Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar

<p>Kajian ini bertujuan membangunkan model regresi ordinal teori respons item (TRI)</p><p>teguh dalam meramal prestasi gred peperiksaan akhir pelajar. Kaedah pembangunan</p><p>model adalah berasaskan model regresi ordinal iaitu mo...

Full description

Saved in:
Bibliographic Details
Main Author: Faiz Zulkifli
Format: thesis
Language:zsm
Published: 2021
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=7361
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:7361
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language zsm
topic QA Mathematics
spellingShingle QA Mathematics
Faiz Zulkifli
Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar
description <p>Kajian ini bertujuan membangunkan model regresi ordinal teori respons item (TRI)</p><p>teguh dalam meramal prestasi gred peperiksaan akhir pelajar. Kaedah pembangunan</p><p>model adalah berasaskan model regresi ordinal iaitu model ganjil kumulatif (MGK) dan</p><p>analisis literatur bersistematik. MGK diubah suai dengan menerapkan TRI dan kaedah</p><p>teguh penganggar-M (pemberat Huber dan Tukey Bisquare). Sampel kajian terdiri</p><p>daripada 326 orang pelajar dari salah sebuah universiti awam di Malaysia yang</p><p>mendaftar kursus berkaitan STEM. Sementara enam orang pakar dalam bidang statistik</p><p>terlibat bagi mengesahkan kualiti sampel item soalan yang digunakan. Data kajian</p><p>dianalisis menggunakan analisis deskriptif, indeks tahap persetujuan Cohen Kappa,</p><p>analisis faktor, analisis pengukuran Rasch, plot diagnostik dan penyuaian model. Model</p><p>yang dibangunkan diuji kebagusannya terhadap data sebenar dan simulasi. Simulasi</p><p>Monte Carlo dijalankan berdasarkan faktor simulasi iaitu saiz sampel, kombinasi tahap</p><p>kesukaran, peratus pencemaran dan sisihan piawai data pencilan yang melibatkan</p><p>ukuran bias, ralat punca min kuasa dua, pekali penentuan dan statistik Lipsitz. Dapatan</p><p>kajian mendapati model yang menerapkan TRI dimensi berbilang memberikan hasil</p><p>penyuaian lebih baik berbanding model asas yang mana statistik Lipsitz bagi MGK-TRI</p><p>(522.78) adalah kurang daripada MGK (549.94). Manakala, penganggar-M dengan</p><p>pemberat Tukey Bisquare menunjukkan prestasi keteguhan lebih baik berbanding</p><p>pemberat Huber dan penganggar kebolehjadian maksimum. Kesimpulannya, kajian ini</p><p>berjaya membangunkan model ramalan prestasi gred peperiksaan akhir pelajar yang</p><p>menerapkan TRI dan kaedah teguh dalam mengatasi masalah multikolinearan dan</p><p>pengaruh data pencilan pada model regresi ordinal. Model yang dihasilkan memberikan</p><p>implikasi dari segi teoritikal, metodologi dan sumbangan kepada pihak-pihak</p><p>berkepentingan dalam statistik dan pendidikan, Kementerian Pendidikan Tinggi</p><p>Malaysia, universiti dan industri dalam meramal prestasi gred peperiksaan akhir pelajar.</p>
format thesis
qualification_name
qualification_level Doctorate
author Faiz Zulkifli
author_facet Faiz Zulkifli
author_sort Faiz Zulkifli
title Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar
title_short Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar
title_full Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar
title_fullStr Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar
title_full_unstemmed Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar
title_sort pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2021
url https://ir.upsi.edu.my/detailsg.php?det=7361
_version_ 1747833385890349056
spelling oai:ir.upsi.edu.my:73612022-08-29 Pembangunan model regresi ordinal teori respons item teguh dalam meramal prestasi gred peperiksaan akhir pelajar 2021 Faiz Zulkifli QA Mathematics <p>Kajian ini bertujuan membangunkan model regresi ordinal teori respons item (TRI)</p><p>teguh dalam meramal prestasi gred peperiksaan akhir pelajar. Kaedah pembangunan</p><p>model adalah berasaskan model regresi ordinal iaitu model ganjil kumulatif (MGK) dan</p><p>analisis literatur bersistematik. MGK diubah suai dengan menerapkan TRI dan kaedah</p><p>teguh penganggar-M (pemberat Huber dan Tukey Bisquare). Sampel kajian terdiri</p><p>daripada 326 orang pelajar dari salah sebuah universiti awam di Malaysia yang</p><p>mendaftar kursus berkaitan STEM. Sementara enam orang pakar dalam bidang statistik</p><p>terlibat bagi mengesahkan kualiti sampel item soalan yang digunakan. Data kajian</p><p>dianalisis menggunakan analisis deskriptif, indeks tahap persetujuan Cohen Kappa,</p><p>analisis faktor, analisis pengukuran Rasch, plot diagnostik dan penyuaian model. Model</p><p>yang dibangunkan diuji kebagusannya terhadap data sebenar dan simulasi. Simulasi</p><p>Monte Carlo dijalankan berdasarkan faktor simulasi iaitu saiz sampel, kombinasi tahap</p><p>kesukaran, peratus pencemaran dan sisihan piawai data pencilan yang melibatkan</p><p>ukuran bias, ralat punca min kuasa dua, pekali penentuan dan statistik Lipsitz. Dapatan</p><p>kajian mendapati model yang menerapkan TRI dimensi berbilang memberikan hasil</p><p>penyuaian lebih baik berbanding model asas yang mana statistik Lipsitz bagi MGK-TRI</p><p>(522.78) adalah kurang daripada MGK (549.94). Manakala, penganggar-M dengan</p><p>pemberat Tukey Bisquare menunjukkan prestasi keteguhan lebih baik berbanding</p><p>pemberat Huber dan penganggar kebolehjadian maksimum. Kesimpulannya, kajian ini</p><p>berjaya membangunkan model ramalan prestasi gred peperiksaan akhir pelajar yang</p><p>menerapkan TRI dan kaedah teguh dalam mengatasi masalah multikolinearan dan</p><p>pengaruh data pencilan pada model regresi ordinal. Model yang dihasilkan memberikan</p><p>implikasi dari segi teoritikal, metodologi dan sumbangan kepada pihak-pihak</p><p>berkepentingan dalam statistik dan pendidikan, Kementerian Pendidikan Tinggi</p><p>Malaysia, universiti dan industri dalam meramal prestasi gred peperiksaan akhir pelajar.</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7361 https://ir.upsi.edu.my/detailsg.php?det=7361 text zsm closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abd Mutalib, Z. (2018). UA Diberi Pilihan Laksana iCGPA. Berita Harian Online.</p><p>Retrieved from https://www.bharian.com.my/berita/nasional/2018/06/440082/uadiberi-</p><p>pilihan-laksana-icgpa.</p><p></p><p>Abdullah, A. H., Abidin, N. L. Z., & Ali, M. (2015). Analysis of Students Errors in</p><p>Solving Higher Order Thinking Skills (HOTS) Problems for the Topic of Fraction.</p><p>Asian Social Science, 11(21), 133142.</p><p></p><p>Abdullah, A. H., Mokhtar, M., Halim, N. D. A., Ali, D. F., Tahir, L. M., & Kohar, U.</p><p>H. A. (2017). Mathematics Teachers Level of Knowledge and Practice on the</p><p>Implementation of Higher-Order Thinking Skills (HOTS). Eurasia Journal of</p><p>Mathematics, Science and Technology Education, 13(1), 317.</p><p></p><p>Abreu, M. N., Siqueira, A. L., Cardoso, C. S., & Caiaffa, W. T. (2008). Ordinal Logistic</p><p>Regression Models: Application in Quality of Life Studies. Cadernos de Saude</p><p>Publica, 24 Suppl 4, s581s591.</p><p></p><p>Adams, R. ., Wu, M. ., Cloney, D., & Wilson, M. R. (2020). ConQuest. Retrieved July</p><p>14, 2020, from https://www.acer.org/my/conquest</p><p></p><p>Adedayo, A. A., & Ojo, O. O. (2018). Bayesian Method for Solving the Problem of</p><p>Multicollinearity in Regression. Afrika Statistika, 13(3), 18231834.</p><p></p><p>Adejo, O. W., & Connolly, T. (2018). Predicting Student Academic Performance Using</p><p>Multi-model Heterogeneous Ensemble Approach. Journal of Applied Research in</p><p>Higher Education, 10(1), 6175.</p><p></p><p>Adnan, A., & Sugiarto, S. (2017). The Outlier Detection for Ordinal Data Using</p><p>Scalling Technique of Regression Coefficients. In IOP Conf. Series: Journal of</p><p>Physics: Conf. Series (Vol. 855, pp. 17).</p><p></p><p>Agresti, A. (1989). Tutorial on Modeling Ordered Categorical Response Data.</p><p>Psychological Bulletin, 105(2), 290301.</p><p></p><p>Agresti, A. (2010). Analysis of Ordinal Categorical Data (2nd ed.). John Wiley & Sons,</p><p>Inc.</p><p></p><p>Agresti, A. (2013). Categorical Data Analysis. Wiley-Interscience.</p><p></p><p>Agus, M., Penna, M. P., Per-Cebollero, M., & Gurdia-Olmos, J. (2016). Assessing</p><p>Probabilistic Reasoning in Verbal-numerical and Graphical-pictorial Formats: an</p><p>Evaluation of the Psychometric Properties of an Instrument. Eurasia Journal of</p><p>Mathematics, Science and Technology Education, 12(8), 20132038.</p><p></p><p>Akinoso, S. O. (2018). Mathematics Teachers Awareness of Teachable Moments in</p><p>Nigerian Classroom. Eurasia Journal of Mathematics, Science and Technology</p><p>Education, 14(2), 683689.</p><p></p><p>Alhadlaq, A. M., Alshammari, O. F., Alsager, S. M., Neel, K. A. F., & Mohamed, A.</p><p>G. (2015). Ability of Admissions Criteria to Predict Early Academic Performance</p><p>Among Students of Health Science Colleges at King Saud University, Saudi</p><p>Arabia. Journal of Dental Education, 79(6), 665670.