Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar
<p>Kajian ini bertujuan membangunkan model regresi ordinal teori respons item (TRI)</p><p>teguh dalam meramal prestasi gred peperiksaan akhir pelajar. Kaedah pembangunan</p><p>model adalah berasaskan model regresi ordinal iaitu mo...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | zsm |
Published: |
2021
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=7361 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:7361 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
zsm |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Faiz Zulkifli Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar |
description |
<p>Kajian ini bertujuan membangunkan model regresi ordinal teori respons item (TRI)</p><p>teguh dalam meramal prestasi gred peperiksaan akhir pelajar. Kaedah pembangunan</p><p>model adalah berasaskan model regresi ordinal iaitu model ganjil kumulatif (MGK) dan</p><p>analisis literatur bersistematik. MGK diubah suai dengan menerapkan TRI dan kaedah</p><p>teguh penganggar-M (pemberat Huber dan Tukey Bisquare). Sampel kajian terdiri</p><p>daripada 326 orang pelajar dari salah sebuah universiti awam di Malaysia yang</p><p>mendaftar kursus berkaitan STEM. Sementara enam orang pakar dalam bidang statistik</p><p>terlibat bagi mengesahkan kualiti sampel item soalan yang digunakan. Data kajian</p><p>dianalisis menggunakan analisis deskriptif, indeks tahap persetujuan Cohen Kappa,</p><p>analisis faktor, analisis pengukuran Rasch, plot diagnostik dan penyuaian model. Model</p><p>yang dibangunkan diuji kebagusannya terhadap data sebenar dan simulasi. Simulasi</p><p>Monte Carlo dijalankan berdasarkan faktor simulasi iaitu saiz sampel, kombinasi tahap</p><p>kesukaran, peratus pencemaran dan sisihan piawai data pencilan yang melibatkan</p><p>ukuran bias, ralat punca min kuasa dua, pekali penentuan dan statistik Lipsitz. Dapatan</p><p>kajian mendapati model yang menerapkan TRI dimensi berbilang memberikan hasil</p><p>penyuaian lebih baik berbanding model asas yang mana statistik Lipsitz bagi MGK-TRI</p><p>(522.78) adalah kurang daripada MGK (549.94). Manakala, penganggar-M dengan</p><p>pemberat Tukey Bisquare menunjukkan prestasi keteguhan lebih baik berbanding</p><p>pemberat Huber dan penganggar kebolehjadian maksimum. Kesimpulannya, kajian ini</p><p>berjaya membangunkan model ramalan prestasi gred peperiksaan akhir pelajar yang</p><p>menerapkan TRI dan kaedah teguh dalam mengatasi masalah multikolinearan dan</p><p>pengaruh data pencilan pada model regresi ordinal. Model yang dihasilkan memberikan</p><p>implikasi dari segi teoritikal, metodologi dan sumbangan kepada pihak-pihak</p><p>berkepentingan dalam statistik dan pendidikan, Kementerian Pendidikan Tinggi</p><p>Malaysia, universiti dan industri dalam meramal prestasi gred peperiksaan akhir pelajar.</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Faiz Zulkifli |
author_facet |
Faiz Zulkifli |
author_sort |
Faiz Zulkifli |
title |
Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar |
title_short |
Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar |
title_full |
Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar |
title_fullStr |
Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar |
title_full_unstemmed |
Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar |
title_sort |
pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2021 |
url |
https://ir.upsi.edu.my/detailsg.php?det=7361 |
_version_ |
1747833385890349056 |
spelling |
oai:ir.upsi.edu.my:73612022-08-29 Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar 2021 Faiz Zulkifli QA Mathematics <p>Kajian ini bertujuan membangunkan model regresi ordinal teori respons item (TRI)</p><p>teguh dalam meramal prestasi gred peperiksaan akhir pelajar. Kaedah pembangunan</p><p>model adalah berasaskan model regresi ordinal iaitu model ganjil kumulatif (MGK) dan</p><p>analisis literatur bersistematik. MGK diubah suai dengan menerapkan TRI dan kaedah</p><p>teguh penganggar-M (pemberat Huber dan Tukey Bisquare). Sampel kajian terdiri</p><p>daripada 326 orang pelajar dari salah sebuah universiti awam di Malaysia yang</p><p>mendaftar kursus berkaitan STEM. Sementara enam orang pakar dalam bidang statistik</p><p>terlibat bagi mengesahkan kualiti sampel item soalan yang digunakan. Data kajian</p><p>dianalisis menggunakan analisis deskriptif, indeks tahap persetujuan Cohen Kappa,</p><p>analisis faktor, analisis pengukuran Rasch, plot diagnostik dan penyuaian model. Model</p><p>yang dibangunkan diuji kebagusannya terhadap data sebenar dan simulasi. Simulasi</p><p>Monte Carlo dijalankan berdasarkan faktor simulasi iaitu saiz sampel, kombinasi tahap</p><p>kesukaran, peratus pencemaran dan sisihan piawai data pencilan yang melibatkan</p><p>ukuran bias, ralat punca min kuasa dua, pekali penentuan dan statistik Lipsitz. Dapatan</p><p>kajian mendapati model yang menerapkan TRI dimensi berbilang memberikan hasil</p><p>penyuaian lebih baik berbanding model asas yang mana statistik Lipsitz bagi MGK-TRI</p><p>(522.78) adalah kurang daripada MGK (549.94). Manakala, penganggar-M dengan</p><p>pemberat Tukey Bisquare menunjukkan prestasi keteguhan lebih baik berbanding</p><p>pemberat Huber dan penganggar kebolehjadian maksimum. Kesimpulannya, kajian ini</p><p>berjaya membangunkan model ramalan prestasi gred peperiksaan akhir pelajar yang</p><p>menerapkan TRI dan kaedah teguh dalam mengatasi masalah multikolinearan dan</p><p>pengaruh data pencilan pada model regresi ordinal. Model yang dihasilkan memberikan</p><p>implikasi dari segi teoritikal, metodologi dan sumbangan kepada pihak-pihak</p><p>berkepentingan dalam statistik dan pendidikan, Kementerian Pendidikan Tinggi</p><p>Malaysia, universiti dan industri dalam meramal prestasi gred peperiksaan akhir pelajar.</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7361 https://ir.upsi.edu.my/detailsg.php?det=7361 text zsm closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abd Mutalib, Z. (2018). UA Diberi Pilihan Laksana iCGPA. Berita Harian Online.</p><p>Retrieved from https://www.bharian.com.my/berita/nasional/2018/06/440082/uadiberi-</p><p>pilihan-laksana-icgpa.</p><p></p><p>Abdullah, A. H., Abidin, N. L. Z., & Ali, M. (2015). Analysis of Students Errors in</p><p>Solving Higher Order Thinking Skills (HOTS) Problems for the Topic of Fraction.</p><p>Asian Social Science, 11(21), 133142.</p><p></p><p>Abdullah, A. H., Mokhtar, M., Halim, N. D. A., Ali, D. F., Tahir, L. M., & Kohar, U.</p><p>H. A. (2017). Mathematics Teachers Level of Knowledge and Practice on the</p><p>Implementation of Higher-Order Thinking Skills (HOTS). Eurasia Journal of</p><p>Mathematics, Science and Technology Education, 13(1), 317.</p><p></p><p>Abreu, M. N., Siqueira, A. L., Cardoso, C. S., & Caiaffa, W. T. (2008). Ordinal Logistic</p><p>Regression Models: Application in Quality of Life Studies. Cadernos de Saude</p><p>Publica, 24 Suppl 4, s581s591.</p><p></p><p>Adams, R. ., Wu, M. ., Cloney, D., & Wilson, M. R. (2020). ConQuest. Retrieved July</p><p>14, 2020, from https://www.acer.org/my/conquest</p><p></p><p>Adedayo, A. A., & Ojo, O. O. (2018). Bayesian Method for Solving the Problem of</p><p>Multicollinearity in Regression. Afrika Statistika, 13(3), 18231834.</p><p></p><p>Adejo, O. W., & Connolly, T. (2018). Predicting Student Academic Performance Using</p><p>Multi-model Heterogeneous Ensemble Approach. Journal of Applied Research in</p><p>Higher Education, 10(1), 6175.</p><p></p><p>Adnan, A., & Sugiarto, S. (2017). The Outlier Detection for Ordinal Data Using</p><p>Scalling Technique of Regression Coefficients. In IOP Conf. Series: Journal of</p><p>Physics: Conf. Series (Vol. 855, pp. 17).</p><p></p><p>Agresti, A. (1989). Tutorial on Modeling Ordered Categorical Response Data.</p><p>Psychological Bulletin, 105(2), 290301.</p><p></p><p>Agresti, A. (2010). Analysis of Ordinal Categorical Data (2nd ed.). John Wiley & Sons,</p><p>Inc.</p><p></p><p>Agresti, A. (2013). Categorical Data Analysis. Wiley-Interscience.</p><p></p><p>Agus, M., Penna, M. P., Per-Cebollero, M., & Gurdia-Olmos, J. (2016). Assessing</p><p>Probabilistic Reasoning in Verbal-numerical and Graphical-pictorial Formats: an</p><p>Evaluation of the Psychometric Properties of an Instrument. Eurasia Journal of</p><p>Mathematics, Science and Technology Education, 12(8), 20132038.</p><p></p><p>Akinoso, S. O. (2018). Mathematics Teachers Awareness of Teachable Moments in</p><p>Nigerian Classroom. Eurasia Journal of Mathematics, Science and Technology</p><p>Education, 14(2), 683689.</p><p></p><p>Alhadlaq, A. M., Alshammari, O. F., Alsager, S. M., Neel, K. A. F., & Mohamed, A.</p><p>G. (2015). Ability of Admissions Criteria to Predict Early Academic Performance</p><p>Among Students of Health Science Colleges at King Saud University, Saudi</p><p>Arabia. Journal of Dental Education, 79(6), 665670.</p><p></p><p>Al-khadher, M. M. A., & Albursan, I. S. (2017). Accuracy of Measurement in the</p><p>Classical and the Modern Test Theory : an Empirical Study on a Children</p><p>Intelligence Test Accuracy of Measurement in the Classical and the Modern Test</p><p>Theory : an Empirical Study on a Children Intelligence Test. International Journal</p><p>of Psychological Studies, 9(1), 71.