Response of cyanobacteria and macrophytes communities on selected nutrients in Slim River lake ecosystem

<p>This study aimed to determine the response of cyanobacteria and macrophytes</p><p>communities on selected nutrients in Slim River Lake ecosystem. The sampling was</p><p>carried out twice a month at six sampling sites for 13 mon...

Full description

Saved in:
Bibliographic Details
Main Author: Amy Rose Aeriyanie A Rahman
Format: thesis
Language:eng
Published: 2021
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=7404
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:7404
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QR Microbiology
spellingShingle QR Microbiology
Amy Rose Aeriyanie A Rahman
Response of cyanobacteria and macrophytes communities on selected nutrients in Slim River lake ecosystem
description <p>This study aimed to determine the response of cyanobacteria and macrophytes</p><p>communities on selected nutrients in Slim River Lake ecosystem. The sampling was</p><p>carried out twice a month at six sampling sites for 13 months for lake water and 12</p><p>months for stormwater runoff. Lake water level was measured monthly to develop a</p><p>bathymetric map. Total phosphorus and total nitrogen concentration in lake water and</p><p>stormwater runoff were analyzed using ascorbic acid and hydrazine reduction methods,</p><p>respectively. Internal nutrients loading was calculated during five identified dry</p><p>periods, while external nutrients loading was calculated at every storm event. Total</p><p>chlorophyll-a of all phytoplankton taxa, cyanobacteria biomass, cyanobacteria</p><p>biovolume, and total macrophyte abundance were also measured throughout the</p><p>sampling period. The result indicated that Slim River Lake has a mean depth of 3.84 m.</p><p>In-lake total phosphorus and total nitrogen concentrations were found to be</p><p>significantly correlated with internal total phosphorus (r=0.82, p<0.05) and total</p><p>nitrogen (r=0.60, p<0.05) loading. Meanwhile, total chlorophyll-a, cyanobacteria</p><p>biomass, and total cyanobacteria biovolume significantly correlated with internal total</p><p>phosphorus loading. In contrast, total macrophyte abundance significantly correlated</p><p>with external total phosphorus (r=0.50, p<0.05) and external total nitrogen (r=0.44,</p><p>p<0.05) loading. Based on PCA model, internal nutrients loading is a primary</p><p>contributor to the lake's eutrophication progression. In conclusion, sediments nutrient</p><p>is a significant source of nutrient which mainly enhance the primary productivity in</p><p>Slim River Lake. This research implicates that internal nutrients loading should be</p><p>reduced to manage eutrophication problem in this lake.</p>
format thesis
qualification_name
qualification_level Doctorate
author Amy Rose Aeriyanie A Rahman
author_facet Amy Rose Aeriyanie A Rahman
author_sort Amy Rose Aeriyanie A Rahman
title Response of cyanobacteria and macrophytes communities on selected nutrients in Slim River lake ecosystem
title_short Response of cyanobacteria and macrophytes communities on selected nutrients in Slim River lake ecosystem
title_full Response of cyanobacteria and macrophytes communities on selected nutrients in Slim River lake ecosystem
title_fullStr Response of cyanobacteria and macrophytes communities on selected nutrients in Slim River lake ecosystem
title_full_unstemmed Response of cyanobacteria and macrophytes communities on selected nutrients in Slim River lake ecosystem
title_sort response of cyanobacteria and macrophytes communities on selected nutrients in slim river lake ecosystem
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2021
url https://ir.upsi.edu.my/detailsg.php?det=7404
_version_ 1747833391605088256