</p><p></p><p>Al-khadher, M. M. A., & Albursan, I. S. (2017). Accuracy of Measurement in the</p><p>Classical and the Modern Test Theory : an Empirical Study on a Children</p><p>Intelligence Test Accuracy of Measurement in the Classical and the Modern Test</p><p>Theory : an Empirical Study on a Children Intelligence Test. International Journal</p><p>of Psychological Studies, 9(1), 71.</p><p></p><p>Al-Sheeb, B. A., Hamouda, A. M., & Abdella, G. M. (2019). Modeling of Student</p><p>Academic Achievement in Engineering Education Using Cognitive and Non-</p><p>Cognitive Factors. Journal of Applied Research in Higher Education, 11(2), 178</p><p>198.</p><p></p><p>Alzen, J. L., Langdon, L. S., & Otero, V. K. (2018). A Logistic Regression Investigation</p><p>of the Relationship Between the Learning Assistant Model and Failure Rates in</p><p>Introductory STEM Courses. International Journal of STEM Education, 5(1), 1</p><p>12.</p><p></p><p>Ananth, C. V, & Kleinbaum, D. G. (1997). Regression Models for Ordinal Responses :</p><p>A Review of Methods and Applications. International Journal of Epidermiology,</p><p>26(6), 13231333.</p><p></p><p>Anazifa, R. D., & Djukri. (2017). Project-Based Learning and Problem- Based</p><p>Learning: Are They Effective to Improve Students Thinking Skills? Jurnal</p><p>Pendidikan IPA Indonesia, 6(2), 346355.</p><p></p><p>Anderson, J. A. (1984). Regression and Ordered Categorical Variables. Journal of the</p><p>Royal Statistical Society. Series B (Methodological). WileyRoyal Statistical</p><p>Society.</p><p></p><p>Anderson, L. W., Krathwohl, D. R., P.W., A., Cruikshank, K. A., Mayer, R. E., Pintrich,</p><p>P. R., Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, and</p><p>Assessing: a Revision of Blooms Taxonomy of Educational Objectives. New</p><p>York: Longman.</p><p></p><p>Andrich, D. (1978). A rating formulation for ordered response categories.</p><p>Psychometrika, 43, 561-573.</p><p></p><p>Arco-tirado, J. L., Fernndez-martn, F., Ramos-garca, A. M., Littvay, L., & Villoria,</p><p>J. (2018). A Counterfactual Impact Evaluation of a Bilingual Program on Students</p><p>Grade Point Average at a Spanish University. Evaluation and Program Planning,</p><p>68(February), 8189.</p><p></p><p>Ari, E., & Yildiz, Z. (2014). Parallel Lines Assumption in Ordinal Logistic Regression</p><p>and Analysis Approaches. International Interdisciplinary Journal of Scientific</p><p>Research, 1(3), 823.</p><p></p><p>Arievitch, I. M. (2020). The Vision of Developmental Teaching and Learning and</p><p>Blooms Taxonomy of Educational Objectives. Learning, Culture and Social</p><p>Interaction, 25, 100274.</p><p></p><p>Artusi, R., Verderio, P., & Marubini, E. (2002). Bravais-pearson and Spearman</p><p>Correlation Coefficients: Meaning, Test of Hypothesis and Confidence Interval.</p><p>The International Journal of Biological Markers, 17(2), 148151.</p><p></p><p>Ashenafi, M. M., Riccardi, G., & Ronchetti, M. (2015). Predicting Students Final</p><p>Exam Scores From Their Course Activities. In Proceedings - Frontiers in</p><p>Education Conference, FIE, 2014.</p><p></p><p>Asshaari, I., Othman, H., Bahaludin, H., Ismail, N. A., & Nopiah, Z. M. (2012).</p><p>Appraisal on Blooms Separation in Final Examination Question of Engineering</p><p>Mathematics Courses Using Rasch Measurement Model. Procedia - Social and</p><p>Behavioral Sciences, 60(2009), 172178.</p><p></p><p>Athani, S. S., Kodli, S. A., Banavasi, M. N., & Hiremath, P. G. S. (2017). Student</p><p>Academic Performance and Social Behavior Predictor Using Data Mining</p><p>Techniques. In Proceedings - IEEE International Conference Computing</p><p>Communication Automation ICCCA 2017 ,170174.</p><p></p><p>Auerbach, A. J. J., & Andrews, T. C. (2018). Pedagogical Knowledge for Activelearning</p><p>Instruction in Large Undergraduate Biology Courses: a Large-scale</p><p>Qualitative Investigation of Instructor Thinking. International Journal of STEM</p><p>Education, 5(1).</p><p></p><p>Ayers, E., & Junker, B. (2008). IRT Modeling of Tutor Performance to Predict End-of-</p><p>Year Exam Scores. Educational and Psychological Measurement, 68(6), 972987.</p><p></p><p>Azizah, U., & Nasrudin, H. (2018). Development of Chemistry Instructional Materials</p><p>Based on Cooperative Group Investigation (CGI) to Empower Thinking Skills.</p><p>Journal of Physics: Conference Series, 1108(1).</p><p></p><p>Bcklin, C. L., & Gustafsson, M. G. (2018). Developer-Friendly and Computationally</p><p>Efficient Predictive Modeling Without Information Leakage: the emil Package for</p><p>R. Journal of Statistical Software, 85(13).</p><p></p><p>Badri, M., Alnuaimi, A., Mohaidat, J., Al Rashedi, A., Yang, G., & Al Mazroui, K.</p><p>(2016). My Science Class and Expected Career Choices- a Structural Equation</p><p>Model of Determinants Involving Abu Dhabi High School Students. International</p><p>Journal of STEM Education, 3(1).</p><p></p><p>Bahrum, S., Wahid, N., & Ibrahim, N. (2017). Integration of STEM Education in</p><p>Malaysia and Why to STEAM. International Journal of Academic Research in</p><p>Business and Social Sciences, 7(6), 645654.</p><p></p><p>Baily, C., Ryan, Q. X., Astolfi, C., & Pollock, S. J. (2017). Conceptual Assessment</p><p>Tool for Advanced Undergraduate Electrodynamics. Physical Review Physics</p><p>Education Research, 13(2), 110.</p><p></p><p>Baker, F. B., & Kim, S.-H. (2004). Item Response Theory: Parameter Estimation</p><p>Techniques (2nd ed.). Taylor & Francis Group.</p><p></p><p>Bal, C., Demir, S., & Aladag, C. H. (2016). A Comparison of Different Model Selection</p><p>Criteria for Forecasting EURO / USD Exchange Rates by Feed Forward Neural</p><p>Network. In Proceedings - International Journal of Computing, Communications</p><p>& Instrumentation Enggineering (IJCCIE), 3(2), 15.</p><p></p><p>Bana, M., & Ligas, M. (2014). Empirical Tests of Performance of Some Mestimators.</p><p>Geodesy and Cartography, 63(2), 127146.</p><p></p><p>Barlybayev, A., Sharipbay, A., Ulyukova, G., Sabyrov, T., & Kuzenbayev, B. (2016).</p><p>Students Performance Evaluation by Fuzzy Logic. Procedia Computer Science,</p><p>102(August), 98105.</p><p></p><p>Battauz, M. (2015). equateIRT : An R Package for IRT Test Equating . Journal of</p><p>Statistical Software, 68(7).</p><p></p><p>Baur, T., & Lukes, D. (2009). An Evaluation of the IRT Models Through Monte Carlo</p><p>Simulation. UW-L Journal of Undergraduate Research, (XII), 17.</p><p></p><p>Baygin, M., Yetis, H., Karakose, M., & Akin, E. (2016). An Effect Analysis of Industry</p><p>4.0 to Higher Education. In 2016 15th International Conference on Information</p><p>Technology Based Higher Education and Training (ITHET), 14.</p><p></p><p>Begg, A. (1997). Some Emerging Influences Underpinning Assessment in Statistics.</p><p>The Assessment Challenge in Statistics Education, 1725.</p><p></p><p>Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., & Torelli, M.</p><p>(2015). How Challenging Are Bebras Tasks? An IRT Analysis Based on the</p><p>Performance of Italian Students. Annual Conference on Innovation and</p><p>Technology in Computer Science Education, ITiCSE, 2015-June, 2732.</p><p></p><p>Bender, R., & Benner, A. (2000). Calculating Ordinal Regression Models in SAS and</p><p>S-Plus. Biometrical Journal, 42(6), 677700.</p><p></p><p>Beneov, A., & Tupa, J. (2017). Requirements for Education and Qualification of</p><p>People in Industry 4.0. Procedia Manufacturing, 11, 21952202.</p><p></p><p>Berg, R. G. van den. (2020). SPSS Factor Analysis- Absolute Beginners Tutorial.</p><p>Retrieved July 14, 2020, from https://www.spss-tutorials.com/spss-factoranalysis-</p><p>tutorial/</p><p></p><p>Bernama (2018). UiTM Rombak iCGPA Supaya Lebih Mesra Pensyarah. Retrieved</p><p>April 22, 2020, from http://www.astroawani.com/berita-malaysia/uitm-rombakicgpa-</p><p>supaya-lebih-mesra-pensyarah-180416</p><p></p><p>Bianco, A. M., & Yohai, V. J. (1996). Robust Estimation in the Logistic Regression</p><p>Model, 1734.</p><p></p><p>Binh, H. T., & Duy, B. T. (2017). Predicting Students Performance Based on Learning</p><p>Style by Using Artificial Neural Networks, In Proceedings - 2017 9th</p><p>International Conference on Knowledge and Systems Engineering (KSE), 48-53</p><p></p><p>Bloom, B. S. (1956). Taxonomy of Educational Objectives Handbook 1 Cognitive</p><p>Domain. London: Longman.</p><p></p><p>Bock, R. D., & Aitkin, M. (1981). Marginal Maximum Likelihood Estimation of Item</p><p>Parameters: Application of an EM Algorithm. Psychometrika, 46(4), 443459.</p><p></p><p>Bond, T., & Fox, C. M. (2015). Applying The Rasch Model Fundamental Measurement</p><p>in the Human Sciences (3rd ed.). New York: Routledge.</p><p></p><p>Bondell, H. D. (2008). A Characteristic Function Approach to the Biased Sampling</p><p>Model, With Application to Robust Logistic Regression. Journal of Statistical</p><p>Planning and Inference, 138, 742755.</p><p></p><p>Bonsaksen, T., Brown, T., Lim, H. B., & Fong, K. (2017). Approaches to Studying</p><p>Predict Academic Performance in Undergraduate Occupational Therapy Students:</p><p>a Cross-cultural Study. BMC Medical Education, 17(1), 19.</p><p></p><p>Brassil, C. E., & Couch, B. A. (2019). Multiple-true-false Questions Reveal More</p><p>Thoroughly the Complexity of Student Thinking Than Multiple-choice Questions:</p><p>a Bayesian Item Response Model Comparison. International Journal of STEM</p><p>Education, 6(1).