</p><p></p><p>Al-Sheeb, B. A., Hamouda, A. M., & Abdella, G. M. (2019). Modeling of Student</p><p>Academic Achievement in Engineering Education Using Cognitive and Non-</p><p>Cognitive Factors. Journal of Applied Research in Higher Education, 11(2), 178</p><p>198.</p><p></p><p>Alzen, J. L., Langdon, L. S., & Otero, V. K. (2018). A Logistic Regression Investigation</p><p>of the Relationship Between the Learning Assistant Model and Failure Rates in</p><p>Introductory STEM Courses. International Journal of STEM Education, 5(1), 1</p><p>12.</p><p></p><p>Ananth, C. V, & Kleinbaum, D. G. (1997). Regression Models for Ordinal Responses :</p><p>A Review of Methods and Applications. International Journal of Epidermiology,</p><p>26(6), 13231333.</p><p></p><p>Anazifa, R. D., & Djukri. (2017). Project-Based Learning and Problem- Based</p><p>Learning: Are They Effective to Improve Students Thinking Skills? Jurnal</p><p>Pendidikan IPA Indonesia, 6(2), 346355.</p><p></p><p>Anderson, J. A. (1984). Regression and Ordered Categorical Variables. Journal of the</p><p>Royal Statistical Society. Series B (Methodological). WileyRoyal Statistical</p><p>Society.</p><p></p><p>Anderson, L. W., Krathwohl, D. R., P.W., A., Cruikshank, K. A., Mayer, R. E., Pintrich,</p><p>P. R., Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, and</p><p>Assessing: a Revision of Blooms Taxonomy of Educational Objectives. New</p><p>York: Longman.</p><p></p><p>Andrich, D. (1978). A rating formulation for ordered response categories.</p><p>Psychometrika, 43, 561-573.</p><p></p><p>Arco-tirado, J. L., Fernndez-martn, F., Ramos-garca, A. M., Littvay, L., & Villoria,</p><p>J. (2018). A Counterfactual Impact Evaluation of a Bilingual Program on Students</p><p>Grade Point Average at a Spanish University. Evaluation and Program Planning,</p><p>68(February), 8189.</p><p></p><p>Ari, E., & Yildiz, Z. (2014). Parallel Lines Assumption in Ordinal Logistic Regression</p><p>and Analysis Approaches. International Interdisciplinary Journal of Scientific</p><p>Research, 1(3), 823.</p><p></p><p>Arievitch, I. M. (2020). The Vision of Developmental Teaching and Learning and</p><p>Blooms Taxonomy of Educational Objectives. Learning, Culture and Social</p><p>Interaction, 25, 100274.</p><p></p><p>Artusi, R., Verderio, P., & Marubini, E. (2002). Bravais-pearson and Spearman</p><p>Correlation Coefficients: Meaning, Test of Hypothesis and Confidence Interval.</p><p>The International Journal of Biological Markers, 17(2), 148151.</p><p></p><p>Ashenafi, M. M., Riccardi, G., & Ronchetti, M. (2015). Predicting Students Final</p><p>Exam Scores From Their Course Activities. In Proceedings - Frontiers in</p><p>Education Conference, FIE, 2014.</p><p></p><p>Asshaari, I., Othman, H., Bahaludin, H., Ismail, N. A., & Nopiah, Z. M. (2012).</p><p>Appraisal on Blooms Separation in Final Examination Question of Engineering</p><p>Mathematics Courses Using Rasch Measurement Model. Procedia - Social and</p><p>Behavioral Sciences, 60(2009), 172178.</p><p></p><p>Athani, S. S., Kodli, S. A., Banavasi, M. N., & Hiremath, P. G. S. (2017). Student</p><p>Academic Performance and Social Behavior Predictor Using Data Mining</p><p>Techniques. In Proceedings - IEEE International Conference Computing</p><p>Communication Automation ICCCA 2017 ,170174.</p><p></p><p>Auerbach, A. J. J., & Andrews, T. C. (2018). Pedagogical Knowledge for Activelearning</p><p>Instruction in Large Undergraduate Biology Courses: a Large-scale</p><p>Qualitative Investigation of Instructor Thinking. International Journal of STEM</p><p>Education, 5(1).</p><p></p><p>Ayers, E., & Junker, B. (2008). IRT Modeling of Tutor Performance to Predict End-of-</p><p>Year Exam Scores. Educational and Psychological Measurement, 68(6), 972987.</p><p></p><p>Azizah, U., & Nasrudin, H. (2018). Development of Chemistry Instructional Materials</p><p>Based on Cooperative Group Investigation (CGI) to Empower Thinking Skills.</p><p>Journal of Physics: Conference Series, 1108(1).</p><p></p><p>Bcklin, C. L., & Gustafsson, M. G. (2018). Developer-Friendly and Computationally</p><p>Efficient Predictive Modeling Without Information Leakage: the emil Package for</p><p>R. Journal of Statistical Software, 85(13).</p><p></p><p>Badri, M., Alnuaimi, A., Mohaidat, J., Al Rashedi, A., Yang, G., & Al Mazroui, K.</p><p>(2016). My Science Class and Expected Career Choices- a Structural Equation</p><p>Model of Determinants Involving Abu Dhabi High School Students. International</p><p>Journal of STEM Education, 3(1).</p><p></p><p>Bahrum, S., Wahid, N., & Ibrahim, N. (2017). Integration of STEM Education in</p><p>Malaysia and Why to STEAM. International Journal of Academic Research in</p><p>Business and Social Sciences, 7(6), 645654.</p><p></p><p>Baily, C., Ryan, Q. X., Astolfi, C., & Pollock, S. J. (2017). Conceptual Assessment</p><p>Tool for Advanced Undergraduate Electrodynamics. Physical Review Physics</p><p>Education Research, 13(2), 110.</p><p></p><p>Baker, F. B., & Kim, S.-H. (2004). Item Response Theory: Parameter Estimation</p><p>Techniques (2nd ed.). Taylor & Francis Group.</p><p></p><p>Bal, C., Demir, S., & Aladag, C. H. (2016). A Comparison of Different Model Selection</p><p>Criteria for Forecasting EURO / USD Exchange Rates by Feed Forward Neural</p><p>Network. In Proceedings - International Journal of Computing, Communications</p><p>& Instrumentation Enggineering (IJCCIE), 3(2), 15.</p><p></p><p>Bana, M., & Ligas, M. (2014). Empirical Tests of Performance of Some Mestimators.</p><p>Geodesy and Cartography, 63(2), 127146.</p><p></p><p>Barlybayev, A., Sharipbay, A., Ulyukova, G., Sabyrov, T., & Kuzenbayev, B. (2016).</p><p>Students Performance Evaluation by Fuzzy Logic. Procedia Computer Science,</p><p>102(August), 98105.</p><p></p><p>Battauz, M. (2015). equateIRT : An R Package for IRT Test Equating . Journal of</p><p>Statistical Software, 68(7).</p><p></p><p>Baur, T., & Lukes, D. (2009). An Evaluation of the IRT Models Through Monte Carlo</p><p>Simulation. UW-L Journal of Undergraduate Research, (XII), 17.</p><p></p><p>Baygin, M., Yetis, H., Karakose, M., & Akin, E. (2016). An Effect Analysis of Industry</p><p>4.0 to Higher Education. In 2016 15th International Conference on Information</p><p>Technology Based Higher Education and Training (ITHET), 14.</p><p></p><p>Begg, A. (1997). Some Emerging Influences Underpinning Assessment in Statistics.</p><p>The Assessment Challenge in Statistics Education, 1725.</p><p></p><p>Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., & Torelli, M.</p><p>(2015). How Challenging Are Bebras Tasks? An IRT Analysis Based on the</p><p>Performance of Italian Students. Annual Conference on Innovation and</p><p>Technology in Computer Science Education, ITiCSE, 2015-June, 2732.</p><p></p><p>Bender, R., & Benner, A. (2000). Calculating Ordinal Regression Models in SAS and</p><p>S-Plus. Biometrical Journal, 42(6), 677700.</p><p></p><p>Beneov, A., & Tupa, J. (2017). Requirements for Education and Qualification of</p><p>People in Industry 4.0. Procedia Manufacturing, 11, 21952202.</p><p></p><p>Berg, R. G. van den. (2020). SPSS Factor Analysis- Absolute Beginners Tutorial.</p><p>Retrieved July 14, 2020, from https://www.spss-tutorials.com/spss-factoranalysis-</p><p>tutorial/</p><p></p><p>Bernama (2018). UiTM Rombak iCGPA Supaya Lebih Mesra Pensyarah. Retrieved</p><p>April 22, 2020, from http://www.astroawani.com/berita-malaysia/uitm-rombakicgpa-</p><p>supaya-lebih-mesra-pensyarah-180416</p><p></p><p>Bianco, A. M., & Yohai, V. J. (1996). Robust Estimation in the Logistic Regression</p><p>Model, 1734.</p><p></p><p>Binh, H. T., & Duy, B. T. (2017). Predicting Students Performance Based on Learning</p><p>Style by Using Artificial Neural Networks, In Proceedings - 2017 9th</p><p>International Conference on Knowledge and Systems Engineering (KSE), 48-53</p><p></p><p>Bloom, B. S. (1956). Taxonomy of Educational Objectives Handbook 1 Cognitive</p><p>Domain. London: Longman.</p><p></p><p>Bock, R. D., & Aitkin, M. (1981). Marginal Maximum Likelihood Estimation of Item</p><p>Parameters: Application of an EM Algorithm. Psychometrika, 46(4), 443459.</p><p></p><p>Bond, T., & Fox, C. M. (2015). Applying The Rasch Model Fundamental Measurement</p><p>in the Human Sciences (3rd ed.). New York: Routledge.</p><p></p><p>Bondell, H. D. (2008). A Characteristic Function Approach to the Biased Sampling</p><p>Model, With Application to Robust Logistic Regression. Journal of Statistical</p><p>Planning and Inference, 138, 742755.</p><p></p><p>Bonsaksen, T., Brown, T., Lim, H. B., & Fong, K. (2017). Approaches to Studying</p><p>Predict Academic Performance in Undergraduate Occupational Therapy Students:</p><p>a Cross-cultural Study. BMC Medical Education, 17(1), 19.</p><p></p><p>Brassil, C. E., & Couch, B. A. (2019). Multiple-true-false Questions Reveal More</p><p>Thoroughly the Complexity of Student Thinking Than Multiple-choice Questions:</p><p>a Bayesian Item Response Model Comparison. International Journal of STEM</p><p>Education, 6(1).