spelling oai:ir.upsi.edu.my:74042022-09-19 Response of cyanobacteria and macrophytes communities on selected nutrients in Slim River lake ecosystem 2021 Amy Rose Aeriyanie A Rahman QR Microbiology <p>This study aimed to determine the response of cyanobacteria and macrophytes</p><p>communities on selected nutrients in Slim River Lake ecosystem. The sampling was</p><p>carried out twice a month at six sampling sites for 13 months for lake water and 12</p><p>months for stormwater runoff. Lake water level was measured monthly to develop a</p><p>bathymetric map. Total phosphorus and total nitrogen concentration in lake water and</p><p>stormwater runoff were analyzed using ascorbic acid and hydrazine reduction methods,</p><p>respectively. Internal nutrients loading was calculated during five identified dry</p><p>periods, while external nutrients loading was calculated at every storm event. Total</p><p>chlorophyll-a of all phytoplankton taxa, cyanobacteria biomass, cyanobacteria</p><p>biovolume, and total macrophyte abundance were also measured throughout the</p><p>sampling period. The result indicated that Slim River Lake has a mean depth of 3.84 m.</p><p>In-lake total phosphorus and total nitrogen concentrations were found to be</p><p>significantly correlated with internal total phosphorus (r=0.82, p<0.05) and total</p><p>nitrogen (r=0.60, p<0.05) loading. Meanwhile, total chlorophyll-a, cyanobacteria</p><p>biomass, and total cyanobacteria biovolume significantly correlated with internal total</p><p>phosphorus loading. In contrast, total macrophyte abundance significantly correlated</p><p>with external total phosphorus (r=0.50, p<0.05) and external total nitrogen (r=0.44,</p><p>p<0.05) loading. Based on PCA model, internal nutrients loading is a primary</p><p>contributor to the lake's eutrophication progression. In conclusion, sediments nutrient</p><p>is a significant source of nutrient which mainly enhance the primary productivity in</p><p>Slim River Lake. This research implicates that internal nutrients loading should be</p><p>reduced to manage eutrophication problem in this lake.</p> 2021 thesis https://ir.upsi.edu.my/detailsg.php?det=7404 https://ir.upsi.edu.my/detailsg.php?det=7404 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abdel-Tawwab, M., Monier, M. N., Hoseinifar, S. H., & Faggio, C. (2019). Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiology and Biochemistry, 45(3), 9971013. https://doi.org/10.1007/s10695-019-00614-9</p><p></p><p>Aeriyanie, A. R., Sinang, S. C., Nayan, N., & Song, H. (2020). Comparison of water level and eutrophication indicators during the wet and dry period in a eutrophic urban lake. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2020.03.003.</p><p></p><p>Afshar, A., Saadatpour, M., & Marino, M. A. (2012). Development of a Complex System Dynamic Eutrophication Model : Application to Karkheh Reservoir. Environmental Engineering Science, 29(6). https://doi.org/10.1089/ees.2010.0203.</p><p></p><p>Ahlvik, L., & Hyytiinen, K. (2015). Value of adaptation in water protection Economic impacts of uncertain climate change in the Baltic Sea. Ecological Economics, 116, 231240. https://doi.org/10.1016/j.ecolecon.2015.04.027.</p><p></p><p>Akdeniz, S., Karaer, F., Katip, A., & Aksoy, E. (2011). A GIS-based Method for Shallow Lake Eutrophication Assessment. Journal of Biological Environmental Science, 5(15), 195202.</p><p></p><p>Akpor, O. B., & Muchie, M. (2011). Environmental and public health implications of wastewater quality. African Journal of Biotechnology, 10(13), 23792387. https://doi.org/10.5897/AJB10.1797.</p><p></p><p>Alahuhta, J. (2014). Geographic patterns of lake macrophyte communities and species richness at regional scale. Journal of Vegetation Science, 112. https://doi.org/10.1111/jvs.12261.</p><p></p><p>Alahuhta, J., Kanninen, A. K., Hellsten, S., & Vuori, K. (2013). Variable response of functional macrophyte groups to lake characteristics, land use, and space: implications for bioassessment. Hydrobiologia. https://doi.org/10.1007/s10750-013-1722-3.</p><p></p><p>Alexander, T. J., Vonlanthen, P., & Seehausen, O. (2017). Does eutrophication-driven evolution change aquatic ecosystems? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1712), 20160041.https://doi.org/10.1098/rstb.2016.0041.</p><p></p><p>Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavas, I., nay, A., et al (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability (Switzerland), 12(5), 133. https://doi.org/10.3390/su12051927.