</p><p></p><p>Brazeal, K. R., Brown, T. L., & Couch, B. A. (2016). Characterizing Student</p><p>Perceptions of and Buy-in Toward Common Formative Assessment Techniques.</p><p>CBE Life Sciences Education, 15(4).</p><p></p><p>Brester, C., Rnkk, M., Kolehmainen, M., Semenkin, E., Kauhanen, J., Tuomainen,</p><p>T.-P., Ronkainen, K. (2018). Evolutionary Methods for Variable Selection in</p><p>the Epidemiological Modeling of Cardiovascular Diseases. BioData Mining,</p><p>11(1), 114.</p><p></p><p>Buergin, R. (2020). vcrpart: Tree-Based Varying Coefficient Regression for</p><p>Generalized Linear and Ordinal Mixed Models. Retrieved from https://CRAN.R</p><p>project.org/package=vcrpart.</p><p></p><p>Bulut, O., & Sunbul, . (2017). Monte Carlo Simulation Studies in Item Response</p><p>Theory with the R Programming Language. Journal of Measurement and</p><p>Evaluation in Education and Psychology, 8(3), 266287.</p><p></p><p>Buniyamin, N., Mat, U. Bin, & Arshad, P. M. (2016). Educational Data Mining for</p><p>Prediction and Classification of Engineering Students Achievement. IEEE 7th</p><p>International Conference on Engineering Education, ICEED 2015, 4953.</p><p></p><p>Butterworth, J., & Thwaites, G. (2013). Thinking Skills: Critical Thinking and Problem</p><p>Solving (2nd ed.). Cambridge: Cambridge University Press.</p><p></p><p>Cai, L. (2010). Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item</p><p>Factor Analysis. Journal of Educational and Behavioral Statistics, 35(3), 307</p><p>335.</p><p></p><p>Capuano, A. W. (2012). Constrained Ordinal Models With Application in Occupational</p><p>and Constrained Ordinal Models With Application in Occupational and</p><p>Environmental Health Environmental Health. University of Iowa.</p><p></p><p>Carroll, R. J., & Pederson, S. (1993). On Robustness in the Logistic Regression Model.</p><p>Journal Royal Statistical Society, 55(3), 693706.</p><p></p><p>Celik, A. O., & Guzel, B. E. (2017). Mathematics Teachers Knowledge of Student</p><p>Thinking and Its Evidences in Their Instruction. Journal on Mathematics</p><p>Education, 8(2), 199210.</p><p></p><p>Chalmers, R. P. (2012). mirt : A Multidimensional Item Response Theory Package for</p><p>the R Environment. Journal of Statistical Software, 48(6).</p><p></p><p>Chalmers, R. P. (2016). Generating Adaptive and Non-adaptive Test Interfaces for</p><p>Multidimensional Item Response Theory Applications. Journal of Statistical</p><p>Software, 71.</p><p></p><p>Chan, S. W., Ismail, Z., & Sumintono, B. (2014). A Rasch Model Analysis on</p><p>Secondary Students Statistical Reasoning Ability in Descriptive Statistics.</p><p>Procedia - Social and Behavioral Sciences, 129, 133139.</p><p></p><p>Chootongchai, S., & Songkram, N. (2018). Design and Development of SECI and</p><p>Moodle Online Learning Systems to Enhance Thinking and Innovation Skills for</p><p>Higher Education Learners. International Journal of Emerging Technologies in</p><p>Learning, 13(3), 154172.</p><p></p><p>Christensen, R. H. B. (2019). ordinal: Regression Models for Ordinal Data. Retrieved</p><p>from https://CRAN.R-project.org/package=ordinal.</p><p></p><p>Christian, T. M., & Ayub, M. (2014). Exploration of Classification Using NBtree for</p><p>Predicting Students Performance. Proceedings of 2014 International Conference</p><p>on Data and Software Engineering, ICODSE 2014, 16.</p><p></p><p>Cladellas, R., Muro, A., Vargas-Guzmn, E. A., Bastardas, A., & Gom-i-Freixanet,</p><p>M. (2017). Sensation Seeking and High School Performance. Personality and</p><p>Individual Differences, 117, 117121.</p><p></p><p>Clarke, B. S., & Clarke, J. L. (2018). Predictive Statistics : Analysis and Inference</p><p>Beyond Models. Cambridge University Press.</p><p></p><p>Cohen, L., Manion, L., & Morrison, K. (2018). Research Methods in Education (8th</p><p>ed.). Routledge.</p><p></p><p>Columbus, L. (2019). Data Scientist Leads 50 Best Jobs In America For 2019</p><p>According To Glassdoor. Retrieved April 21, 2020, from https://www.forbes.com.</p><p></p><p>Copas, J. B. (1988). Binary Regression Models for Contaminated Data. Journal Royal</p><p>Statistical Society, 50(2), 225265.</p><p></p><p>Crane, N., Zusho, A., Ding, Y., & Cancelli, A. (2017). Domain-specific Metacognitive</p><p>Calibration in Children With Learning Disabilities. Contemporary Educational</p><p>Psychology, 50, 7279.</p><p></p><p>Cronbach, L. J. (1951). Coefficient Alpha and the Internal Structure of Tests.</p><p>Psychometrika, 16(3), 297334.</p><p></p><p>Croux, C., & Haesbroeck, G. (2003). Implementing the Bianco and Yohai Estimator</p><p>for Logistic Regression. Computational Statistics & Data Analysis, 44, 273295.</p><p></p><p>Croux, C., Flandre, C., & Haesbroeck, G. (2002). The Breakdown Behavior of the</p><p>Maximum Likelihood Estimator in the Logistic Regression Model. Statistics and</p><p>Probability Letters, 60(4), 377386.</p><p></p><p>Croux, C., Haesbroeck, G., & Ruwet, C. (2013). Robust Estimation for Ordinal</p><p>Regression. Journal of Statistical Planning and Inference, 143(9), 14861499.</p><p></p><p>Das, A. K., & Rodriguez-Marek, E. (2019). A Predictive Analytics System for</p><p>Forecasting Student Academic Performance: Insights From a Pilot Project at</p><p>Eastern Washington University. In 2019 Joint 8th International Conference on</p><p>Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference</p><p>on Imaging, Vision & Pattern Recognition (icIVPR), 255262.</p><p></p><p>de Kort, J. M., Dolan, C. V., Lubke, G. H., & Molenaar, D. (2017). Studying the</p><p>Strength of Prediction Using Indirect Mixture Modeling: Nonlinear Latent</p><p>Regression with Heteroskedastic Residuals. Structural Equation Modeling, 24(2),</p><p>301313.</p><p></p><p>Deanna, S. (2018). Logistic and Linear Regression Assumptions : Violation</p><p>Recognition and Control. In Recognition and Control, 121.</p><p></p><p>Dignan, L. (2019). Data Science Dominates Linkedins Emerging Jobs Ranking.</p><p>Retrieved April 21, 2020, from https://www.zdnet.com/article/data-sciencedominates-</p><p>linkedins-emerging-jobs-ranking/</p><p></p><p>Dobson, A. J., & Barnett, A. G. (2018). An Introduction to Generalized Linear Models</p><p>(4th ed.). Taylor & Francis Group.</p><p></p><p>Donoghoe, M. W. (2018). glm2: Fitting Generalized Linear Models. Retrieved from</p><p>https://CRAN.R-project.org/package=glm2.</p><p></p><p>Drath, R., & Horch, A. (2014). Industrie 4.0: Hit or Hype? IEEE Industrial Electronics</p><p>Magazine, 8(2), 5658.</p><p></p><p>Dunham, B., Yapa, G., & Yu, E. (2015). Calibrating the Difficulty of an Assessment</p><p>Tool: The Blooming of a Statistics Examination. Journal of Statistics Education,</p><p>23(3).</p><p></p><p>Edwards, J. M., & Finch, W. H. (2018). Recursive Partitioning Methods for Data</p><p>Imputation in the Context of Item Response Theory: a Monte Carlo Simulation.</p><p>Psicologica, 39(1), 88117.</p><p></p><p>Ellis, J. L. (2019). Factor Analysis and Item Analysis. Retrieved from</p><p>ttps://www.applyingstatisticsinbehaviouralresearch.com.</p><p></p><p>Embretson, S. E., Reise, S., & Reise, S. P. (2000). Item Response Theory for</p><p>Psychologists (Multivariate Applications Book Series). New Jersey: Lawrence</p><p>Erlbaum Associates, Inc.</p><p></p><p>Engel, J. (1988). Polytomous Logistic Regression. Statistica Neerlandica, 42(4), 233</p><p>252.</p><p></p><p>Erda, G., Indahwati, & Djuraidah, A. (2019). Outlier Handling of Robust</p><p>Geographically and Temporally Weighted Regression. Journal of Physics:</p><p>Conference Series, 1175(1).</p><p></p><p>Fagerland, M. W., & Hosmer, D. W. (2012). A Generalized Hosmer-lemeshow</p><p>Goodness-of-fit Test for Multinomial Logistic Regression Models. Stata Journal,</p><p>12(3), 447453.</p><p></p><p>Fagerland, M. W., & Hosmer, D. W. (2016). Tests for Goodness of Fit in Ordinal</p><p>Logistic Regression Models. Journal of Statistical Computation and Simulation,</p><p>86(17), 33983418.</p><p></p><p>Falk, C. F., & Ju, U. (2020). Estimation of Response Styles Using the Multidimensional</p><p>Nominal Response Model: A Tutorial and Comparison With Sum Scores.</p><p>Frontiers in Psychology, 11, 117.</p><p></p><p>Fernandez, D. B., & Lujan-Mora, S. (2017). Comparison of Applications for</p><p>Educational Data Mining in Engineering Education. 2017 IEEE World</p><p>Engineering Education Conference (EDUNINE), 8185.</p><p></p><p>Fielding, A. (1999). Why Use Arbitrary Points Scores?: Ordered Categories in Models</p><p>of Educational Progress. Journal of the Royal Statistical Society: Series A</p><p>(Statistics in Society), 162(3), 303328.</p><p></p><p>Fienberg, S. E. (1980). The Analysis of Cross-Classified Categorical Data: Second</p><p>Edition. Cambridge: Massachusetts Institute of Technology Press.</p><p></p><p>Fisher Jr., W. P. (2007). Rating Scale Instrument Quality Criteria. Rasch Measurement</p><p>Transaction, 21(1095).</p><p></p><p>Fitri, S., & Zahari, C. L. (2019). The Implementation of Blended Learning to Improve</p><p>Understanding of Mathematics. Journal of Physics: Conference Series, 1188(1).