</p><p></p><p>Brazeal, K. R., Brown, T. L., & Couch, B. A. (2016). Characterizing Student</p><p>Perceptions of and Buy-in Toward Common Formative Assessment Techniques.</p><p>CBE Life Sciences Education, 15(4).</p><p></p><p>Brester, C., Rnkk, M., Kolehmainen, M., Semenkin, E., Kauhanen, J., Tuomainen,</p><p>T.-P., Ronkainen, K. (2018). Evolutionary Methods for Variable Selection in</p><p>the Epidemiological Modeling of Cardiovascular Diseases. BioData Mining,</p><p>11(1), 114.</p><p></p><p>Buergin, R. (2020). vcrpart: Tree-Based Varying Coefficient Regression for</p><p>Generalized Linear and Ordinal Mixed Models. Retrieved from https://CRAN.R</p><p>project.org/package=vcrpart.</p><p></p><p>Bulut, O., & Sunbul, . (2017). Monte Carlo Simulation Studies in Item Response</p><p>Theory with the R Programming Language. Journal of Measurement and</p><p>Evaluation in Education and Psychology, 8(3), 266287.</p><p></p><p>Buniyamin, N., Mat, U. Bin, & Arshad, P. M. (2016). Educational Data Mining for</p><p>Prediction and Classification of Engineering Students Achievement. IEEE 7th</p><p>International Conference on Engineering Education, ICEED 2015, 4953.</p><p></p><p>Butterworth, J., & Thwaites, G. (2013). Thinking Skills: Critical Thinking and Problem</p><p>Solving (2nd ed.). Cambridge: Cambridge University Press.</p><p></p><p>Cai, L. (2010). Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item</p><p>Factor Analysis. Journal of Educational and Behavioral Statistics, 35(3), 307</p><p>335.</p><p></p><p>Capuano, A. W. (2012). Constrained Ordinal Models With Application in Occupational</p><p>and Constrained Ordinal Models With Application in Occupational and</p><p>Environmental Health Environmental Health. University of Iowa.</p><p></p><p>Carroll, R. J., & Pederson, S. (1993). On Robustness in the Logistic Regression Model.</p><p>Journal Royal Statistical Society, 55(3), 693706.</p><p></p><p>Celik, A. O., & Guzel, B. E. (2017). Mathematics Teachers Knowledge of Student</p><p>Thinking and Its Evidences in Their Instruction. Journal on Mathematics</p><p>Education, 8(2), 199210.</p><p></p><p>Chalmers, R. P. (2012). mirt : A Multidimensional Item Response Theory Package for</p><p>the R Environment. Journal of Statistical Software, 48(6).</p><p></p><p>Chalmers, R. P. (2016). Generating Adaptive and Non-adaptive Test Interfaces for</p><p>Multidimensional Item Response Theory Applications. Journal of Statistical</p><p>Software, 71.</p><p></p><p>Chan, S. W., Ismail, Z., & Sumintono, B. (2014). A Rasch Model Analysis on</p><p>Secondary Students Statistical Reasoning Ability in Descriptive Statistics.</p><p>Procedia - Social and Behavioral Sciences, 129, 133139.</p><p></p><p>Chootongchai, S., & Songkram, N. (2018). Design and Development of SECI and</p><p>Moodle Online Learning Systems to Enhance Thinking and Innovation Skills for</p><p>Higher Education Learners. International Journal of Emerging Technologies in</p><p>Learning, 13(3), 154172.</p><p></p><p>Christensen, R. H. B. (2019). ordinal: Regression Models for Ordinal Data. Retrieved</p><p>from https://CRAN.R-project.org/package=ordinal.</p><p></p><p>Christian, T. M., & Ayub, M. (2014). Exploration of Classification Using NBtree for</p><p>Predicting Students Performance. Proceedings of 2014 International Conference</p><p>on Data and Software Engineering, ICODSE 2014, 16.</p><p></p><p>Cladellas, R., Muro, A., Vargas-Guzmn, E. A., Bastardas, A., & Gom-i-Freixanet,</p><p>M. (2017). Sensation Seeking and High School Performance. Personality and</p><p>Individual Differences, 117, 117121.</p><p></p><p>Clarke, B. S., & Clarke, J. L. (2018). Predictive Statistics : Analysis and Inference</p><p>Beyond Models. Cambridge University Press.</p><p></p><p>Cohen, L., Manion, L., & Morrison, K. (2018). Research Methods in Education (8th</p><p>ed.). Routledge.</p><p></p><p>Columbus, L. (2019). Data Scientist Leads 50 Best Jobs In America For 2019</p><p>According To Glassdoor. Retrieved April 21, 2020, from https://www.forbes.com.</p><p></p><p>Copas, J. B. (1988). Binary Regression Models for Contaminated Data. Journal Royal</p><p>Statistical Society, 50(2), 225265.</p><p></p><p>Crane, N., Zusho, A., Ding, Y., & Cancelli, A. (2017). Domain-specific Metacognitive</p><p>Calibration in Children With Learning Disabilities. Contemporary Educational</p><p>Psychology, 50, 7279.</p><p></p><p>Cronbach, L. J. (1951). Coefficient Alpha and the Internal Structure of Tests.</p><p>Psychometrika, 16(3), 297334.</p><p></p><p>Croux, C., & Haesbroeck, G. (2003). Implementing the Bianco and Yohai Estimator</p><p>for Logistic Regression. Computational Statistics & Data Analysis, 44, 273295.</p><p></p><p>Croux, C., Flandre, C., & Haesbroeck, G. (2002). The Breakdown Behavior of the</p><p>Maximum Likelihood Estimator in the Logistic Regression Model. Statistics and</p><p>Probability Letters, 60(4), 377386.</p><p></p><p>Croux, C., Haesbroeck, G., & Ruwet, C. (2013). Robust Estimation for Ordinal</p><p>Regression. Journal of Statistical Planning and Inference, 143(9), 14861499.</p><p></p><p>Das, A. K., & Rodriguez-Marek, E. (2019). A Predictive Analytics System for</p><p>Forecasting Student Academic Performance: Insights From a Pilot Project at</p><p>Eastern Washington University. In 2019 Joint 8th International Conference on</p><p>Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference</p><p>on Imaging, Vision & Pattern Recognition (icIVPR), 255262.</p><p></p><p>de Kort, J. M., Dolan, C. V., Lubke, G. H., & Molenaar, D. (2017). Studying the</p><p>Strength of Prediction Using Indirect Mixture Modeling: Nonlinear Latent</p><p>Regression with Heteroskedastic Residuals. Structural Equation Modeling, 24(2),</p><p>301313.</p><p></p><p>Deanna, S. (2018). Logistic and Linear Regression Assumptions : Violation</p><p>Recognition and Control. In Recognition and Control, 121.</p><p></p><p>Dignan, L. (2019). Data Science Dominates Linkedins Emerging Jobs Ranking.</p><p>Retrieved April 21, 2020, from https://www.zdnet.com/article/data-sciencedominates-</p><p>linkedins-emerging-jobs-ranking/</p><p></p><p>Dobson, A. J., & Barnett, A. G. (2018). An Introduction to Generalized Linear Models</p><p>(4th ed.). Taylor & Francis Group.</p><p></p><p>Donoghoe, M. W. (2018). glm2: Fitting Generalized Linear Models. Retrieved from</p><p>https://CRAN.R-project.org/package=glm2.</p><p></p><p>Drath, R., & Horch, A. (2014). Industrie 4.0: Hit or Hype? IEEE Industrial Electronics</p><p>Magazine, 8(2), 5658.</p><p></p><p>Dunham, B., Yapa, G., & Yu, E. (2015). Calibrating the Difficulty of an Assessment</p><p>Tool: The Blooming of a Statistics Examination. Journal of Statistics Education,</p><p>23(3).</p><p></p><p>Edwards, J. M., & Finch, W. H. (2018). Recursive Partitioning Methods for Data</p><p>Imputation in the Context of Item Response Theory: a Monte Carlo Simulation.</p><p>Psicologica, 39(1), 88117.</p><p></p><p>Ellis, J. L. (2019). Factor Analysis and Item Analysis. Retrieved from</p><p>ttps://www.applyingstatisticsinbehaviouralresearch.com.</p><p></p><p>Embretson, S. E., Reise, S., & Reise, S. P. (2000). Item Response Theory for</p><p>Psychologists (Multivariate Applications Book Series). New Jersey: Lawrence</p><p>Erlbaum Associates, Inc.</p><p></p><p>Engel, J. (1988). Polytomous Logistic Regression. Statistica Neerlandica, 42(4), 233</p><p>252.</p><p></p><p>Erda, G., Indahwati, & Djuraidah, A. (2019). Outlier Handling of Robust</p><p>Geographically and Temporally Weighted Regression. Journal of Physics:</p><p>Conference Series, 1175(1).</p><p></p><p>Fagerland, M. W., & Hosmer, D. W. (2012). A Generalized Hosmer-lemeshow</p><p>Goodness-of-fit Test for Multinomial Logistic Regression Models. Stata Journal,</p><p>12(3), 447453.</p><p></p><p>Fagerland, M. W., & Hosmer, D. W. (2016). Tests for Goodness of Fit in Ordinal</p><p>Logistic Regression Models. Journal of Statistical Computation and Simulation,</p><p>86(17), 33983418.</p><p></p><p>Falk, C. F., & Ju, U. (2020). Estimation of Response Styles Using the Multidimensional</p><p>Nominal Response Model: A Tutorial and Comparison With Sum Scores.</p><p>Frontiers in Psychology, 11, 117.</p><p></p><p>Fernandez, D. B., & Lujan-Mora, S. (2017). Comparison of Applications for</p><p>Educational Data Mining in Engineering Education. 2017 IEEE World</p><p>Engineering Education Conference (EDUNINE), 8185.</p><p></p><p>Fielding, A. (1999). Why Use Arbitrary Points Scores?: Ordered Categories in Models</p><p>of Educational Progress. Journal of the Royal Statistical Society: Series A</p><p>(Statistics in Society), 162(3), 303328.</p><p></p><p>Fienberg, S. E. (1980). The Analysis of Cross-Classified Categorical Data: Second</p><p>Edition. Cambridge: Massachusetts Institute of Technology Press.</p><p></p><p>Fisher Jr., W. P. (2007). Rating Scale Instrument Quality Criteria. Rasch Measurement</p><p>Transaction, 21(1095).</p><p></p><p>Fitri, S., & Zahari, C. L. (2019). The Implementation of Blended Learning to Improve</p><p>Understanding of Mathematics. Journal of Physics: Conference Series, 1188(1).