</p><p></p><p>Aliyu, A. D., Go, R., Omar, H., Sharifuddin, S. S., Muhammad, A., & Fazli, B. (2019). Water quality characteristic of the national hydraulic research institute of Malaysia (NAHRIM) lake undergoing remediation by the constructed wetlands: A baseline study. Pertanika Journal of Science and Technology, 27(2), 565587.</p><p></p><p>Anagnostou, E., Gianni, A., & Zacharias, I. (2017). Ecological modeling and eutrophication: A review. Natural Resource Modeling, 127. https://doi.org/10.1111/nrm.12130.</p><p></p><p>Ansari, A. A., & Gill, S. S. (2014). Eutrophication: Causes, consequences and control: Volume 2. Eutrophication: Causes, Consequences and Control: Volume 2 .https://doi.org/10.1007/978-94-007-7814-6.</p><p></p><p>Antonielli, M., Pasqualini, S., Batini, P., Ederli, L., Massacci, A., & Loreto, F. (2002). Physiological and anatomical characterisation of Phragmites australis leaves. Aquatic Botany, 72, 5566.</p><p></p><p>APHA. (2005). Standard Methods for the Examination of Water and Wastewater (21st ed.). American Public Health Association, American Water Works Association, Water Environment Federation. Washington, DC.</p><p></p><p>Aqeel, M., Jamil, M., & Yusoff, I. (2013). Evaluation of Natural Phytoremediation Process occurring at Ex-tin Mining Catchment. Chiang Mai J. Sci., 40(2), 198213.</p><p></p><p>Arab, S., Hamil, S., Rezzaz, M. A., Chaffai, A., & Arab, A. (2019). Seasonal variation of water quality and phytoplankton dynamics and diversity in the surface water of Boukourdane Lake, Algeria. Arabian Journal of Geosciences, 12(2). https://doi.org/10.1007/s12517-018-4164-4.</p><p></p><p>Arkian, F., Nicholson, S. E., & Ziaie, B. (2016). Meteorological factors affecting the sudden decline in Lake Urmias water level. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-016-1992-6.</p><p></p><p>Arunbabu, E., Ravichandran, S., & Sreeja, P. (2014). Sedimentation and internal phosphorus loads in Krishnagiri Reservoir, India. Lakes and Reservoirs: Research and Management, 19, 161173. https://doi.org/10.1111/lre.12069.</p><p></p><p>Ashraf, M A., Maah, M. J., & Yusoff, I. (2010). Water quality characterization of Varsity Lake, University of Malaya, Kuala Lumpur, Malaysia. E-Journal of Chemistry, 7(s1), S245S254. https://doi.org/10.1155/2010/396215.</p><p></p><p>Ashraf, M. A., Maah, M. J., & Yusoff, I. (2012). Morphology, Geology and Water Quality Assessment of Former Tin Mining Catchment. The Scientific World Journal, 2012. https://doi.org/10.1100/2012/369206.</p><p></p><p>Aydin Uncumusaolu, A. (2018). Statistical assessment of water quality parameters for pollution source identification in Bekta pond (Sinop, Turkey). Global Nest Journal, 20(1), 151160. https://doi.org/10.30955/gnj.002369.</p><p></p><p>Azevedo, S. M. F. O., Carmichael, W. W., Jochimsen, E. M., Rinehart, K. L., Lau, S., Shaw, G. R., & Eaglesham, G. K. (2002). Human intoxication by microcystins during renal dialysis treatment in Caruaru- Brazil. Toxicology, 182, 441446.</p><p></p><p>Aziz, A., Latiff, A., Tarmizi, A., Karim, A., Ahmad, A. S., Ridzuan, M. B., & Hung, Y. (2012). Phytoremediation of Metals in Industrial Sludge by Cyperus Kyllingia- Rasiga, Asystassia Intrusa and Scindapsus Pictus Var Argyaeus Plant Species. International Journal of Integrated Engineering , 4(2), 18.</p><p></p><p>Bakker, E. S., & Hilt, S. (2016). Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquatic Ecology, 50(3), 485498. https://doi.org/10.1007/s10452-015-9556-x.</p><p></p><p>Bakr, R. O. (2019). Nymphaea alba and Liver Protection. In Watson, R.R. & Preedy, V.R. (Eds.), Dietary Interventions in Liver Disease (pp. 135143). United States: Elsevier Inc. https://doi.org/10.1016/B978-0-12-814466-4.00011-2</p><p></p><p>Ballo, S., Liu, M., Hou, L., & Chang, J. (2009). Pollutants in stormwater runoff in Shanghai (China): Implications for management of urban runoff pollution. Progress in Natural Science, 19(7), 873880. https://doi.org/10.1016/j.pnsc.2008.07.021.</p><p></p><p>Bando, F. M., Michelan, T. S., Cunha, E. R., Figueiredo, B. R. S., & Thomaz, S. M. (2015). Macrophyte species richness and composition are correlated with canopy openness and water depth in tropical floodplain lakes. Brazilian Journal of Botany, 38(2), 289294. https://doi.org/10.1007/s40415-015-0137-y.