effect of combined plasma-carburizing and</p><p>deep-rolling on notch fatigue property of Ti-6Al-4V alloy. Materials Science and Engineering: A,</p><p>499(1-2), 482-488.</p><p></p><p>Tsuji, N., Tanaka, S., & Takasugi, T. (2009). Effects of combined plasma-carburizing and</p><p>shot-peening on fatigue and wear properties of Ti6Al4V alloy. Surface and Coatings Technology,</p><p>203(10-11), 1400-1405.</p><p></p><p>Uwais, Z. A., Hussein, M. A., Samad, M. A., & Al-Aqeeli, N. (2017). Surface modification of</p><p>metallic biomaterials for better tribological properties: A review. Arabian Journal for Science and</p><p>Engineering, 42(11), 4493-4512.</p><p></p><p>Varlamov, V. P. (2016). Preparation and biocompatibility evaluation of pectin and chitosan cryogels</p><p>for biomedical application, 137.</p><p></p><p>Velten, D., Biehl, V., Aubertin, F., Valeske, B., Possart, W., & Breme, J. (2002). Preparation of</p><p>TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques</p><p>and their characterization. Journal of Biomedical Materials Research: An Official Journal of The</p><p>Society for Biomaterials and The Japanese Society for Biomaterials, 59(1), 18-28.</p><p></p><p>Wang, S., & Hu, J. (2014). Design of alignment-free cancelable fingerprint templates via curtailed</p><p>circular convolution. Pattern Recognition, 47(3), 1321-1329.</p><p></p><p>Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., ... & Xie, Y. M. (2016). Topological</p><p>design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A</p><p>review. Biomaterials, 83, 127-141.</p><p></p><p>Weimer, A. W. (1997). Thermochemistry and kinetics. In Carbide, nitride and boride materials</p><p>synthesis and processing (pp. 79-113). Springer, Dordrecht.</p><p></p><p>Wen, M., Wen, C., Hodgson, P., & Li, Y. (2014). Improvement of the biomedical properties of</p><p>titanium using SMAT and thermal oxidation. Colloids and</p><p>surfaces B: biointerfaces, 116, 658-665.</p><p></p><p>Whitesides, G. M., & Wong, A. P. (2006). The intersection of biology and materials</p><p>science. MRS bulletin, 31(1), 19-27.</p><p></p><p>Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials,</p><p>29(20), 2941-2953.</p><p></p><p>Wu, S. K., Lee, C. Y., & Lin, H. C. (1997). A study of vacuum carburization of an equiatomic TiNi</p><p>shape memory alloy. Scripta materialia, 37(6), 837-842.</p><p></p><p>Yetim, A. F. (2010). Investigation of wear behavior of titanium oxide films, produced by anodic</p><p>oxidation, on commercially pure titanium in vacuum conditions. Surface and Coatings</p><p>Technology, 205(6), 1757-1763.</p><p></p><p>Yildiz, F., Yetim, A. F., Alsaran, A., & Efeoglu, I. (2009). Wear and corrosion behaviour of</p><p>various surface treated medical grade titanium alloy in bio- simulated environment. Wear, 267(5-8),</p><p>695-701.</p><p></p><p>Yin, X., Gotman, I., Klinger, L., & Gutmanas, E. Y. (2005). Formation of titanium carbide on</p><p>graphite via powder immersion reaction assisted coating. Materials Science and Engineering: A,</p><p>396(1-2), 107-114.</p><p></p><p>Zhang, B. B., Wang, B. L., Li, L., & Zheng, Y. F. (2011). Corrosion behavior of Ti 5Ag alloy</p><p>with and without thermal oxidation in artificial saliva solution. Dental materials, 27(3),</p><p>214-220.</p><p></p><p>Zhang, D., Qi, Z., Wei, B., & Wang, Z. (2017). Low temperature thermal oxidation towards </p><p>hafnium-coated magnesium alloy for biomedical application. Materials Letters, 190, 181-184.</p><p></p><p>Zhou, Y. L., & Luo, D. M. (2011). Corrosion behavior of TiMo alloys cold rolled and heat treated.</p><p>Journal of Alloys and Compounds, 509(21), 6267-6272.</p><p></p><p>Zhu, . H., Cai, Z. B., Li, W., Yu, H. Y., & Zhou, Z. R. (2009). Fretting in prosthetic</p><p>devices related to human body. Tribology International, 42(9), 1360-1364.</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p> |