</p><p></p><p>Fleckenstein, J., Leucht, M., Pant, H. A., & Kller, O. (2016). Proficient Beyond</p><p>Borders: Assessing Non-native Speakers in a Native Speakers Framework.</p><p>Large-Scale Assessments in Education, 4(1).</p><p></p><p>Foster, R. C. (2020). A Generalized Framework for Classical Test Theory. Journal of</p><p>Mathematical Psychology, 96.</p><p></p><p>Fox, J., & Weisberg, S. (2012). An R Companion to Applied Regression: Third Edition.</p><p>SAGE.</p><p></p><p>Francis, E. (2018). Effects of Some Coding Techniques On Multicolinearity and Model</p><p>Statistics. Mathematical Theory and Modeling, 8(4), 156167.</p><p></p><p>Franses, P. H., & Paap, R. (2010). Quantitative Models in Marketing Research.</p><p>Cambridge University Press.</p><p></p><p>Fuadiah, N. F., Suryadi, D., & Turmudi, T. (2019). Teaching and Learning Activities</p><p>in Classroom and Their Impact on Student Misunderstanding: A Case Study on</p><p>Negative Integers. International Journal of Instruction, 12(1), 407424.</p><p></p><p>Gerber, N. L., & Price, J. K. (2018). Measures of Function and Health-Related Quality</p><p>of Life. Principles and Practice of Clinical Research. Elsevier Inc.</p><p></p><p>Gibbons, L. E., Crane, P. K., Seung, M., & Choi, W. (2016). Package lordif Type</p><p>Package Title Logistic Ordinal Regression Differential Item Functioning using</p><p>IRT.</p><p></p><p>Golding, C. (2019). Discerning Student Thinking : a Practical Theoretical Framework</p><p>for Recognising or Informally Assessing Different Ways of Thinking. Teaching in</p><p>Higher Education, 24(4), 478-492.</p><p></p><p>Gmez-Rey, P., Fernndez-Navarro, F., & Barber, E. (2016). Ordinal Regression by</p><p>a Gravitational Model in the Field of Educational Data Mining. Expert Systems,</p><p>33(2), 161175.</p><p></p><p>Goodhew, L. M., & Robertson, A. D. (2017). Exploring the Role of Content Knowledge</p><p>in Responsive Teaching. Physical Review Physics Education Research, 13(1), 1</p><p>24.</p><p></p><p>Goodman, L. A. (1979). Simple Models for the Analysis of Association in Crossclassifications</p><p>Having Ordered Categories. Journal of the American Statistical</p><p>Association, 74(367), 537552.</p><p></p><p>Greenwell, B. M., Mccarthy, A. J., Boehmke, B. C., & Liu, D. (2018). Residuals and</p><p>Diagnostics for Binary and Ordinal Regression Models: An Introduction to the</p><p>sure Package. The R Journal, 10, 381394.</p><p></p><p>Groll, A. (2020). GMMBoost: Likelihood-Based Boosting for Generalized Mixed</p><p>Models. Retrieved from https://CRAN.R-project.org/package=GMMBoost.</p><p></p><p>Grundspenkis, J. (2019). Intelligent Knowledge Assessment Systems: Myth or Reality.</p><p>Frontiers in Artificial Intelligence and Applications, 315, 31-46.</p><p></p><p>Guo, B., Zhang, R., Xu, G., Shi, C., & Yang, L. (2015). Predicting Students</p><p>Performance in Educational Data Mining. 2015 International Symposium on</p><p>Educational Technology (ISET), 125128.</p><p></p><p>Hadar, L. L., & Tirosh, M. (2019). Creative Thinking in Mathematics Curriculum: an</p><p>Analytic Framework. Thinking Skills and Creativity, 33(September 2018),</p><p>100585.</p><p></p><p>Hadfield, J. (2019). MCMCglmm: MCMC Generalised Linear Mixed Models.</p><p>Retrieved from https://CRAN.R-project.org/package=MCMCglmm</p><p></p><p>Han, M., Tong, M., Chen, M., Liu, J., & Liu, C. (2017). Application of Ensemble</p><p>Algorithm in Students Performance Prediction. Proceedings - 2017 6th IIAI</p><p>International Congress on Advanced Applied Informatics, IIAI-AAI 2017, 735</p><p>740.</p><p></p><p>Hariharasudan, A., & Kot, S. (2018). A Scoping Review on Digital English and</p><p>Education 4.0 for Industry 4.0. Social Sciences, 7(11), 227.</p><p></p><p>Harrell, E. F. (2020). rms: Regression Modeling Strategies. Retrieved from</p><p>https://CRAN.R-project.org/package=rms.</p><p></p><p>Hauck, W. W., & Donner, A. (1977). Walds Test as Applied to Hypotheses in Logit</p><p>Analysis. Journal of the American Statistical Association, 72(360), 851.</p><p></p><p>Hauke, J., & Kossowski, T. (2011). Comparison Of Values Of Pearsons And</p><p>Spearmans Correlation Coefficients On The Same Sets Of Data. Quaestiones</p><p>Geographicae, 30(2), 8793.</p><p></p><p>Himelfarb, I. (2019). A Primer on Standardized Testing: History, Measurement,</p><p>Classical Test Theory, Item Response Theory, and Equating. Journal of</p><p>Chiropractic Education, 33(2), 151163.</p><p></p><p>Hobza, T., Pardo, L., & Vajda, I. (2008). Robust Median Estimator in Logistic</p><p>Regression. Journal of Statistical Planning and Inference, 138, 38223840.</p><p></p><p>Hosmer, D. W., & Lemesbow, S. (1980). Goodness of Fit Tests for the Multiple</p><p>Logistic Regression Model. Communications in Statistics - Theory and Methods,</p><p>9(10), 10431069.</p><p></p><p>Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression (2nd ed.). John</p><p>Wiley & Sons, Inc.</p><p></p><p>Hosseinian, S., & Morgenthaler, S. (2011). Robust Binary Regression. Journal of</p><p>Statistical Planning and Inference, 141(4), 14971509.</p><p></p><p>Hu, X. (2018). Foreign Language Education in Colleges and Universities Based on</p><p>Globalization Background. Educational Sciences: Theory & Practice, 18(6),</p><p>34003407.</p><p></p><p>Hubert, M., Debruyne, M., & Rousseeuw, P. J. (2018). Minimum Covariance</p><p>Determinant and Extensions. Wiley Interdisciplinary Reviews: Computational</p><p>Statistics, 10(3), e1421.</p><p></p><p>Huo, X., & Cao, S. (2019). Aggregated inference. Wiley Interdisciplinary Reviews:</p><p>Computational Statistics, 11(1), 113.</p><p></p><p>Hussin, A. A. (2018). Education 4.0 Made Simple : Ideas For Teaching. International</p><p>Journal of Education and Literacy Studies, 6(3), 9298.</p><p></p><p>Iannario, M., Clara, A., & Piccolo, D. (2016). Robustness Issues for CUB Models.</p><p>TEST, 25, 731-750.</p><p></p><p>Iannario, M., Monti, A. C., Piccolo, D., & Ronchetti, E. (2017). Robust Inference for</p><p>Ordinal Response Models, 11, 34073445.</p><p></p><p>Ikbal, S., Tamhane, A., Sengupta, B., Chetlur, M., Ghosh, S., & Appleton, J. (2015).</p><p>On Early Prediction of Risks in Academic Performance for Students. IBM Journal</p><p>of Research and Development, 59(6), 114.</p><p></p><p>Ikuma, L. H., Steele, A. dann, S., Adio, O., & Waggenspack, W. N. (2019). Large-scale</p><p>Student Programs Increase Persistence in STEM Fields in a Public University</p><p>Setting. Journal of Engineering Education, 108(1), 5781.</p><p></p><p>Imdadullah, M., Aslam, M., & Altaf, S. (2016). mctest: An R Package for Detection of</p><p>Collinearity Among Regressors. The R Journal, 8(2), 495505.</p><p></p><p>Imrey, P. B., Koch, G. G., Stokes, M. E., Darroch, J. N., Freeman, D. H., & Tolley, H.</p><p>D. (1981). Categorical Data Analysis: Some Reflections on the Log Linear Model</p><p>and Logistic Regression. Part I: Historical and Methodological Overview.</p><p>International Statistical Review / Revue Internationale de Statistique, 49(3), 265.</p><p></p><p>Irribarra, D. T., & Freud, R. (2020). WrightMap: IRT Item-Person Map with 'ConQuest'</p><p>Integration. Retrieved from https://CRAN.R-project.org/package=WrightMap.</p><p></p><p>James, N., Harrell, Jr, & Shepherd, B. (2021). Bayesian Cumulative Probability Models</p><p>for Continuous and Mixed Outcomes.</p><p></p><p>Jayarajah, K., Saat, R. M., & Rauf, R. A. A. (2014). A Review of Science, Technology,</p><p>Engineering & Mathematics (STEM) Education Research From 1999-2013: A</p><p>Malaysian perspective. Eurasia Journal of Mathematics, Science and Technology</p><p>Education, 10(3), 155163.</p><p></p><p>Jesson, J., Matheson, L., & Lacey, F. M. (2011). Doing Your Literature Review :</p><p>Traditional and Systematic Techniques. SAGE Publications Ltd.</p><p></p><p>John P. L., Hao Wu, H., & Yu, G. (2016). Building an Evaluation Scale using Item</p><p>Response Theory. Proc Conf Empir Methods Nat Lang Process, 648657.</p><p></p><p>John, M., Bettye, S., Ezra, T., & Robert, W. (2016). A Formative Evaluation of a</p><p>Southeast High School Integrative Science, Technology, Engineering, and</p><p>Mathematics (STEM) Academy. Technology in Society, 45, 3439.</p><p></p><p>Joyce, T., Crockett, S., Jaeger, D. A., Altindag, O., & OConnell, S. D. (2015). Does</p><p>Classroom Time Matter? Economics of Education Review, 46, 6477.</p><p></p><p>Judi, H. M., Mohamed, H., Ashari, N. S. @, Jenal, R., & Hanawi, S. A. (2012).</p><p>Alignment of Statistics Course using Examination Items. Procedia - Social and</p><p>Behavioral Sciences, 59, 264269.</p><p></p><p>Kaiser, H. F. (1974). An Index of Factorial Simplicity. Psychometrika, 39, 3136.</p><p></p><p>Kementerian Pendidikan Malaysia (2013). Malaysia Education Blueprint 2013-2025</p><p>(Preschool to Post- Secondary Education). Putrajaya Malaysia: Kementerian</p><p>Pendidikan.</p><p></p><p>Kementerian Pendidikan Malaysia (2015). Malaysia Education Blueprint 2015-2025</p><p>(Higher Education). Putrajaya Malaysia: Kementerian Pengajian Tinggi.</p><p></p><p>Kementerian Pendidikan Tinggi Malaysia (2016). Rubrik PNGK Bersepadu (iCGPA)</p><p>Panduan Pentaksiran Hasil Pembelajaran. Putrajaya Malaysia: Kementerian</p><p>Pendidikan Tinggi.