</p><p></p><p>Barbosa, J. S. B., Bellotto, R., Silva, D. B., & Lima, T. B. (2019). Nitrogen and Phosphorus Budget for a Deep Tropical Reservoir of the Brazilian Savannah. Water.</p><p></p><p>Bartodziej, W. M., Blood, S. L., & Pilgrim, K. (2017). Aquatic plant harvesting: An economical phosphorus removal tool in an urban shallow lake. J. Aquat. Plant Manage, 55(2008), 2634.</p><p></p><p>Bashar Bhuiyan, A., Mokhtar, M. B., Toriman, M. E., Gasim, M. B., Ta, G. C., Elfithri, R., & Razman, M. R. (2013). The environmental risk and water pollution: A review from the river basins around the world. American-Eurasian Journal of Sustainable Agriculture.</p><p></p><p>Bednarz, R., Latimore, J. and Steen, P. 2008. Cooperative Lakes Monitoring Program 2008 annual summary report. MI/DEQ/ WB-09/005. Michigan Department of Environmental Quality, Lansing, Michigan</p><p></p><p>Bekteshi, A., & Cupi, A. (2014). Use of Trophic State Index (Carlson, 1977) for assessment of trophic Status of the Shkodra lake. Journal of Environmental Protection and Ecology, 15(1), 359365.</p><p></p><p>Bellinger, E.G. & Sigee, D.C. (2015). Freshwater algae: Identification, Enumeration, and Use as Bioindicators. John Wiley & Sons, Ltd.</p><p></p><p>Beversdorf, L. J., Miller, T. R., & McMahon, K. D. (2013). The Role of Nitrogen Fixation in Cyanobacterial Bloom Toxicity in a Temperate, Eutrophic Lake. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056103.</p><p></p><p>Bezerra-Neto, J., & Pinto-Coelhi, R. (2008). Morphometric study of Lake Dom Helvecio, Parque Estadual do Rio Doce (PERD), Minas Gerais, Brazil: a re-evaluation. Acta Limnologica, 20(2), 161.167.</p><p></p><p>Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water : a review. Sustainable Water Resources Management, 2(2), 161173. https://doi.org/10.1007/s40899-015-0014-7.</p><p></p><p>Bhattrai, B. D., Kwak, S., & Heo, W. (2015). Assessment of water quality variations under non-rainy and rainy conditions by principal component analysis techniques in Lake Doam watershed , Korea. Journal of Ecology and Environment, 38(2), 145156.</p><p></p><p>Biswas, A. K., & Tortajada, C. (2019). Water quality management: a globally neglected issue. International Journal of Water Resources Development, 35(6), 913916. https://doi.org/10.1080/07900627.2019.1670506.</p><p></p><p>Boogaard, F. C., Ven, F. Van De, Langeveld, J. G., & Giesen, N. Van De. (2014). Stormwater Quality Characteristics in (Dutch) Urban Areas and Performance of Settlement Basins. Challenges, 5, 112122. https://doi.org/10.3390/challe5010112.</p><p></p><p>Borowiak, D., Nowiski, K., & Grabowska, K. (2016). A new bathymetric survey of the Suwaki Landscape Park lakes. Limnological Review, 16(4), 185197. https://doi.org/10.1515/limre-2016-0020</p><p></p><p>Bosse, K. R., Sayers, M. J., Shuchman, R. A., Fahnenstiel, G. L., Ruberg, S. A., Fanslow, D. L., Stuart, D.G., Johengen, T.H. & Burtner, A. M. (2019). Spatial-temporal variability of in situ cyanobacteria vertical structure in Western Lake Erie: Implications for remote sensing observations. Journal of Great Lakes Research, 45(3), 480489. https://doi.org/10.1016/j.jglr.2019.02.003</p><p></p><p>Boyd, C.E. 2015. 2nd edition. Water quality: An Introduction. Springer International Publishing.</p><p></p><p>Brase, L., Sanders, T., & Dhnke, K. (2018). Anthropogenic changes of nitrogen loads in a small river : external nutrient sources vs . internal turnover processes. Isotopes in Environmental and Health Studies, 54(2), 168184. https://doi.org/10.1080/10256016.2018.1428580.</p><p></p><p>Bullerjahn, G. S., McKay, R. M., Davis, T. W., Baker, D. B., Boyer, G. L., DAnglada, L. V., et al (2016). Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae, 54, 223238. https://doi.org/10.1016/j.hal.2016.01.003.</p><p></p><p>Buraschi, E., Salerno, F., Monguzzi, C., Barbiero, G., & Tartari, G. (2005). Characterization of the Italian lake-types and identification of their reference sites using anthropogenic pressure factors. Journal of Limnology, 64(1). https://doi.org/10.4081/jlimnol.2005.75</p><p></p><p>Callisto, M., Molozzi, J., & Barbosa, J. L. E. (2014). Eutrophication of lakes. In A. A. Ansari & S. S. Gill (Eds.), Eutrophication: Causes, Consequences and Control: Volume 2 (pp. 1262). Springer. https://doi.org/10.1007/978-94-007-7814-6.