</p><p></p><p>Fleckenstein, J., Leucht, M., Pant, H. A., & Kller, O. (2016). Proficient Beyond</p><p>Borders: Assessing Non-native Speakers in a Native Speakers Framework.</p><p>Large-Scale Assessments in Education, 4(1).</p><p></p><p>Foster, R. C. (2020). A Generalized Framework for Classical Test Theory. Journal of</p><p>Mathematical Psychology, 96.</p><p></p><p>Fox, J., & Weisberg, S. (2012). An R Companion to Applied Regression: Third Edition.</p><p>SAGE.</p><p></p><p>Francis, E. (2018). Effects of Some Coding Techniques On Multicolinearity and Model</p><p>Statistics. Mathematical Theory and Modeling, 8(4), 156167.</p><p></p><p>Franses, P. H., & Paap, R. (2010). Quantitative Models in Marketing Research.</p><p>Cambridge University Press.</p><p></p><p>Fuadiah, N. F., Suryadi, D., & Turmudi, T. (2019). Teaching and Learning Activities</p><p>in Classroom and Their Impact on Student Misunderstanding: A Case Study on</p><p>Negative Integers. International Journal of Instruction, 12(1), 407424.</p><p></p><p>Gerber, N. L., & Price, J. K. (2018). Measures of Function and Health-Related Quality</p><p>of Life. Principles and Practice of Clinical Research. Elsevier Inc.</p><p></p><p>Gibbons, L. E., Crane, P. K., Seung, M., & Choi, W. (2016). Package lordif Type</p><p>Package Title Logistic Ordinal Regression Differential Item Functioning using</p><p>IRT.</p><p></p><p>Golding, C. (2019). Discerning Student Thinking : a Practical Theoretical Framework</p><p>for Recognising or Informally Assessing Different Ways of Thinking. Teaching in</p><p>Higher Education, 24(4), 478-492.</p><p></p><p>Gmez-Rey, P., Fernndez-Navarro, F., & Barber, E. (2016). Ordinal Regression by</p><p>a Gravitational Model in the Field of Educational Data Mining. Expert Systems,</p><p>33(2), 161175.</p><p></p><p>Goodhew, L. M., & Robertson, A. D. (2017). Exploring the Role of Content Knowledge</p><p>in Responsive Teaching. Physical Review Physics Education Research, 13(1), 1</p><p>24.</p><p></p><p>Goodman, L. A. (1979). Simple Models for the Analysis of Association in Crossclassifications</p><p>Having Ordered Categories. Journal of the American Statistical</p><p>Association, 74(367), 537552.</p><p></p><p>Greenwell, B. M., Mccarthy, A. J., Boehmke, B. C., & Liu, D. (2018). Residuals and</p><p>Diagnostics for Binary and Ordinal Regression Models: An Introduction to the</p><p>sure Package. The R Journal, 10, 381394.</p><p></p><p>Groll, A. (2020). GMMBoost: Likelihood-Based Boosting for Generalized Mixed</p><p>Models. Retrieved from https://CRAN.R-project.org/package=GMMBoost.</p><p></p><p>Grundspenkis, J. (2019). Intelligent Knowledge Assessment Systems: Myth or Reality.</p><p>Frontiers in Artificial Intelligence and Applications, 315, 31-46.</p><p></p><p>Guo, B., Zhang, R., Xu, G., Shi, C., & Yang, L. (2015). Predicting Students</p><p>Performance in Educational Data Mining. 2015 International Symposium on</p><p>Educational Technology (ISET), 125128.</p><p></p><p>Hadar, L. L., & Tirosh, M. (2019). Creative Thinking in Mathematics Curriculum: an</p><p>Analytic Framework. Thinking Skills and Creativity, 33(September 2018),</p><p>100585.</p><p></p><p>Hadfield, J. (2019). MCMCglmm: MCMC Generalised Linear Mixed Models.</p><p>Retrieved from https://CRAN.R-project.org/package=MCMCglmm</p><p></p><p>Han, M., Tong, M., Chen, M., Liu, J., & Liu, C. (2017). Application of Ensemble</p><p>Algorithm in Students Performance Prediction. Proceedings - 2017 6th IIAI</p><p>International Congress on Advanced Applied Informatics, IIAI-AAI 2017, 735</p><p>740.</p><p></p><p>Hariharasudan, A., & Kot, S. (2018). A Scoping Review on Digital English and</p><p>Education 4.0 for Industry 4.0. Social Sciences, 7(11), 227.</p><p></p><p>Harrell, E. F. (2020). rms: Regression Modeling Strategies. Retrieved from</p><p>https://CRAN.R-project.org/package=rms.</p><p></p><p>Hauck, W. W., & Donner, A. (1977). Walds Test as Applied to Hypotheses in Logit</p><p>Analysis. Journal of the American Statistical Association, 72(360), 851.</p><p></p><p>Hauke, J., & Kossowski, T. (2011). Comparison Of Values Of Pearsons And</p><p>Spearmans Correlation Coefficients On The Same Sets Of Data. Quaestiones</p><p>Geographicae, 30(2), 8793.</p><p></p><p>Himelfarb, I. (2019). A Primer on Standardized Testing: History, Measurement,</p><p>Classical Test Theory, Item Response Theory, and Equating. Journal of</p><p>Chiropractic Education, 33(2), 151163.</p><p></p><p>Hobza, T., Pardo, L., & Vajda, I. (2008). Robust Median Estimator in Logistic</p><p>Regression. Journal of Statistical Planning and Inference, 138, 38223840.</p><p></p><p>Hosmer, D. W., & Lemesbow, S. (1980). Goodness of Fit Tests for the Multiple</p><p>Logistic Regression Model. Communications in Statistics - Theory and Methods,</p><p>9(10), 10431069.</p><p></p><p>Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression (2nd ed.). John</p><p>Wiley & Sons, Inc.</p><p></p><p>Hosseinian, S., & Morgenthaler, S. (2011). Robust Binary Regression. Journal of</p><p>Statistical Planning and Inference, 141(4), 14971509.</p><p></p><p>Hu, X. (2018). Foreign Language Education in Colleges and Universities Based on</p><p>Globalization Background. Educational Sciences: Theory & Practice, 18(6),</p><p>34003407.</p><p></p><p>Hubert, M., Debruyne, M., & Rousseeuw, P. J. (2018). Minimum Covariance</p><p>Determinant and Extensions. Wiley Interdisciplinary Reviews: Computational</p><p>Statistics, 10(3), e1421.</p><p></p><p>Huo, X., & Cao, S. (2019). Aggregated inference. Wiley Interdisciplinary Reviews:</p><p>Computational Statistics, 11(1), 113.</p><p></p><p>Hussin, A. A. (2018). Education 4.0 Made Simple : Ideas For Teaching. International</p><p>Journal of Education and Literacy Studies, 6(3), 9298.</p><p></p><p>Iannario, M., Clara, A., & Piccolo, D. (2016). Robustness Issues for CUB Models.</p><p>TEST, 25, 731-750.</p><p></p><p>Iannario, M., Monti, A. C., Piccolo, D., & Ronchetti, E. (2017). Robust Inference for</p><p>Ordinal Response Models, 11, 34073445.</p><p></p><p>Ikbal, S., Tamhane, A., Sengupta, B., Chetlur, M., Ghosh, S., & Appleton, J. (2015).</p><p>On Early Prediction of Risks in Academic Performance for Students. IBM Journal</p><p>of Research and Development, 59(6), 114.</p><p></p><p>Ikuma, L. H., Steele, A. dann, S., Adio, O., & Waggenspack, W. N. (2019). Large-scale</p><p>Student Programs Increase Persistence in STEM Fields in a Public University</p><p>Setting. Journal of Engineering Education, 108(1), 5781.</p><p></p><p>Imdadullah, M., Aslam, M., & Altaf, S. (2016). mctest: An R Package for Detection of</p><p>Collinearity Among Regressors. The R Journal, 8(2), 495505.</p><p></p><p>Imrey, P. B., Koch, G. G., Stokes, M. E., Darroch, J. N., Freeman, D. H., & Tolley, H.</p><p>D. (1981). Categorical Data Analysis: Some Reflections on the Log Linear Model</p><p>and Logistic Regression. Part I: Historical and Methodological Overview.</p><p>International Statistical Review / Revue Internationale de Statistique, 49(3), 265.</p><p></p><p>Irribarra, D. T., & Freud, R. (2020). WrightMap: IRT Item-Person Map with 'ConQuest'</p><p>Integration. Retrieved from https://CRAN.R-project.org/package=WrightMap.</p><p></p><p>James, N., Harrell, Jr, & Shepherd, B. (2021). Bayesian Cumulative Probability Models</p><p>for Continuous and Mixed Outcomes.</p><p></p><p>Jayarajah, K., Saat, R. M., & Rauf, R. A. A. (2014). A Review of Science, Technology,</p><p>Engineering & Mathematics (STEM) Education Research From 1999-2013: A</p><p>Malaysian perspective. Eurasia Journal of Mathematics, Science and Technology</p><p>Education, 10(3), 155163.</p><p></p><p>Jesson, J., Matheson, L., & Lacey, F. M. (2011). Doing Your Literature Review :</p><p>Traditional and Systematic Techniques. SAGE Publications Ltd.</p><p></p><p>John P. L., Hao Wu, H., & Yu, G. (2016). Building an Evaluation Scale using Item</p><p>Response Theory. Proc Conf Empir Methods Nat Lang Process, 648657.</p><p></p><p>John, M., Bettye, S., Ezra, T., & Robert, W. (2016). A Formative Evaluation of a</p><p>Southeast High School Integrative Science, Technology, Engineering, and</p><p>Mathematics (STEM) Academy. Technology in Society, 45, 3439.</p><p></p><p>Joyce, T., Crockett, S., Jaeger, D. A., Altindag, O., & OConnell, S. D. (2015). Does</p><p>Classroom Time Matter? Economics of Education Review, 46, 6477.</p><p></p><p>Judi, H. M., Mohamed, H., Ashari, N. S. @, Jenal, R., & Hanawi, S. A. (2012).</p><p>Alignment of Statistics Course using Examination Items. Procedia - Social and</p><p>Behavioral Sciences, 59, 264269.</p><p></p><p>Kaiser, H. F. (1974). An Index of Factorial Simplicity. Psychometrika, 39, 3136.</p><p></p><p>Kementerian Pendidikan Malaysia (2013). Malaysia Education Blueprint 2013-2025</p><p>(Preschool to Post- Secondary Education). Putrajaya Malaysia: Kementerian</p><p>Pendidikan.</p><p></p><p>Kementerian Pendidikan Malaysia (2015). Malaysia Education Blueprint 2015-2025</p><p>(Higher Education). Putrajaya Malaysia: Kementerian Pengajian Tinggi.</p><p></p><p>Kementerian Pendidikan Tinggi Malaysia (2016). Rubrik PNGK Bersepadu (iCGPA)</p><p>Panduan Pentaksiran Hasil Pembelajaran. Putrajaya Malaysia: Kementerian</p><p>Pendidikan Tinggi.