</p><p></p><p>Kerlinger, F. N., & Lee, H. B. (2000). Foundations of Behavioral Research (4th ed.).</p><p>Fort Worth TX: Harcourt College Publishers.</p><p></p><p>Kesselmeier, M., & Bermejo, J. L. (2017). Robust Logistic Regression to Narrow Down</p><p>the Winners Curse for Rare and Recessive Susceptibility Variants. Briefings in</p><p>Bioinformatics, 18(6), 962972.</p><p></p><p>Khajah, M. M., Huang, Y., Mozer, M. C., & Brusilovsky, P. (2015). Integrating</p><p>Knowledge Tracing and Item Response Theory : A Tale of Two Frameworks.</p><p>CEUR Workshop Proceedings, 1181, 715.</p><p></p><p>Kien-Kheng, F., Azlan, N., Noor, S., Ahmad, D., Lee, N., Leong, H., & Mohamed, I.</p><p>(2016). Relationship Between Cognitive Factors and Performance in an</p><p>Introductory Statistics Course : a Malaysian Case Study Introduction. Malaysian</p><p>Journal of Mathematical Sciences, 10(3), 269282.</p><p></p><p>Kim, S. Y., Lee, W., & Kolen, M. J. (2019). Simple-Structure Multidimensional Item</p><p>Response Theory Equating for Multidimensional Tests. Educational and</p><p>Psychological Measurement, 80(1), 91-125.</p><p></p><p>Kline, P. (2014). An Easy Guide to Factor Analysis. Routledge.</p><p></p><p>Komarudin, U., Rustaman, N. Y., & Hasanah, L. (2017). Promoting Students</p><p>Conceptual Understanding Using STEM. AIP Conference Proceedings, 1848(1).</p><p></p><p>Koretsky, M., Keeler, J., Ivanovitch, J., & Cao, Y. (2018). The Role of Pedagogical</p><p>Tools in Active Learning: a Case for Sense-making. International Journal of</p><p>STEM Education, 5(1).</p><p></p><p>Kosmidis, I. (2014). Improved Estimation in Cumulative Link Models. Journal of the</p><p>Royal Statistical Society: Series B, 76(1), 169196.</p><p></p><p>Kosmidis, I., & Firth, D. (2009). Bias Reduction in Exponential Family Nonlinear</p><p>Models. Biometrika, 96(4), 793-804.</p><p></p><p>Krasilnikov, A., & Smirnova, A. (2017). Online Social Adaptation of First-year</p><p>Students and Their Academic Performance. Computers and Education, 113, 327</p><p>338.</p><p></p><p>Krishna Kishore, K. V., Venkatramaphanikumar, S., & Alekhya, S. (2014). Prediction</p><p>of Student Academic Progression: a Case Study on Vignan University. 2014</p><p>International Conference on Computer Communication and Informatics, 16.</p><p></p><p>Kumar, S. C., Chowdary, E. D., Venkatramaphanikumar, S., & Kishore, K. V. K.</p><p>(2016). M5P Model Tree in Predicting Student Performance: a Case Study. 2016</p><p>IEEE International Conference on Recent Trends in Electronics, Information &</p><p>Communication Technology (RTEICT), 11031107.</p><p></p><p>Kumari, P., Jain, P. K., & Pamula, R. (2018). An Efficient Use of Ensemble Methods</p><p>to Predict Students Academic Performance. 2018 4th International Conference on</p><p>Recent Advances in Information Technology (RAIT), 16.</p><p></p><p>Laerd Statistics (2020). Using the PLUM Procedure to Carry Out an Ordinal Regression</p><p>in SPSS. Retrieved July 14, 2020, from https://statistics.laerd.com/spsstutorials/</p><p>ordinal-regression-using-spss-statistics-2.php</p><p></p><p>Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for</p><p>Categorical Data. Biometrics, 33(1), 159.</p><p></p><p>Li, C., & Shepherd, B. E. (2012). A New Residual for Ordinal Outcomes. Biometrika,</p><p>99(2), 473480.</p><p></p><p>Lin, M., Preston, A., Kharrufa, A., & Kong, Z. (2016). Making L2 Learners Reasoning</p><p>Skills Visible: the Potential of Computer Supported Collaborative Learning</p><p>Environments. Thinking Skills and Creativity, 22, 303322.</p><p></p><p>Linacre, J. M. (2008). The Expected Value of a Point Biserial (or Similar) Correlation.</p><p>Retrieved October 22, 2019, from</p><p>https://www.winsteps.com/winman/correlations.htm</p><p></p><p>Lipsitz, S. R., Fitzmaurice, G. M., Molenberghs, G., Lipsitzt, B. S. R., Farber, D., &</p><p>Fitzmaurice, M. (1996). Goodness-of-fit Tests for Ordinal Response Regression</p><p>Models, 45(2), 175190.</p><p></p><p>Lipsitz, S. R., Fitzmaurice, G. M., Regenbogen, S. E., Sinha, D., Ibrahim, J. G., &</p><p>Gawande, A. A. (2012). Bias Correction for the Proportional Odds Logistic</p><p>Regression Model With Application to a Study of Surgical Complications. Journal</p><p>of the Royal Statistical Society. Series C: Applied Statistics, 62(2), 233250.</p><p></p><p>Liu, D., & Zhang, H. (2017). Residuals and Diagnostics for Ordinal Regression Models:</p><p>A Surrogate Approach. Journal of the American Statistical Association, 113(522),</p><p>845854.</p><p></p><p>Lo, C. K., Hew, K. F., & Chen, G. (2017). Toward a Set of Design Principles for</p><p>Mathematics Flipped Classrooms: a Synthesis of Research in Mathematics</p><p>Education. Educational Research Review, 22, 5073.</p><p></p><p>Lopez Guarin, C. E., Guzman, E. L., & Gonzalez, F. A. (2015). A Model to Predict</p><p>Low Academic Performance at a Specific Enrollment Using Data Mining. Revista</p><p>Iberoamericana de Tecnologias Del Aprendizaje, 10(3), 119125.</p><p></p><p>Lord, F. M. (1952). A Theory of Test Scores. Psychometric Monograph, 7.</p><p></p><p>Lord, F. M. (1986). Maximum Likelihood and Bayesian Parameter Estimation in Item</p><p>Response Theory. Journal of Educational Measurement, 23(2), 157162.</p><p></p><p>Ma, T., Li, H., Wm, E., Jj, K., Manne, U., Bae, S., Kp, S. (2014). Robust Logistic</p><p>and Probit Methods for Binary and Multinomial Regression, 5(4).</p><p></p><p>Macfarlane, B. (2014). Student Performativity in Higher Education: Converting</p><p>Learning as a Private Space Into a Public Performance, Higher Education</p><p>Research & Development. 34(2), 338-350.</p><p></p><p>Magis, D., & Barrada, J. R. (2017). Computerized Adaptive Testing with R : Recent</p><p>Updates of the Package catR . Journal of Statistical Software, 76, 1-19.</p><p></p><p>Magis, D., Bland, S., Tuerlinckx, F., & de Boeck, P. (2010). A General Framework</p><p>and an R Package for the Detection of Dichotomous Differential Item Functioning.</p><p>Behavior Research Methods, 42(3), 847862.</p><p></p><p>Mahmud, Z., Ismail, N. Z.-I., Kassim, N. L. A., & Zainol, M. S. (2018). The Effects Of</p><p>Attitudes Towards Statistics, Perceived Ability, Learning Practices And Teaching</p><p>Practices On Students Performance In Statistics: A Review. Journal of Islamic</p><p>Thought and Civilization of the International Islamic University Malaysia (Iium),</p><p>(Special Issue), 7197.</p><p></p><p>Mair, P. (2020). CRAN Task View: Psychometric Models and Methods.</p><p></p><p>Mair, P., Hatzinger, R., Maier, M. J., Rusch, T., Debelak, R., & Maintainer (2020).</p><p>eRm: Extended Rasch Modeling. Retrieved from https://CRAN.Rproject.</p><p>org/package=eRm.</p><p></p><p>Maki, S., & Horita, T. (2017). Research on Statistical Literacy Using Japanese</p><p>Textbooks. 2017 6th IIAI International Congress on Advanced Applied</p><p>Informatics (IIAI-AAI), 711714.</p><p></p><p>Manor, O., & Power, C. (2000). Dichotomous or Categorical Response? Analysing</p><p>Self-rated Health and Lifetime. Int J Epidemiol, 29(1), 149157.</p><p></p><p>Marbouti, F., Diefes-Dux, H. A., & Madhavan, K. (2016). Models for Early Prediction</p><p>of at-risk Students in a Course Using Standards-based Grading. Computers and</p><p>Education, 103, 115.</p><p></p><p>Margot, K. C., & Kettler, T. (2019). Teachers Perception of STEM Integration and</p><p>Education: a Systematic Literature Review. International Journal of STEM</p><p>Education, 6.</p><p></p><p>Maria, M., Shahbodin, F., & Pee, N. C. (2018). Malaysian Higher Education System</p><p>Towards Industry 4.0- Current Trends Overview. AIP Conference Proceedings</p><p>2016, 1-7.</p><p></p><p>Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47,</p><p>149-174.</p><p></p><p>Mativo, J. M., & Huang, S. (2014). Prediction of Students Academic Performance:</p><p>Adapt a Methodology of Predictive Modeling for a Small Sample Size. 2014 IEEE</p><p>Frontiers in Education Conference (FIE) Proceedings, 13.</p><p></p><p>Mayilvaganan, M., & Kalpanadevi, D. (2014). Comparison of Classification</p><p>Techniques for Predicting the Cognitive Skill of Students in Education</p><p>Environment. 2014 IEEE International Conference on Computational Intelligence</p><p>and Computing Research, 14.</p><p></p><p>McCullagh, P. (1980). Regression Models for Ordinal Data. Journal of the Royal</p><p>Statistical Society. Series B, 42, 109142.</p><p></p><p>McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (2nd ed.). London,</p><p>New York: Chapman and Hall.</p><p></p><p>Mckelvey, D. R., & Zavoina, W. (1975). A Statistical Model for the Analysis of Ordinal</p><p>Level Dependent Variables. Journal of Mathematical Sociology, 4, 103120.</p><p></p><p>Meier, Y., Xu, J., Atan, O., & Van Der Schaar, M. (2016). Predicting Grades. IEEE</p><p>Transactions on Signal Processing, 64(4), 959972.</p><p></p><p>Mejia, A., & Filus, A. (2018). Exploring Predictors of Impact of School-based</p><p>Management in Rural Mexico: Do Student Engagement, Teacher Attitudes and</p><p>Parent Involvement Predict Better Academic Outcomes? International Journal of</p><p>Educational Research, 88, 95108.