</p><p></p><p>Kerlinger, F. N., & Lee, H. B. (2000). Foundations of Behavioral Research (4th ed.).</p><p>Fort Worth TX: Harcourt College Publishers.</p><p></p><p>Kesselmeier, M., & Bermejo, J. L. (2017). Robust Logistic Regression to Narrow Down</p><p>the Winners Curse for Rare and Recessive Susceptibility Variants. Briefings in</p><p>Bioinformatics, 18(6), 962972.</p><p></p><p>Khajah, M. M., Huang, Y., Mozer, M. C., & Brusilovsky, P. (2015). Integrating</p><p>Knowledge Tracing and Item Response Theory : A Tale of Two Frameworks.</p><p>CEUR Workshop Proceedings, 1181, 715.</p><p></p><p>Kien-Kheng, F., Azlan, N., Noor, S., Ahmad, D., Lee, N., Leong, H., & Mohamed, I.</p><p>(2016). Relationship Between Cognitive Factors and Performance in an</p><p>Introductory Statistics Course : a Malaysian Case Study Introduction. Malaysian</p><p>Journal of Mathematical Sciences, 10(3), 269282.</p><p></p><p>Kim, S. Y., Lee, W., & Kolen, M. J. (2019). Simple-Structure Multidimensional Item</p><p>Response Theory Equating for Multidimensional Tests. Educational and</p><p>Psychological Measurement, 80(1), 91-125.</p><p></p><p>Kline, P. (2014). An Easy Guide to Factor Analysis. Routledge.</p><p></p><p>Komarudin, U., Rustaman, N. Y., & Hasanah, L. (2017). Promoting Students</p><p>Conceptual Understanding Using STEM. AIP Conference Proceedings, 1848(1).</p><p></p><p>Koretsky, M., Keeler, J., Ivanovitch, J., & Cao, Y. (2018). The Role of Pedagogical</p><p>Tools in Active Learning: a Case for Sense-making. International Journal of</p><p>STEM Education, 5(1).</p><p></p><p>Kosmidis, I. (2014). Improved Estimation in Cumulative Link Models. Journal of the</p><p>Royal Statistical Society: Series B, 76(1), 169196.</p><p></p><p>Kosmidis, I., & Firth, D. (2009). Bias Reduction in Exponential Family Nonlinear</p><p>Models. Biometrika, 96(4), 793-804.</p><p></p><p>Krasilnikov, A., & Smirnova, A. (2017). Online Social Adaptation of First-year</p><p>Students and Their Academic Performance. Computers and Education, 113, 327</p><p>338.</p><p></p><p>Krishna Kishore, K. V., Venkatramaphanikumar, S., & Alekhya, S. (2014). Prediction</p><p>of Student Academic Progression: a Case Study on Vignan University. 2014</p><p>International Conference on Computer Communication and Informatics, 16.</p><p></p><p>Kumar, S. C., Chowdary, E. D., Venkatramaphanikumar, S., & Kishore, K. V. K.</p><p>(2016). M5P Model Tree in Predicting Student Performance: a Case Study. 2016</p><p>IEEE International Conference on Recent Trends in Electronics, Information &</p><p>Communication Technology (RTEICT), 11031107.</p><p></p><p>Kumari, P., Jain, P. K., & Pamula, R. (2018). An Efficient Use of Ensemble Methods</p><p>to Predict Students Academic Performance. 2018 4th International Conference on</p><p>Recent Advances in Information Technology (RAIT), 16.</p><p></p><p>Laerd Statistics (2020). Using the PLUM Procedure to Carry Out an Ordinal Regression</p><p>in SPSS. Retrieved July 14, 2020, from https://statistics.laerd.com/spsstutorials/</p><p>ordinal-regression-using-spss-statistics-2.php</p><p></p><p>Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for</p><p>Categorical Data. Biometrics, 33(1), 159.</p><p></p><p>Li, C., & Shepherd, B. E. (2012). A New Residual for Ordinal Outcomes. Biometrika,</p><p>99(2), 473480.</p><p></p><p>Lin, M., Preston, A., Kharrufa, A., & Kong, Z. (2016). Making L2 Learners Reasoning</p><p>Skills Visible: the Potential of Computer Supported Collaborative Learning</p><p>Environments. Thinking Skills and Creativity, 22, 303322.</p><p></p><p>Linacre, J. M. (2008). The Expected Value of a Point Biserial (or Similar) Correlation.</p><p>Retrieved October 22, 2019, from</p><p>https://www.winsteps.com/winman/correlations.htm</p><p></p><p>Lipsitz, S. R., Fitzmaurice, G. M., Molenberghs, G., Lipsitzt, B. S. R., Farber, D., &</p><p>Fitzmaurice, M. (1996). Goodness-of-fit Tests for Ordinal Response Regression</p><p>Models, 45(2), 175190.</p><p></p><p>Lipsitz, S. R., Fitzmaurice, G. M., Regenbogen, S. E., Sinha, D., Ibrahim, J. G., &</p><p>Gawande, A. A. (2012). Bias Correction for the Proportional Odds Logistic</p><p>Regression Model With Application to a Study of Surgical Complications. Journal</p><p>of the Royal Statistical Society. Series C: Applied Statistics, 62(2), 233250.</p><p></p><p>Liu, D., & Zhang, H. (2017). Residuals and Diagnostics for Ordinal Regression Models:</p><p>A Surrogate Approach. Journal of the American Statistical Association, 113(522),</p><p>845854.</p><p></p><p>Lo, C. K., Hew, K. F., & Chen, G. (2017). Toward a Set of Design Principles for</p><p>Mathematics Flipped Classrooms: a Synthesis of Research in Mathematics</p><p>Education. Educational Research Review, 22, 5073.</p><p></p><p>Lopez Guarin, C. E., Guzman, E. L., & Gonzalez, F. A. (2015). A Model to Predict</p><p>Low Academic Performance at a Specific Enrollment Using Data Mining. Revista</p><p>Iberoamericana de Tecnologias Del Aprendizaje, 10(3), 119125.</p><p></p><p>Lord, F. M. (1952). A Theory of Test Scores. Psychometric Monograph, 7.</p><p></p><p>Lord, F. M. (1986). Maximum Likelihood and Bayesian Parameter Estimation in Item</p><p>Response Theory. Journal of Educational Measurement, 23(2), 157162.</p><p></p><p>Ma, T., Li, H., Wm, E., Jj, K., Manne, U., Bae, S., Kp, S. (2014). Robust Logistic</p><p>and Probit Methods for Binary and Multinomial Regression, 5(4).</p><p></p><p>Macfarlane, B. (2014). Student Performativity in Higher Education: Converting</p><p>Learning as a Private Space Into a Public Performance, Higher Education</p><p>Research & Development. 34(2), 338-350.</p><p></p><p>Magis, D., & Barrada, J. R. (2017). Computerized Adaptive Testing with R : Recent</p><p>Updates of the Package catR . Journal of Statistical Software, 76, 1-19.</p><p></p><p>Magis, D., Bland, S., Tuerlinckx, F., & de Boeck, P. (2010). A General Framework</p><p>and an R Package for the Detection of Dichotomous Differential Item Functioning.</p><p>Behavior Research Methods, 42(3), 847862.</p><p></p><p>Mahmud, Z., Ismail, N. Z.-I., Kassim, N. L. A., & Zainol, M. S. (2018). The Effects Of</p><p>Attitudes Towards Statistics, Perceived Ability, Learning Practices And Teaching</p><p>Practices On Students Performance In Statistics: A Review. Journal of Islamic</p><p>Thought and Civilization of the International Islamic University Malaysia (Iium),</p><p>(Special Issue), 7197.</p><p></p><p>Mair, P. (2020). CRAN Task View: Psychometric Models and Methods.</p><p></p><p>Mair, P., Hatzinger, R., Maier, M. J., Rusch, T., Debelak, R., & Maintainer (2020).</p><p>eRm: Extended Rasch Modeling. Retrieved from https://CRAN.Rproject.</p><p>org/package=eRm.</p><p></p><p>Maki, S., & Horita, T. (2017). Research on Statistical Literacy Using Japanese</p><p>Textbooks. 2017 6th IIAI International Congress on Advanced Applied</p><p>Informatics (IIAI-AAI), 711714.</p><p></p><p>Manor, O., & Power, C. (2000). Dichotomous or Categorical Response? Analysing</p><p>Self-rated Health and Lifetime. Int J Epidemiol, 29(1), 149157.</p><p></p><p>Marbouti, F., Diefes-Dux, H. A., & Madhavan, K. (2016). Models for Early Prediction</p><p>of at-risk Students in a Course Using Standards-based Grading. Computers and</p><p>Education, 103, 115.</p><p></p><p>Margot, K. C., & Kettler, T. (2019). Teachers Perception of STEM Integration and</p><p>Education: a Systematic Literature Review. International Journal of STEM</p><p>Education, 6.</p><p></p><p>Maria, M., Shahbodin, F., & Pee, N. C. (2018). Malaysian Higher Education System</p><p>Towards Industry 4.0- Current Trends Overview. AIP Conference Proceedings</p><p>2016, 1-7.</p><p></p><p>Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47,</p><p>149-174.</p><p></p><p>Mativo, J. M., & Huang, S. (2014). Prediction of Students Academic Performance:</p><p>Adapt a Methodology of Predictive Modeling for a Small Sample Size. 2014 IEEE</p><p>Frontiers in Education Conference (FIE) Proceedings, 13.</p><p></p><p>Mayilvaganan, M., & Kalpanadevi, D. (2014). Comparison of Classification</p><p>Techniques for Predicting the Cognitive Skill of Students in Education</p><p>Environment. 2014 IEEE International Conference on Computational Intelligence</p><p>and Computing Research, 14.</p><p></p><p>McCullagh, P. (1980). Regression Models for Ordinal Data. Journal of the Royal</p><p>Statistical Society. Series B, 42, 109142.</p><p></p><p>McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (2nd ed.). London,</p><p>New York: Chapman and Hall.</p><p></p><p>Mckelvey, D. R., & Zavoina, W. (1975). A Statistical Model for the Analysis of Ordinal</p><p>Level Dependent Variables. Journal of Mathematical Sociology, 4, 103120.</p><p></p><p>Meier, Y., Xu, J., Atan, O., & Van Der Schaar, M. (2016). Predicting Grades. IEEE</p><p>Transactions on Signal Processing, 64(4), 959972.</p><p></p><p>Mejia, A., & Filus, A. (2018). Exploring Predictors of Impact of School-based</p><p>Management in Rural Mexico: Do Student Engagement, Teacher Attitudes and</p><p>Parent Involvement Predict Better Academic Outcomes? International Journal of</p><p>Educational Research, 88, 95108.