</p><p></p><p>Mignani, S., Monari, P., Cagnone, S., & Ricci, R. (2006). Multidimensional Versus</p><p>Unidimensional Models for Ability Testing. In Data Analysis, Classification and</p><p>the Forward Search, 339346.</p><p></p><p>Milaturrahmah, N., Mardiyana, & Pramudya, I. (2017). Science, Technology,</p><p>Engineering, Mathematics (STEM) as Mathematics Learning Approach in 21st</p><p>Century. AIP Conference Proceedings, 1868(1).</p><p></p><p>Mircioiu, C., & Atkinson, J. (2017). A Comparison of Parametric and Non-Parametric</p><p>Methods Applied to a Likert Scale. Pharmacy (Basel, Switzerland), 5(2), 26.</p><p></p><p>Mishra, T., Kumar, D., & Gupta, S. (2014). Mining Students Data for Prediction</p><p>Performance. International Conference on Advanced Computing and</p><p>Communication Technologies, ACCT, 255262.</p><p></p><p>Mohamad, M. M., Sulaiman, N. L., Sern, L. C., & Salleh, K. M. (2015). Measuring the</p><p>Validity and Reliability of Research Instruments. Procedia - Social and</p><p>Behavioral Sciences, 204, 164171.</p><p></p><p>Mohamed Talib, A., Alomary, F. O., & Alwadi, H. F. (2018). Assessment of Student</p><p>Performance for Course Examination Using Rasch Measurement Model: A Case</p><p>Study of Information Technology Fundamentals Course. Education Research</p><p>International, 2018, 18.</p><p></p><p>Mohamed, H., Ashaari, N. S. @, Judi, H. M., & Wook, T. S. M. T. (2012). Factors</p><p>Affecting FTSM Students Achievement in Statistics Course. Procedia - Social</p><p>and Behavioral Sciences, 59, 125129.</p><p></p><p>Mohd Ali, S., Norfarah, N., Ilya Syazwani, J. I., & Mohd Erfy, I. (2019). The Effect of</p><p>Computerized-adaptive Test on Reducing Anxiety Towards Math Test for</p><p>Polytechnic Students. Journal of Technical Education and Training, 11(4), 2735.</p><p></p><p>Mohd Rasid, N. S., Md Nasir, N. A., A/l Aperar Singh, P. S., & Cheong, T. H. (2020).</p><p>STEM Integration: Factors Affecting Effective Instructional Practices in Teaching</p><p>Mathematics. Asian Journal of University Education, 16(1), 56.</p><p>Mourtzis, D., Vasilakopoulos, A., Zervas, E., & Boli, N. (2019). Manufacturing System</p><p>Design Using Simulation in Metal Industry Towards Education 4.0. Procedia</p><p>Manufacturing, 31, 155161.</p><p></p><p>Muawiyah, D., Yamtinah, S., & Indriyanti, N. Y. (2018). Higher Education 4.0:</p><p>Assessment on Environmental Chemistry Course in Blended Learning Design.</p><p>Journal of Physics: Conference Series, 1097(1), 17.</p><p></p><p>Murad, H., Fleischman, A., Sadetzki, S., Geyer, O., & Freedman, L. S. (2003). Small</p><p>Samples and Ordered Logistic Regression: Does it Help to Collapse Categories of</p><p>Outcome? The American Statistician, 57(3), 155160.</p><p></p><p>Mutanu, L., & Machoka, P. (2019). Enhancing Computer Students Academic</p><p>Performance Through Predictive Modelling - a Proactive Approach. 14th</p><p>International Conference on Computer Science and Education, ICCSE 2019, 97</p><p>102.</p><p></p><p>Muthukrishnan, R., & Myilsamy, R. (2010). M-Estimators in Regression Models.</p><p>Journal of Mathematics Research, 2(4), 2327.</p><p></p><p>Nagelkerke, N. J. D. (1991). A Note on a General Definition of the Coefficient of</p><p>Determination. Biometrika, 78(3), 691-692.</p><p></p><p>Nahar, J., & Purwani, S. (2017). Application of Robust M-Estimator Regression in</p><p>Handling Data Outliers. In 4th ICRIEMS, 5360.</p><p></p><p>Nering, L. M., & Ostini, R. (2011). Handbook of Polytomous Item Response Theory</p><p>Models. New York, NY: Taylor & Francis Group.</p><p></p><p>Noguez, J., Neri, L., Gonzalez-Nucamendi, A., & Robledo-Rella, V. (2016).</p><p>Characteristics of Self-regulation of Engineering Students to Predict and Improve</p><p>Their Academic Performance. 2016 IEEE Frontiers in Education Conference</p><p>(FIE), 18.</p><p></p><p>Norman, C. (2014). Ordinal Methods for Behavioral Data Analysis. Psychology Press.</p><p></p><p>Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory. McGraw-Hill.</p><p></p><p>Nurgabyl, D., Kalzhanova, G., Ualiyev, N., & Abdoldinova, G. (2017). Construction</p><p>of a Mathematical Model for Calibrating Test Task Parameters and the Knowledge</p><p>Level Scale of University Students by Means of Testing. Eurasia Journal of</p><p>Mathematics, Science and Technology Education, 13(11), 74217429.</p><p></p><p>Olmus, H., Nazman, E., & Erbas, S. (2017). An Evaluation of the Two Parameter (2-</p><p>PL) IRT Models Through a Simulation Study. Gazi University Journal of Science,</p><p>30(1), 235249.</p><p></p><p>Omar, N., Haris, S. S., Hassan, R., Arshad, H., Rahmat, M., Zainal, N. F. A., & Zulkifli,</p><p>R. (2012). Automated Analysis of Exam Questions According to Blooms</p><p>Taxonomy. Procedia - Social and Behavioral Sciences, 59(1956), 297303.</p><p></p><p>ztrk, N. K., & Karabatsos, G. (2017). A Bayesian Robust IRT Outlier-Detection</p><p>Model. Applied Psychological Measurement, 41(3), 195208.</p><p></p><p>zyurt, H., & zyurt, . (2015). Ability Level Estimation of Students on Probability</p><p>Unit via Computerized Adaptive Testing. Eurasian Journal of Educational</p><p>Research, 15(58), 2744.</p><p></p><p>Pada, A. U. T., Kartowagiran, B., & Subali, B. (2016). Separation Index and Fit Items</p><p>of Creative Thinking Skills Assessment. Research and Evaluation in Education,</p><p>2(1), 1-2.</p><p></p><p>Papageorgiou, G., & Hinde, J. (2019). mixcat: Mixed Effects Cumulative Link and</p><p>Logistic Regression Models. Retrieved from https://CRAN.Rproject.</p><p>org/package=mixcat.</p><p></p><p>Pardo, A., Han, F., & Ellis, R. A. (2017). Combining University Student Self-regulated</p><p>Learning Indicators and Engagement With Online Learning Events to Predict</p><p>Academic Performance. IEEE Transactions on Learning Technologies, 10(1), 82</p><p>92.</p><p></p><p>Park, J. S., Park, C. G., & Lee, K. E. (2019). Simultaneous Outlier Detection and</p><p>Variable Selection via Difference-based Regression Model and Stochastic Search</p><p>Variable Selection. Communications for Statistical Applications and Methods,</p><p>26(2), 149161.</p><p></p><p>Partchev, I. (2017). irtoys: A Collection of Functions Related to Item Response Theory</p><p>(IRT). Retrieved from https://CRAN.R-project.org/package=irtoys.</p><p></p><p>Passante, G., & Kohnle, A. (2019). Enhancing Student Visual Understanding of the</p><p>Time Evolution of Quantum Systems. Physical Review Physics Education</p><p>Research, 15(1), 1-14.</p><p></p><p>Peterson, B., & Harrell, Frank E., J. (1990). Partial Proportional Odds Models for</p><p>Ordinal Response Variables. Applied Statistics, 39, 205217.</p><p></p><p>Pnecker, W., & Tutz, G. (2016). A General Framework for the Selection of Effect</p><p>Type in Ordinal Regression. Munich, Bavaria, Germany.</p><p></p><p>Pradeep, A., Das, S., & Kizhekkethottam, J. J. (2015). Students Dropout Factor</p><p>Prediction Using EDM Techniques. Proceedings of the IEEE International</p><p>Conference on Soft-Computing and Network Security, ICSNS 2015, 1-7.</p><p></p><p>Pregibon, D. (1982). Resistant Fits for Some Coxnmolily Used Logistic Models with</p><p>Medical Applications. Biometrics, 38(2), 485498.</p><p></p><p>Pruscha, H. (1994). Partial Residuals in Cumulative Regression Models for Ordinal</p><p>Data. Statistical Papers, 35(1), 273284.</p><p></p><p>Pulkstenis, E., & Robinson, T. J. (2004). Goodness-of-fit Tests for Ordinal Response</p><p>Regression Models. Statistics in Medicine, 23(6), 9991014.</p><p></p><p>Radmehr, F., & Drake, M. (2018a). An Assessment-based Model for Exploring the</p><p>Solving of Mathematical Problems: Utilizing Revised Blooms Taxonomy and</p><p>Facets of Metacognition. Studies in Educational Evaluation, 59, 4151.</p><p></p><p>Radmehr, F., & Drake, M. (2018b). Revised Blooms Taxonomy and Major Theories</p><p>and Frameworks That Influence the Teaching, Learning, and Assessment of</p><p>Mathematics: a Comparison. International Journal of Mathematical Education in</p><p>Science and Technology, 50(6), 895-920.</p><p></p><p>Raines, T. C., Gordon, M., Harrell-williams, L., Diliberto, R. A., Parke, E. M., Raines,</p><p>T. C., Diliberto, R. A. (2017). Adaptive Skills and Academic Achievement in</p><p>Latino Students. Journal of Applied School Psychology, 33(4), 245260.</p><p></p><p>Rajeswari, S., & Lawrance, R. (2016). Classification Model to Predict the Learners</p><p>Academic Performance Using Big Data. 2016 International Conference on</p><p>Computing Technologies and Intelligent Data Engineering (ICCTIDE16), 16.</p><p></p><p>Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests.</p><p>(Copenhagen, Danish Institute for Educational Research), expanded edition</p><p>(1980) with foreword and afterword by B. D. Wright. Chicago: The University of</p><p>Chicago Press.</p><p></p><p>Rasheed, B. A., Adnan, R., Saffari, S. E., & Pati, K. (2014). Robust Weighted Least</p><p>Squares Estimation of Regression Parameter in the Presence of Outliers and</p><p>Heteroscedastic Errors. Jurnal Teknologi, 71(1), 1118.</p><p></p><p>Raus, M. I. M., Janor, R. M., Sadjirin, R., & Sahri, Z. (2014). The Development of i-</p><p>QuBES for UiTM: From Feasibility Study to the Design Phase. Proceedings -</p><p>2014 5th IEEE Control and System Graduate Research Colloquium, ICSGRC</p><p>2014, 96101.</p><p></p><p>Reckase, M. D. (2009). Multidimensional Item Response Theory Models. New York,</p><p>NY: Springer New York.</p><p></p><p>Ren, Z., & Sweeney, M. (2016). Predicting Student Performance Using Personalized</p><p>Analytics. Computer, 49(4), 6169.</p><p></p><p>Rezaie, M., & Golshan, M. (2015). Computer Adaptive Test (CAT): Advantages and</p><p>Limitations. International Journal of Educational Investigations Available</p><p>Online, 2(5), 128137.</p><p></p><p>Riani, M., Torti, F., & Zani, S. (2012). Outliers and Robustness for Ordinal Data.</p><p>Modern Analysis of Customer Surveys: with applications using R (1st ed.), 155</p><p>169.</p><p></p><p>Ricardo, A. M., Douglas, R. M., Victor, J. Y., & Matias, S. B. (2019). Robust Statistics</p><p>Theory and Methods (with R) (2nd ed.). John Wiley & Sons Ltd.</p><p></p><p>Riese, A., Rappaport, L., Alverson, B., Park, S., & Rockney, R. M. (2017). Clinical</p><p>Performance Evaluations of Third-Year Medical Students and Association With</p><p>Student and Evaluator Gender. Academic Medicine, 92(6), 835840.</p><p></p><p>Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., & Firth, D. (2020).</p><p>MASS: Support Functions and Datasets for Venables and Ripley's MASS.</p><p>Retrieved from https://CRAN.R-project.org/package=MASS.</p><p></p><p>Rizopoulos, D. (2006). ltm : An R Package for Latent Variable Modeling. Journal Of</p><p>Statistical Software, 17(5), 125.</p><p></p><p>Rizopoulos, D. (2018). Package ltm Title Latent Trait Models under IRT. Retrieved</p><p>from http://www.jstatsoft.org/v17/.</p><p></p><p>Rojko, A. (2017). Industry 4.0 Concept : Background and Overview. International</p><p>Journal of Interactive Mobile Technologies (IJIM), 11(5), 7790.</p><p></p><p>Ronald, K. H., & Russell W. J. (1993). Comparison of Classical Test Theory and Item</p><p>Response Theory and Their Applications to Test Development. Educational</p><p>Measurement: Issues and Practice, 38-47.</p><p></p><p>Rosaini, R., Budiyono, B., & Pratiwi, H. (2019). Mathematics Teacher Supporting</p><p>Higher Order Thinking Skill of Students Through Assessment as Learning in</p><p>Instructional Model. Journal of Physics: Conf. Series, 1157.</p><p></p><p>Rousseeuw, P. J., & Leroy, A. M. (1987). Robust Regression and Outlier Detection.</p><p>Hoboken, NJ, USA: John Wiley & Sons, Inc.</p><p></p><p>Rousseeuw, P. J., & van Driessen, K. (1999). A Fast Algorithm for the Minimum</p><p>Covariance Determinant Estimator. Technometrics, 41(3), 212.</p><p></p><p>Rubio, D. M., Berg-Weger, M., Tebb, S. S., Lee, E. S., & Rauch, S. (2003).</p><p>Objectifying Content Validity: Conducting a Content Validity Study in Social</p><p>Work Research. Social Work Research, 27(2), 94104.</p><p></p><p>Ruckstuhl, A. (2016). Robust Fitting of Parametric Models Based on M-Estimation.</p><p></p><p>Rusch, T., Mair, P., & Hatzinger, R. (2013). Psychometrics with R: A Review of CRAN</p><p>Packages for Item Response Theory. Discussion Paper Series of the Center for</p><p>Empirical Research Methods, 128.</p><p></p><p>Rusimamto, P. W., Nurlaela, L., Sumbawati, M. S., Munoto, & Samani, M. (2019).</p><p>Development of Critical and Creative Thinking Skills to Increase Competence of</p><p>PLC Programming for Electrical Engineering Education Students. IOP</p><p>Conference Series: Materials Science and Engineering, 535(1).</p><p></p><p>Sagala, P. N., & Andriani, A. (2019). Development of Higher-Order Thinking Skills</p><p>(HOTS) Questions of Probability Theory Subject Based on Blooms Taxonomy.</p><p>Journal of Physics: Conference Series, 1188(1), 113.</p><p></p><p>Sagar, P., Prinima, & Indu (2017). Analysis of Prediction Techniques based on</p><p>Classification and Regression General Terms. International Journal of Computer</p><p>Applications, 163(7), 47-51.</p><p></p><p>Said-metwaly, S., Kyndt, E., & Noortgate, W. Van Den. (2019). The Factor Structure</p><p>of the Verbal Torrance Test of Creative Thinking in an Arabic Context: Classical</p><p>Test Theory and Multidimensional Item Response Theory Analyses. Thinking</p><p>Skills and Creativity, 35.</p><p></p><p>Salim, N. R., Fauzi, A., & Ayub, M. (2017). Relationship Between Mathematics</p><p>Statistics Engagement and Attitudes Towards Statistics Among Undergraduate</p><p>Students in Malaysia. AIP Conference Proceedings, 1795.</p><p></p><p>Sall, J. (1991). A Monotone Regression Smoother Based on Ordinal Cumulative</p><p>Logistic Regression. ASA Proceedings of Statistical Computing Section, 276281.</p><p></p><p>Salzberger, T., & Koller, M. (2019). The Direction of the Response Scale Matters-</p><p>Accounting for the Unit of Measurement. European Journal of Marketing, 53(5),</p><p>871891.</p><p></p><p>Samejima, F. (1972). A General Model for Free-Response. Psychometrika, 35(18),139.</p><p></p><p>SAS Institute Inc. (2017). SAS/STAT 14.3 Users Guide The CATMOD Procedure.</p><p>Retrieved from http://support.sas.com/thirdpartylicenses.</p><p></p><p>SAS Institute Inc. (2019). SAS Help Center: PROC LOGISTIC Statement. Retrieved</p><p>July 12, 2020, from https://documentation.sas.com.</p><p></p><p>SAS Institute Inc. (2020). What is a Data Scientist?. Retrieved April 21, 2020, from</p><p>https://www.sas.com/en_my/insights/analytics/what-is-a-data-scientist.html</p><p></p><p>Seheult, A. H., Green, P. J., Rousseeuw, P. J., & Leroy, A. M. (2006). Robust</p><p>Regression and Outlier Detection. Journal of the Royal Statistical Society. Series</p><p>A (Statistics in Society), 152(1), 133.</p><p></p><p>Seifu, G. (2016). Assessment of the Implementation of Continuous Assessment : the</p><p>Case of METTU University. Europian Journal of Science and Mathematics</p><p>Education, 4(4), 534544.</p><p></p><p>Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Students</p><p>Performance Using Data Mining Techniques. Procedia Computer Science, 72,</p><p>414422.</p><p></p><p>Sharif, S., & Atiany, T. A. M. (2018). Testing Several Correlation Matrices Using</p><p>Robust Approach. Asian Journal of Scientific Research, 11(1), 8495.</p><p></p><p>Sheng, Y., & Wikle, C. K. (2009). Bayesian IRT Models Incorporating General and</p><p>Specific Abilities. Behaviormetrika, 36(1), 2748.</p><p></p><p>Sikder, M. F., Uddin, M. J., & Halder, S. (2016). Predicting Students Yearly</p><p>Performance Using Neural Network: a Case Study of BSMRSTU. 2016 5th</p><p>International Conference on Informatics, Electronics and Vision (ICIEV), 524</p><p>529.</p><p></p><p>Simeckova, M. (2005). Maximum Weighted Likelihood Estimator in Logistic</p><p>Regression. In WDS05 Proceedings of Contributed Papers, 144148.</p><p></p><p>Slim, A., Heileman, G. L., Kozlick, J., & Abdallah, C. T. (2015). Predicting Student</p><p>Success Based on Prior Performance. In Proceedings - 2014 IEEE Symposium on</p><p>Computational Intelligence and Data Mining (CIDM), 410415.</p><p></p><p>Smith, E. V. (2002). Detecting and Evaluating the Impact of Multidimensionality Using</p><p>Item Fit Statistics and Principal Component Analysis of Residuals. Journal of</p><p>Applied Measurement, 3(2), 205231.</p><p></p><p>Smith, G. (2018). Step Away From Stepwise. Journal of Big Data, 5(32), 112.</p><p></p><p>Snell, E. J., Cox, D., & Cox, R. (1987). Applied Statistics: A Handbook of BMDPTM</p><p>Analyses. Springer Science Business Media.</p><p></p><p>Solihatun, S., Rangka, I. B., Ratnasari, D., Radyati, A., Siregar, Y., Wulansari, L., </p><p>Rahim, R. (2019). Measuring of Student Learning Performance Based on</p><p>Geometry Test for Middle Class in Elementary School Using Dichotomous Rasch</p><p>Analysis. Journal of Physics: Conference Series, 1157(3), 1-7.</p><p></p><p>Sorour, S. E., Mine, T., Goda, K., & Hirokawa, S. (2015). Predicting Students Grades</p><p>Based on Free Style Comments Data by Artificial Neural Network. Proceedings -</p><p>Frontiers in Education Conference, FIE, 1-9.</p><p></p><p>Sothan, S. (2018). The Determinants of Academic Performance : Evidence From a</p><p>Cambodian University. Studies in Higher Education, 44(11), 2096-2111.</p><p></p><p>SSI (2020a). BILOGMG. Retrieved July 14, 2020, from</p><p>https://ssicentral.com/index.php/products/bilogmg-gen/</p><p>SSI (2020b). PARSCALE. Retrieved July 14, 2020, from</p><p>https://ssicentral.com/index.php/products/psl-general/</p><p></p><p>Steyer, R. (2015). Classical (Psychometric) Test Theory. International Encyclopedia of</p><p>the Social & Behavioral Sciences, 3, 785-791.</p><p></p><p>Sturman, E. D., & Zappala-Piemme, K. (2017). Development of the Grit Scale for</p><p>Children and Adults and Its Relation to Student Efficacy, Test Anxiety, and</p><p>Academic Performance. Learning and Individual Differences, 59, 110.</p><p></p><p>Summers, M. M., Couch, B. A., Knight, J. K., Brownell, S. E., Crowe, A. J., Semsar,</p><p>K., Smith, M. K. (2018). EcoEvo-MAPS: An Ecology and Evolution</p><p>Assessment for Introductory Through Advanced Undergraduates. CBE Life</p><p>Sciences Education, 17(2).