</p><p></p><p>Mignani, S., Monari, P., Cagnone, S., & Ricci, R. (2006). Multidimensional Versus</p><p>Unidimensional Models for Ability Testing. In Data Analysis, Classification and</p><p>the Forward Search, 339346.</p><p></p><p>Milaturrahmah, N., Mardiyana, & Pramudya, I. (2017). Science, Technology,</p><p>Engineering, Mathematics (STEM) as Mathematics Learning Approach in 21st</p><p>Century. AIP Conference Proceedings, 1868(1).</p><p></p><p>Mircioiu, C., & Atkinson, J. (2017). A Comparison of Parametric and Non-Parametric</p><p>Methods Applied to a Likert Scale. Pharmacy (Basel, Switzerland), 5(2), 26.</p><p></p><p>Mishra, T., Kumar, D., & Gupta, S. (2014). Mining Students Data for Prediction</p><p>Performance. International Conference on Advanced Computing and</p><p>Communication Technologies, ACCT, 255262.</p><p></p><p>Mohamad, M. M., Sulaiman, N. L., Sern, L. C., & Salleh, K. M. (2015). Measuring the</p><p>Validity and Reliability of Research Instruments. Procedia - Social and</p><p>Behavioral Sciences, 204, 164171.</p><p></p><p>Mohamed Talib, A., Alomary, F. O., & Alwadi, H. F. (2018). Assessment of Student</p><p>Performance for Course Examination Using Rasch Measurement Model: A Case</p><p>Study of Information Technology Fundamentals Course. Education Research</p><p>International, 2018, 18.</p><p></p><p>Mohamed, H., Ashaari, N. S. @, Judi, H. M., & Wook, T. S. M. T. (2012). Factors</p><p>Affecting FTSM Students Achievement in Statistics Course. Procedia - Social</p><p>and Behavioral Sciences, 59, 125129.</p><p></p><p>Mohd Ali, S., Norfarah, N., Ilya Syazwani, J. I., & Mohd Erfy, I. (2019). The Effect of</p><p>Computerized-adaptive Test on Reducing Anxiety Towards Math Test for</p><p>Polytechnic Students. Journal of Technical Education and Training, 11(4), 2735.</p><p></p><p>Mohd Rasid, N. S., Md Nasir, N. A., A/l Aperar Singh, P. S., & Cheong, T. H. (2020).</p><p>STEM Integration: Factors Affecting Effective Instructional Practices in Teaching</p><p>Mathematics. Asian Journal of University Education, 16(1), 56.</p><p>Mourtzis, D., Vasilakopoulos, A., Zervas, E., & Boli, N. (2019). Manufacturing System</p><p>Design Using Simulation in Metal Industry Towards Education 4.0. Procedia</p><p>Manufacturing, 31, 155161.</p><p></p><p>Muawiyah, D., Yamtinah, S., & Indriyanti, N. Y. (2018). Higher Education 4.0:</p><p>Assessment on Environmental Chemistry Course in Blended Learning Design.</p><p>Journal of Physics: Conference Series, 1097(1), 17.</p><p></p><p>Murad, H., Fleischman, A., Sadetzki, S., Geyer, O., & Freedman, L. S. (2003). Small</p><p>Samples and Ordered Logistic Regression: Does it Help to Collapse Categories of</p><p>Outcome? The American Statistician, 57(3), 155160.</p><p></p><p>Mutanu, L., & Machoka, P. (2019). Enhancing Computer Students Academic</p><p>Performance Through Predictive Modelling - a Proactive Approach. 14th</p><p>International Conference on Computer Science and Education, ICCSE 2019, 97</p><p>102.</p><p></p><p>Muthukrishnan, R., & Myilsamy, R. (2010). M-Estimators in Regression Models.</p><p>Journal of Mathematics Research, 2(4), 2327.</p><p></p><p>Nagelkerke, N. J. D. (1991). A Note on a General Definition of the Coefficient of</p><p>Determination. Biometrika, 78(3), 691-692.</p><p></p><p>Nahar, J., & Purwani, S. (2017). Application of Robust M-Estimator Regression in</p><p>Handling Data Outliers. In 4th ICRIEMS, 5360.</p><p></p><p>Nering, L. M., & Ostini, R. (2011). Handbook of Polytomous Item Response Theory</p><p>Models. New York, NY: Taylor & Francis Group.</p><p></p><p>Noguez, J., Neri, L., Gonzalez-Nucamendi, A., & Robledo-Rella, V. (2016).</p><p>Characteristics of Self-regulation of Engineering Students to Predict and Improve</p><p>Their Academic Performance. 2016 IEEE Frontiers in Education Conference</p><p>(FIE), 18.</p><p></p><p>Norman, C. (2014). Ordinal Methods for Behavioral Data Analysis. Psychology Press.</p><p></p><p>Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory. McGraw-Hill.</p><p></p><p>Nurgabyl, D., Kalzhanova, G., Ualiyev, N., & Abdoldinova, G. (2017). Construction</p><p>of a Mathematical Model for Calibrating Test Task Parameters and the Knowledge</p><p>Level Scale of University Students by Means of Testing. Eurasia Journal of</p><p>Mathematics, Science and Technology Education, 13(11), 74217429.</p><p></p><p>Olmus, H., Nazman, E., & Erbas, S. (2017). An Evaluation of the Two Parameter (2-</p><p>PL) IRT Models Through a Simulation Study. Gazi University Journal of Science,</p><p>30(1), 235249.</p><p></p><p>Omar, N., Haris, S. S., Hassan, R., Arshad, H., Rahmat, M., Zainal, N. F. A., & Zulkifli,</p><p>R. (2012). Automated Analysis of Exam Questions According to Blooms</p><p>Taxonomy. Procedia - Social and Behavioral Sciences, 59(1956), 297303.</p><p></p><p>ztrk, N. K., & Karabatsos, G. (2017). A Bayesian Robust IRT Outlier-Detection</p><p>Model. Applied Psychological Measurement, 41(3), 195208.</p><p></p><p>zyurt, H., & zyurt, . (2015). Ability Level Estimation of Students on Probability</p><p>Unit via Computerized Adaptive Testing. Eurasian Journal of Educational</p><p>Research, 15(58), 2744.</p><p></p><p>Pada, A. U. T., Kartowagiran, B., & Subali, B. (2016). Separation Index and Fit Items</p><p>of Creative Thinking Skills Assessment. Research and Evaluation in Education,</p><p>2(1), 1-2.</p><p></p><p>Papageorgiou, G., & Hinde, J. (2019). mixcat: Mixed Effects Cumulative Link and</p><p>Logistic Regression Models. Retrieved from https://CRAN.Rproject.</p><p>org/package=mixcat.</p><p></p><p>Pardo, A., Han, F., & Ellis, R. A. (2017). Combining University Student Self-regulated</p><p>Learning Indicators and Engagement With Online Learning Events to Predict</p><p>Academic Performance. IEEE Transactions on Learning Technologies, 10(1), 82</p><p>92.</p><p></p><p>Park, J. S., Park, C. G., & Lee, K. E. (2019). Simultaneous Outlier Detection and</p><p>Variable Selection via Difference-based Regression Model and Stochastic Search</p><p>Variable Selection. Communications for Statistical Applications and Methods,</p><p>26(2), 149161.</p><p></p><p>Partchev, I. (2017). irtoys: A Collection of Functions Related to Item Response Theory</p><p>(IRT). Retrieved from https://CRAN.R-project.org/package=irtoys.</p><p></p><p>Passante, G., & Kohnle, A. (2019). Enhancing Student Visual Understanding of the</p><p>Time Evolution of Quantum Systems. Physical Review Physics Education</p><p>Research, 15(1), 1-14.</p><p></p><p>Peterson, B., & Harrell, Frank E., J. (1990). Partial Proportional Odds Models for</p><p>Ordinal Response Variables. Applied Statistics, 39, 205217.</p><p></p><p>Pnecker, W., & Tutz, G. (2016). A General Framework for the Selection of Effect</p><p>Type in Ordinal Regression. Munich, Bavaria, Germany.</p><p></p><p>Pradeep, A., Das, S., & Kizhekkethottam, J. J. (2015). Students Dropout Factor</p><p>Prediction Using EDM Techniques. Proceedings of the IEEE International</p><p>Conference on Soft-Computing and Network Security, ICSNS 2015, 1-7.</p><p></p><p>Pregibon, D. (1982). Resistant Fits for Some Coxnmolily Used Logistic Models with</p><p>Medical Applications. Biometrics, 38(2), 485498.</p><p></p><p>Pruscha, H. (1994). Partial Residuals in Cumulative Regression Models for Ordinal</p><p>Data. Statistical Papers, 35(1), 273284.</p><p></p><p>Pulkstenis, E., & Robinson, T. J. (2004). Goodness-of-fit Tests for Ordinal Response</p><p>Regression Models. Statistics in Medicine, 23(6), 9991014.</p><p></p><p>Radmehr, F., & Drake, M. (2018a). An Assessment-based Model for Exploring the</p><p>Solving of Mathematical Problems: Utilizing Revised Blooms Taxonomy and</p><p>Facets of Metacognition. Studies in Educational Evaluation, 59, 4151.</p><p></p><p>Radmehr, F., & Drake, M. (2018b). Revised Blooms Taxonomy and Major Theories</p><p>and Frameworks That Influence the Teaching, Learning, and Assessment of</p><p>Mathematics: a Comparison. International Journal of Mathematical Education in</p><p>Science and Technology, 50(6), 895-920.</p><p></p><p>Raines, T. C., Gordon, M., Harrell-williams, L., Diliberto, R. A., Parke, E. M., Raines,</p><p>T. C., Diliberto, R. A. (2017). Adaptive Skills and Academic Achievement in</p><p>Latino Students. Journal of Applied School Psychology, 33(4), 245260.</p><p></p><p>Rajeswari, S., & Lawrance, R. (2016). Classification Model to Predict the Learners</p><p>Academic Performance Using Big Data. 2016 International Conference on</p><p>Computing Technologies and Intelligent Data Engineering (ICCTIDE16), 16.</p><p></p><p>Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests.</p><p>(Copenhagen, Danish Institute for Educational Research), expanded edition</p><p>(1980) with foreword and afterword by B. D. Wright. Chicago: The University of</p><p>Chicago Press.</p><p></p><p>Rasheed, B. A., Adnan, R., Saffari, S. E., & Pati, K. (2014). Robust Weighted Least</p><p>Squares Estimation of Regression Parameter in the Presence of Outliers and</p><p>Heteroscedastic Errors. Jurnal Teknologi, 71(1), 1118.