</p><p></p><p>Susanti, Y., Pratiwi, H., H., S. S., & Liana, T. (2014). M Estimation, S Estimation, and</p><p>MM Estimation in Robust Regression. International Journal of Pure and Applied</p><p>Mathematics, 91(3), 349360.</p><p></p><p>SwMATH (2020). MULTILOG- Mathematical Software. Retrieved July 14, 2020,</p><p>from http://swmath.org/software/24168</p><p></p><p>Tai, J., Dawson, P., Panadero, E., Boud, D., & Ajjawi, R. (2017). Developing</p><p>Evaluative Judgement: Enabling Students to Make Decisions About the Quality of</p><p>Work. Higher Education, 467481.</p><p></p><p>TalentCorp (2019). Semak Apa Pekerjaan Masa Hadapan Untuk Anda. Petaling Jaya.</p><p>Retrieved from https://www.talentcorp.com.my/clients/TalentCorp.</p><p></p><p>Tawil, N. M., Ismail, N. A., Asshaari, I., Osman, H., Nopiah, Z. M., & Zaharim, A.</p><p>(2012). Comparing Lecture and E-learning as Learning Process in Mathematics</p><p>and Statistics Courses for Engineering Students in Universiti Kebangsaan</p><p>Malaysia. Procedia - Social and Behavioral Sciences, 60, 420425.</p><p></p><p>Tekkumru-Kisa, M., & Stein, M. K. (2017). A Framework for Planning and Facilitating</p><p>Video-based Professional Development. International Journal of STEM Education, 4, 28.</p><p></p><p>Testa, S., Toscano, A., & Rosato, R. (2018). Distractor Efficiency in an Item Pool for</p><p>a Statistics Classroom Exam: Assessing Its Relation With Item Cognitive Level</p><p>Classified According to Blooms Taxonomy. Frontiers in Psychology, 9, 112.</p><p></p><p>Thaneerananon, T., Triampo, W., & Nokkaew, A. (2016). Development of a Test to</p><p>Evaluate Students Analytical Thinking Based on Fact versus Opinion</p><p>Differentiation. International Journal of Instruction, 9(2), 123138.</p><p></p><p>Tharwat, A. (2009). Principal Component Analysis-A Tutorial.</p><p></p><p>Thiele, T., Singleton, A., Pope, D., & Stanistreet, D. (2016). Predicting Students</p><p>Academic Performance Based on School and Socio-demographic Characteristics.</p><p>Studies in Higher Education, 41(8), 1424-1446.</p><p></p><p>Thompson, L. A. (2009). R (and S-PLUS) Manual to Accompany Agrestis Categorical</p><p>Data Analysis (2002) 2nd edition. Categorical Data Analysis.</p><p></p><p>Tijmstra, J., & Bolsinova, M. (2019). Bayes Factors for Evaluating Latent Monotonicity</p><p>in Polytomous Item Response Theory Models. Psychometrika, 84(3), 846869.</p><p></p><p>Tutz, G. (2014). Regression for Categorical Data. Cambridge: Cambridge University</p><p>Press.</p><p></p><p>Ueckert, S. (2018). Modeling Composite Assessment Data Using Item Response</p><p>Theory. CPT: Pharmacometrics and Systems Pharmacology, 7(4), 205218.</p><p></p><p>nl, A., & Yanagida, T. (2011). R You Ready for R?: The CRAN Psychometrics Task</p><p>View. British Journal of Mathematical and Statistical Psychology, 64(1), 182</p><p>186.</p><p></p><p>van der Linden, W. J. (2016). Handbook of Item Response Theory Volume One.</p><p>London, New York: Taylor & Francis Group.</p><p></p><p>van der Linden, W. J. (2018). Handbook of Item Response Theory Volume Three:</p><p>Applications. London, New York: Taylor & Francis Group.</p><p></p><p>van der Zanden, P. J. A. C., Denessen, E., Cillessen, A. H. N., & Meijer, P. C. (2018).</p><p>Domains and Predictors of First-year Student Success: a Systematic Review.</p><p>Educational Research Review, 23, 5777.</p><p></p><p>Villagr-Arnedo, C. J., Gallego-Durn, F. J., Llorens-Largo, F., Compa-Rosique, P.,</p><p>Satorre-Cuerda, R., Molina-Carmona, R., Molina-Carmona, R. (2017).</p><p>Improving the Expressiveness of Black-box Models for Predicting Student</p><p>Performance. Computers in Human Behavior, 72, 621631.</p><p></p><p>Villarroel, V., Boud, D., Bloxham, S., Bruna, D., & Bruna, C. (2020). Using Principles</p><p>of Authentic Assessment to Redesign Written Examinations and Tests.</p><p>Innovations in Education and Teaching International, 57(1), 3849.</p><p></p><p>Vora, D. R., & Rajamani, K. (2019). A Hybrid Classification Model for Prediction of</p><p>Academic Performance of Students : a Big Data Application. Evolutionary</p><p>Intelligence.</p><p></p><p>Walker, S. H., & Duncan, D. B. (1967). Estimation of the Probability of an Event as a</p><p>Function of Several Independent Variables. Biometrika, 54, 167179.</p><p></p><p>Wang, J. C., & Holan, S. H. (2012). Bayesian Multi-regime Smooth Transition</p><p>Regression With Ordered Categorical Variables. Computational Statistics and</p><p>Data Analysis, 56(12), 41654179.</p><p></p><p>Wang, R., Hao, P., Zhou, X., Campbell, A. T., & College, D. (2015). SmartGPA:</p><p>Academic Performance Can Assess and Predict How Smartphones of College</p><p>Students. In the 2015 ACM International Joint Conference on Ubiquitous</p><p>Computing (UbiComp 2015), 19, 1317.</p><p></p><p>Watan, S., & Sugiman. (2018). Exploring the Relationship Between Teachers</p><p>Instructional and Students Geometrical Thinking Levels Based on Van Hiele</p><p>Theory. Journal of Physics: Conference Series, 1097(1).</p><p></p><p>Weng, T. S., & Yang, D. C. (2017). Research on Mathematical Animation Using Pascal</p><p>Animation as an Example. Eurasia Journal of Mathematics, Science and</p><p>Technology Education, 13(6), 16871699.</p><p></p><p>Whitney, B. M., Cheng, Y., Brodersen, A. S., & Hong, M. R. (2018). The Scale of</p><p>Student Engagement in Statistics: Development and Initial Validation. Journal of</p><p>Psychoeducational Assessment, 37(5), 553-565.</p><p></p><p>Wijekoon, C. N., Amaratunge, H., Silva, Y. De, & Senanayake, S. (2017). Emotional</p><p>Intelligence and Academic Performance of Medical Undergraduates : a Crosssectional</p><p>Study in a Selected University in Sri Lanka. BMC Medical Education,</p><p>17(176), 111.</p><p></p><p>Williams, R. A. (2016). Ordinal Regression Models : Problems, Solutions, and</p><p>Problems With the Solutions. Stata Users Group, German Stata Users' Group</p><p>Meetings 2008.</p><p></p><p>Winsteps (2020). Rasch Analysis + Rasch Measurement Software + 1PL IRT.</p><p>Retrieved July 14, 2020, from https://www.winsteps.com/index.htm</p><p></p><p>Wright, B. D., & Panchapakesan, N. (1969). A Procedure for Sample-Free Item</p><p>Analysis. Educational and Psychological Measurement, 29, 2348.</p><p></p><p>Xu, J., Moon, K. H., & van der Schaar, M. (2017). A Machine Learning Approach for</p><p>Tracking and Predicting Student Performance in Degree Programs. IEEE Journal</p><p>of Selected Topics in Signal Processing, 11(5), 742753.</p><p></p><p>Ye, F., & Lord, D. (2014). Comparing Three Commonly Used Crash Severity Models</p><p>on Sample Size Requirements: Multinomial Logit, Ordered Probit and Mixed</p><p>Logit Models. Analytic Methods in Accident Research, 1, 7285.</p><p></p><p>Yee, T., & Moler, C. (2020). VGAM: Vector Generalized Linear and Additive Models.</p><p>Retrieved from https://CRAN.R-project.org/package=VGAM.</p><p></p><p>Yen, T. S., & Halili, S. H. (2015). Effective Teaching of Higher-Order Thinking (HOT)</p><p>in Education. Distance Education and E-Learning, 3(2), 4147.</p><p></p><p>You, H. S., Kim, K., Black, K., & Min, K. W. (2018). Assessing Science Motivation</p><p>for College Students: Validation of the Science Motivation Questionnaire II Using</p><p>the Rasch-andrich Rating Scale Model. Eurasia Journal of Mathematics, Science</p><p>and Technology Education, 14(4), 11611173.</p><p></p><p>Young, D. E., & Meredith, D. C. (2017). Using the Resources Framework to Design,</p><p>Assess, and Refine Interventions on Pressure in Fluids. Physical Review Physics</p><p>Education Research, 13(1), 116.</p><p></p><p>Yusof, A. L., Naim, N. F., Latip, M. F. A., Aminuddin, N., & Yaacob, N. (2017).</p><p>Implementation of Integrated Cumulative Grade Point Average (iCGPA) Towards</p><p>Academic Excellence in Malaysia. In 2017 IEEE 9th International Conference on</p><p>Engineering Education (ICEED), 106109.</p><p></p><p>Zainudin, S., Ahmad, K., Ali, N. M., & Zainal, N. F. A. (2012). Determining Course</p><p>Outcomes Achievement Through Examination Difficulty Index Measurement.</p><p>Procedia - Social and Behavioral Sciences, 59, 270276.</p><p></p><p>Zhang, Q., & Stephens, M. (2016). Profiling Teacher Capacity in Statistical Thinking</p><p>of National Curriculum Reform: a Comparative Study Between Australia and</p><p>China. Eurasia Journal of Mathematics, Science and Technology Education,</p><p>12(4), 733746.</p><p></p><p>Zollanvari, A., Kizilirmak, R. C., Kho, Y. H., & Hernandez-Torrano, D. (2017).</p><p>Predicting Students GPA and Developing Intervention Strategies Based on Self-</p><p>Regulatory Learning Behaviors. IEEE Access, 5, 23792-23802.</p><p></p><p>Zulkifli, F., Abidin, R. Z., & Mohamed, Z. (2019). Evaluating the Quality of Exam</p><p>Questions: a Multidimensional Item Response. International Journal of Recent</p><p>Technology and Engineering, 8(2 Special Issue 11), 606612.</p><p></p><p>Zulkifli, F., Abidin, R. Z., Razi, N. F. M., Mohammad, N. H., Ahmad, R., & Azmi, A.</p><p>Z. (2018). Evaluating Quality and Reliability of Final Exam Questions for</p><p>Probability and Statistics Course Using Rasch Model. International Journal of</p><p>Engineering and Technology(UAE), 7(4), 3236.</p><p></p> |