</p><p></p><p>Raus, M. I. M., Janor, R. M., Sadjirin, R., & Sahri, Z. (2014). The Development of i-</p><p>QuBES for UiTM: From Feasibility Study to the Design Phase. Proceedings -</p><p>2014 5th IEEE Control and System Graduate Research Colloquium, ICSGRC</p><p>2014, 96101.</p><p></p><p>Reckase, M. D. (2009). Multidimensional Item Response Theory Models. New York,</p><p>NY: Springer New York.</p><p></p><p>Ren, Z., & Sweeney, M. (2016). Predicting Student Performance Using Personalized</p><p>Analytics. Computer, 49(4), 6169.</p><p></p><p>Rezaie, M., & Golshan, M. (2015). Computer Adaptive Test (CAT): Advantages and</p><p>Limitations. International Journal of Educational Investigations Available</p><p>Online, 2(5), 128137.</p><p></p><p>Riani, M., Torti, F., & Zani, S. (2012). Outliers and Robustness for Ordinal Data.</p><p>Modern Analysis of Customer Surveys: with applications using R (1st ed.), 155</p><p>169.</p><p></p><p>Ricardo, A. M., Douglas, R. M., Victor, J. Y., & Matias, S. B. (2019). Robust Statistics</p><p>Theory and Methods (with R) (2nd ed.). John Wiley & Sons Ltd.</p><p></p><p>Riese, A., Rappaport, L., Alverson, B., Park, S., & Rockney, R. M. (2017). Clinical</p><p>Performance Evaluations of Third-Year Medical Students and Association With</p><p>Student and Evaluator Gender. Academic Medicine, 92(6), 835840.</p><p></p><p>Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., & Firth, D. (2020).</p><p>MASS: Support Functions and Datasets for Venables and Ripley's MASS.</p><p>Retrieved from https://CRAN.R-project.org/package=MASS.</p><p></p><p>Rizopoulos, D. (2006). ltm : An R Package for Latent Variable Modeling. Journal Of</p><p>Statistical Software, 17(5), 125.</p><p></p><p>Rizopoulos, D. (2018). Package ltm Title Latent Trait Models under IRT. Retrieved</p><p>from http://www.jstatsoft.org/v17/.</p><p></p><p>Rojko, A. (2017). Industry 4.0 Concept : Background and Overview. International</p><p>Journal of Interactive Mobile Technologies (IJIM), 11(5), 7790.</p><p></p><p>Ronald, K. H., & Russell W. J. (1993). Comparison of Classical Test Theory and Item</p><p>Response Theory and Their Applications to Test Development. Educational</p><p>Measurement: Issues and Practice, 38-47.</p><p></p><p>Rosaini, R., Budiyono, B., & Pratiwi, H. (2019). Mathematics Teacher Supporting</p><p>Higher Order Thinking Skill of Students Through Assessment as Learning in</p><p>Instructional Model. Journal of Physics: Conf. Series, 1157.</p><p></p><p>Rousseeuw, P. J., & Leroy, A. M. (1987). Robust Regression and Outlier Detection.</p><p>Hoboken, NJ, USA: John Wiley & Sons, Inc.</p><p></p><p>Rousseeuw, P. J., & van Driessen, K. (1999). A Fast Algorithm for the Minimum</p><p>Covariance Determinant Estimator. Technometrics, 41(3), 212.</p><p></p><p>Rubio, D. M., Berg-Weger, M., Tebb, S. S., Lee, E. S., & Rauch, S. (2003).</p><p>Objectifying Content Validity: Conducting a Content Validity Study in Social</p><p>Work Research. Social Work Research, 27(2), 94104.</p><p></p><p>Ruckstuhl, A. (2016). Robust Fitting of Parametric Models Based on M-Estimation.</p><p></p><p>Rusch, T., Mair, P., & Hatzinger, R. (2013). Psychometrics with R: A Review of CRAN</p><p>Packages for Item Response Theory. Discussion Paper Series of the Center for</p><p>Empirical Research Methods, 128.</p><p></p><p>Rusimamto, P. W., Nurlaela, L., Sumbawati, M. S., Munoto, & Samani, M. (2019).</p><p>Development of Critical and Creative Thinking Skills to Increase Competence of</p><p>PLC Programming for Electrical Engineering Education Students. IOP</p><p>Conference Series: Materials Science and Engineering, 535(1).</p><p></p><p>Sagala, P. N., & Andriani, A. (2019). Development of Higher-Order Thinking Skills</p><p>(HOTS) Questions of Probability Theory Subject Based on Blooms Taxonomy.</p><p>Journal of Physics: Conference Series, 1188(1), 113.</p><p></p><p>Sagar, P., Prinima, & Indu (2017). Analysis of Prediction Techniques based on</p><p>Classification and Regression General Terms. International Journal of Computer</p><p>Applications, 163(7), 47-51.</p><p></p><p>Said-metwaly, S., Kyndt, E., & Noortgate, W. Van Den. (2019). The Factor Structure</p><p>of the Verbal Torrance Test of Creative Thinking in an Arabic Context: Classical</p><p>Test Theory and Multidimensional Item Response Theory Analyses. Thinking</p><p>Skills and Creativity, 35.</p><p></p><p>Salim, N. R., Fauzi, A., & Ayub, M. (2017). Relationship Between Mathematics</p><p>Statistics Engagement and Attitudes Towards Statistics Among Undergraduate</p><p>Students in Malaysia. AIP Conference Proceedings, 1795.</p><p></p><p>Sall, J. (1991). A Monotone Regression Smoother Based on Ordinal Cumulative</p><p>Logistic Regression. ASA Proceedings of Statistical Computing Section, 276281.</p><p></p><p>Salzberger, T., & Koller, M. (2019). The Direction of the Response Scale Matters-</p><p>Accounting for the Unit of Measurement. European Journal of Marketing, 53(5),</p><p>871891.</p><p></p><p>Samejima, F. (1972). A General Model for Free-Response. Psychometrika, 35(18),139.</p><p></p><p>SAS Institute Inc. (2017). SAS/STAT 14.3 Users Guide The CATMOD Procedure.</p><p>Retrieved from http://support.sas.com/thirdpartylicenses.</p><p></p><p>SAS Institute Inc. (2019). SAS Help Center: PROC LOGISTIC Statement. Retrieved</p><p>July 12, 2020, from https://documentation.sas.com.</p><p></p><p>SAS Institute Inc. (2020). What is a Data Scientist?. Retrieved April 21, 2020, from</p><p>https://www.sas.com/en_my/insights/analytics/what-is-a-data-scientist.html</p><p></p><p>Seheult, A. H., Green, P. J., Rousseeuw, P. J., & Leroy, A. M. (2006). Robust</p><p>Regression and Outlier Detection. Journal of the Royal Statistical Society. Series</p><p>A (Statistics in Society), 152(1), 133.</p><p></p><p>Seifu, G. (2016). Assessment of the Implementation of Continuous Assessment : the</p><p>Case of METTU University. Europian Journal of Science and Mathematics</p><p>Education, 4(4), 534544.</p><p></p><p>Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Students</p><p>Performance Using Data Mining Techniques. Procedia Computer Science, 72,</p><p>414422.</p><p></p><p>Sharif, S., & Atiany, T. A. M. (2018). Testing Several Correlation Matrices Using</p><p>Robust Approach. Asian Journal of Scientific Research, 11(1), 8495.</p><p></p><p>Sheng, Y., & Wikle, C. K. (2009). Bayesian IRT Models Incorporating General and</p><p>Specific Abilities. Behaviormetrika, 36(1), 2748.</p><p></p><p>Sikder, M. F., Uddin, M. J., & Halder, S. (2016). Predicting Students Yearly</p><p>Performance Using Neural Network: a Case Study of BSMRSTU. 2016 5th</p><p>International Conference on Informatics, Electronics and Vision (ICIEV), 524</p><p>529.</p><p></p><p>Simeckova, M. (2005). Maximum Weighted Likelihood Estimator in Logistic</p><p>Regression. In WDS05 Proceedings of Contributed Papers, 144148.</p><p></p><p>Slim, A., Heileman, G. L., Kozlick, J., & Abdallah, C. T. (2015). Predicting Student</p><p>Success Based on Prior Performance. In Proceedings - 2014 IEEE Symposium on</p><p>Computational Intelligence and Data Mining (CIDM), 410415.</p><p></p><p>Smith, E. V. (2002). Detecting and Evaluating the Impact of Multidimensionality Using</p><p>Item Fit Statistics and Principal Component Analysis of Residuals. Journal of</p><p>Applied Measurement, 3(2), 205231.</p><p></p><p>Smith, G. (2018). Step Away From Stepwise. Journal of Big Data, 5(32), 112.</p><p></p><p>Snell, E. J., Cox, D., & Cox, R. (1987). Applied Statistics: A Handbook of BMDPTM</p><p>Analyses. Springer Science Business Media.</p><p></p><p>Solihatun, S., Rangka, I. B., Ratnasari, D., Radyati, A., Siregar, Y., Wulansari, L., </p><p>Rahim, R. (2019). Measuring of Student Learning Performance Based on</p><p>Geometry Test for Middle Class in Elementary School Using Dichotomous Rasch</p><p>Analysis. Journal of Physics: Conference Series, 1157(3), 1-7.</p><p></p><p>Sorour, S. E., Mine, T., Goda, K., & Hirokawa, S. (2015). Predicting Students Grades</p><p>Based on Free Style Comments Data by Artificial Neural Network. Proceedings -</p><p>Frontiers in Education Conference, FIE, 1-9.</p><p></p><p>Sothan, S. (2018). The Determinants of Academic Performance : Evidence From a</p><p>Cambodian University. Studies in Higher Education, 44(11), 2096-2111.</p><p></p><p>SSI (2020a). BILOGMG. Retrieved July 14, 2020, from</p><p>https://ssicentral.com/index.php/products/bilogmg-gen/</p><p>SSI (2020b). PARSCALE. Retrieved July 14, 2020, from</p><p>https://ssicentral.com/index.php/products/psl-general/</p><p></p><p>Steyer, R. (2015). Classical (Psychometric) Test Theory. International Encyclopedia of</p><p>the Social & Behavioral Sciences, 3, 785-791.</p><p></p><p>Sturman, E. D., & Zappala-Piemme, K. (2017). Development of the Grit Scale for</p><p>Children and Adults and Its Relation to Student Efficacy, Test Anxiety, and</p><p>Academic Performance. Learning and Individual Differences, 59, 110.</p><p></p><p>Summers, M. M., Couch, B. A., Knight, J. K., Brownell, S. E., Crowe, A. J., Semsar,</p><p>K., Smith, M. K. (2018). EcoEvo-MAPS: An Ecology and Evolution</p><p>Assessment for Introductory Through Advanced Undergraduates. CBE Life</p><p>Sciences Education, 17(2).</p><p></p><p>Susanti, Y., Pratiwi, H., H., S. S., & Liana, T. (2014). M Estimation, S Estimation, and</p><p>MM Estimation in Robust Regression. International Journal of Pure and Applied</p><p>Mathematics, 91(3), 349360.</p><p></p><p>SwMATH (2020). MULTILOG- Mathematical Software. Retrieved July 14, 2020,</p><p>from http://swmath.org/software/24168</p><p></p><p>Tai, J., Dawson, P., Panadero, E., Boud, D., & Ajjawi, R. (2017). Developing</p><p>Evaluative Judgement: Enabling Students to Make Decisions About the Quality of</p><p>Work. Higher Education, 467481.</p><p></p><p>TalentCorp (2019). Semak Apa Pekerjaan Masa Hadapan Untuk Anda. Petaling Jaya.</p><p>Retrieved from https://www.talentcorp.com.my/clients/TalentCorp.</p><p></p><p>Tawil, N. M., Ismail, N. A., Asshaari, I., Osman, H., Nopiah, Z. M., & Zaharim, A.</p><p>(2012). Comparing Lecture and E-learning as Learning Process in Mathematics</p><p>and Statistics Courses for Engineering Students in Universiti Kebangsaan</p><p>Malaysia. Procedia - Social and Behavioral Sciences, 60, 420425.</p><p></p><p>Tekkumru-Kisa, M., & Stein, M. K. (2017). A Framework for Planning and Facilitating</p><p>Video-based Professional Development. International Journal of STEM Education, 4, 28.</p><p></p><p>Testa, S., Toscano, A., & Rosato, R. (2018). Distractor Efficiency in an Item Pool for</p><p>a Statistics Classroom Exam: Assessing Its Relation With Item Cognitive Level</p><p>Classified According to Blooms Taxonomy. Frontiers in Psychology, 9, 112.</p><p></p><p>Thaneerananon, T., Triampo, W., & Nokkaew, A. (2016). Development of a Test to</p><p>Evaluate Students Analytical Thinking Based on Fact versus Opinion</p><p>Differentiation. International Journal of Instruction, 9(2), 123138.</p><p></p><p>Tharwat, A. (2009). Principal Component Analysis-A Tutorial.</p><p></p><p>Thiele, T., Singleton, A., Pope, D., & Stanistreet, D. (2016). Predicting Students</p><p>Academic Performance Based on School and Socio-demographic Characteristics.</p><p>Studies in Higher Education, 41(8), 1424-1446.</p><p></p><p>Thompson, L. A. (2009). R (and S-PLUS) Manual to Accompany Agrestis Categorical</p><p>Data Analysis (2002) 2nd edition. Categorical Data Analysis.</p><p></p><p>Tijmstra, J., & Bolsinova, M. (2019). Bayes Factors for Evaluating Latent Monotonicity</p><p>in Polytomous Item Response Theory Models. Psychometrika, 84(3), 846869.</p><p></p><p>Tutz, G. (2014). Regression for Categorical Data. Cambridge: Cambridge University</p><p>Press.</p><p></p><p>Ueckert, S. (2018). Modeling Composite Assessment Data Using Item Response</p><p>Theory. CPT: Pharmacometrics and Systems Pharmacology, 7(4), 205218.</p><p></p><p>nl, A., & Yanagida, T. (2011). R You Ready for R?: The CRAN Psychometrics Task</p><p>View. British Journal of Mathematical and Statistical Psychology, 64(1), 182</p><p>186.</p><p></p><p>van der Linden, W. J. (2016). Handbook of Item Response Theory Volume One.</p><p>London, New York: Taylor & Francis Group.</p><p></p><p>van der Linden, W. J. (2018). Handbook of Item Response Theory Volume Three:</p><p>Applications. London, New York: Taylor & Francis Group.</p><p></p><p>van der Zanden, P. J. A. C., Denessen, E., Cillessen, A. H. N., & Meijer, P. C. (2018).</p><p>Domains and Predictors of First-year Student Success: a Systematic Review.</p><p>Educational Research Review, 23, 5777.</p><p></p><p>Villagr-Arnedo, C. J., Gallego-Durn, F. J., Llorens-Largo, F., Compa-Rosique, P.,</p><p>Satorre-Cuerda, R., Molina-Carmona, R., Molina-Carmona, R. (2017).</p><p>Improving the Expressiveness of Black-box Models for Predicting Student</p><p>Performance. Computers in Human Behavior, 72, 621631.</p><p></p><p>Villarroel, V., Boud, D., Bloxham, S., Bruna, D., & Bruna, C. (2020). Using Principles</p><p>of Authentic Assessment to Redesign Written Examinations and Tests.</p><p>Innovations in Education and Teaching International, 57(1), 3849.</p><p></p><p>Vora, D. R., & Rajamani, K. (2019). A Hybrid Classification Model for Prediction of</p><p>Academic Performance of Students : a Big Data Application. Evolutionary</p><p>Intelligence.</p><p></p><p>Walker, S. H., & Duncan, D. B. (1967). Estimation of the Probability of an Event as a</p><p>Function of Several Independent Variables. Biometrika, 54, 167179.</p><p></p><p>Wang, J. C., & Holan, S. H. (2012). Bayesian Multi-regime Smooth Transition</p><p>Regression With Ordered Categorical Variables. Computational Statistics and</p><p>Data Analysis, 56(12), 41654179.</p><p></p><p>Wang, R., Hao, P., Zhou, X., Campbell, A. T., & College, D. (2015). SmartGPA:</p><p>Academic Performance Can Assess and Predict How Smartphones of College</p><p>Students. In the 2015 ACM International Joint Conference on Ubiquitous</p><p>Computing (UbiComp 2015), 19, 1317.</p><p></p><p>Watan, S., & Sugiman. (2018). Exploring the Relationship Between Teachers</p><p>Instructional and Students Geometrical Thinking Levels Based on Van Hiele</p><p>Theory. Journal of Physics: Conference Series, 1097(1).</p><p></p><p>Weng, T. S., & Yang, D. C. (2017). Research on Mathematical Animation Using Pascal</p><p>Animation as an Example. Eurasia Journal of Mathematics, Science and</p><p>Technology Education, 13(6), 16871699.</p><p></p><p>Whitney, B. M., Cheng, Y., Brodersen, A. S., & Hong, M. R. (2018). The Scale of</p><p>Student Engagement in Statistics: Development and Initial Validation. Journal of</p><p>Psychoeducational Assessment, 37(5), 553-565.</p><p></p><p>Wijekoon, C. N., Amaratunge, H., Silva, Y. De, & Senanayake, S. (2017). Emotional</p><p>Intelligence and Academic Performance of Medical Undergraduates : a Crosssectional</p><p>Study in a Selected University in Sri Lanka. BMC Medical Education,</p><p>17(176), 111.</p><p></p><p>Williams, R. A. (2016). Ordinal Regression Models : Problems, Solutions, and</p><p>Problems With the Solutions. Stata Users Group, German Stata Users' Group</p><p>Meetings 2008.</p><p></p><p>Winsteps (2020). Rasch Analysis + Rasch Measurement Software + 1PL IRT.</p><p>Retrieved July 14, 2020, from https://www.winsteps.com/index.htm</p><p></p><p>Wright, B. D., & Panchapakesan, N. (1969). A Procedure for Sample-Free Item</p><p>Analysis. Educational and Psychological Measurement, 29, 2348.</p><p></p><p>Xu, J., Moon, K. H., & van der Schaar, M. (2017). A Machine Learning Approach for</p><p>Tracking and Predicting Student Performance in Degree Programs. IEEE Journal</p><p>of Selected Topics in Signal Processing, 11(5), 742753.</p><p></p><p>Ye, F., & Lord, D. (2014). Comparing Three Commonly Used Crash Severity Models</p><p>on Sample Size Requirements: Multinomial Logit, Ordered Probit and Mixed</p><p>Logit Models. Analytic Methods in Accident Research, 1, 7285.</p><p></p><p>Yee, T., & Moler, C. (2020). VGAM: Vector Generalized Linear and Additive Models.</p><p>Retrieved from https://CRAN.R-project.org/package=VGAM.</p><p></p><p>Yen, T. S., & Halili, S. H. (2015). Effective Teaching of Higher-Order Thinking (HOT)</p><p>in Education. Distance Education and E-Learning, 3(2), 4147.</p><p></p><p>You, H. S., Kim, K., Black, K., & Min, K. W. (2018). Assessing Science Motivation</p><p>for College Students: Validation of the Science Motivation Questionnaire II Using</p><p>the Rasch-andrich Rating Scale Model. Eurasia Journal of Mathematics, Science</p><p>and Technology Education, 14(4), 11611173.</p><p></p><p>Young, D. E., & Meredith, D. C. (2017). Using the Resources Framework to Design,</p><p>Assess, and Refine Interventions on Pressure in Fluids. Physical Review Physics</p><p>Education Research, 13(1), 116.</p><p></p><p>Yusof, A. L., Naim, N. F., Latip, M. F. A., Aminuddin, N., & Yaacob, N. (2017).</p><p>Implementation of Integrated Cumulative Grade Point Average (iCGPA) Towards</p><p>Academic Excellence in Malaysia. In 2017 IEEE 9th International Conference on</p><p>Engineering Education (ICEED), 106109.</p><p></p><p>Zainudin, S., Ahmad, K., Ali, N. M., & Zainal, N. F. A. (2012). Determining Course</p><p>Outcomes Achievement Through Examination Difficulty Index Measurement.</p><p>Procedia - Social and Behavioral Sciences, 59, 270276.</p><p></p><p>Zhang, Q., & Stephens, M. (2016). Profiling Teacher Capacity in Statistical Thinking</p><p>of National Curriculum Reform: a Comparative Study Between Australia and</p><p>China. Eurasia Journal of Mathematics, Science and Technology Education,</p><p>12(4), 733746.</p><p></p><p>Zollanvari, A., Kizilirmak, R. C., Kho, Y. H., & Hernandez-Torrano, D. (2017).</p><p>Predicting Students GPA and Developing Intervention Strategies Based on Self-</p><p>Regulatory Learning Behaviors. IEEE Access, 5, 23792-23802.</p><p></p><p>Zulkifli, F., Abidin, R. Z., & Mohamed, Z. (2019). Evaluating the Quality of Exam</p><p>Questions: a Multidimensional Item Response. International Journal of Recent</p><p>Technology and Engineering, 8(2 Special Issue 11), 606612.</p><p></p><p>Zulkifli, F., Abidin, R. Z., Razi, N. F. M., Mohammad, N. H., Ahmad, R., & Azmi, A.</p><p>Z. (2018). Evaluating Quality and Reliability of Final Exam Questions for</p><p>Probability and Statistics Course Using Rasch Model. International Journal of</p><p>Engineering and Technology(UAE), 7(4), 3236.</p><p></p>