</p><p></p><p>Cao, J.J., Wang, Y., & Zhu, Z.-L. (2012). Growth response of the submerged macrophyte Myriophyllum spicatum to sediment nutrient levels and water-level fluctuations. Aquatic Biology, 17(3), 295303. https://doi.org/10.3354/ab00484.</p><p></p><p>Cao, X., Wang, Y., He, J., Luo, X., & Zheng, Z. (2016). Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi. Environmental Pollution, 18. https://doi.org/10.1016/j.envpol.2016.06.017.</p><p></p><p>Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22. https://doi.org/https://doi.org/10.4319/lo.1977.22.2.0361.</p><p></p><p>Carmichael, W. W., & Boyer, G. L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae, 54, 194212. https://doi.org/10.1016/j.hal.2016.02.002.</p><p></p><p>Carpenter, S. R., Caraco, N. F., Correll, D. L., W.Howarth, R., Sharpley, A. N., & Smith,V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559568. https://doi.org/10.1890/1051- 0761(1998)008[0559:NPOSWW]2.0.CO;2.</p><p></p><p>Carvalho, L., Miller, C. A., Scott, E. M., Codd, G. A., Davies, P. S., & Tyler, A. N. (2011). Cyanobacterial blooms: Statistical models describing risk factors for national-scale lake assessment and lake management. Science of the Total Environment, 409(24), 53535358. https://doi.org/10.1016/j.scitotenv.2011.09.030.</p><p></p><p>Champion, P. & Reeves, P. (2004). Macrophyte identification guides. https://www.niwa.co.nz/freshwater-and-estuaries/management- tools/identificationguides-and-fact-sheets/macrophyte-plant-id-guides.</p><p></p><p>Chan, C.H., Lee, Y.H. & Zakaria, Z. (2016). Water quality and treatment: The Malaysian Scenario. Penerbit Universiti Kebangsaan Malaysia, Bangi.</p><p></p><p>Chang, K.-T. (2019). Geographic Information System. In International Encyclopedia of Geography (Vol. 60, pp. 516526). https://doi.org/10.1002/9781118786352.wbieg0152.pub2</p><p></p><p>Chaves, L. C. G., Lopes, F. B., Maia, A. R. S., Meireles, A. C. M., & de Andrade, E. M. (2019). Water quality and anthropogenic impact in the watersheds of service reservoirs in the Brazilian semi-arid region. Revista Ciencia Agronomica, 50(2), 223233. https://doi.org/10.5935/1806-6690.20190026.</p><p></p><p>Chen, G., Fang, Y., Huang, J., Zhao, Y., Li, Q., Lai, F., et al (2018). Duckweed systems for eutrophic water purification through converting wastewater nutrients to high- starch biomass : comparative evaluation of three different genera (Spirodela polyrhiza, Lemna minor and Landoltia punctata) in monoculture or polyculture. Royal Society of Chemistry, 1792717937. https://doi.org/10.1039/C8RA01856A.</p><p></p><p>Chen, J., Nie, Q., Zhang, Y., Hu, J., & Qing, L. (2014). Eco-physiological characteristics of Pistia stratiotes and its removal of pollutants from livestock wastewater. Water Science and Technology, 69(12), 25102518. https://doi.org/10.2166/wst.2014.176.</p><p></p><p>Chen, R., Ju, M., Chu, C., Jing, W., & Wang, Y. (2018). Identification and quantification of physicochemical parameters influencing chlorophyll-a concentrations through combined principal component analysis and factor analysis: A case study of the Yuqiao Reservoir in China. Sustainability (Switzerland), 10(4). https://doi.org/10.3390/su10040936.</p><p></p><p>Cheruvelil, K. S., & Soranno, P. A. (2008). Relationships between lake macrophyte cover and lake and landscape features. Aquatic Botany, 88(3), 219227. https://doi.org/10.1016/j.aquabot.2007.10.005.</p><p></p><p>Christensen, V. G., Maki, R. P., & Kiesling, R. L. (2013). Evaluation of internal loading and water level changes: Implications for phosphorus, algal production, and nuisance blooms in Kabetogama Lake, Voyageurs National Park, Minnesota. Lake and Reservoir Management, 29(3), 202215. https://doi.org/10.1080/10402381.2013.831148.</p><p></p><p>Chua, L. H. C., Tan, S. B. K., Sim, C. H., & Goyal, M. K. (2012). Treatment of baseflow from an urban catchment by a floating wetland system. Ecological Engineering, 49, 170180. https://doi.org/10.1016/j.ecoleng.2012.08.031.</p><p></p><p>Cicero-fernndez, D., Pea-fernndez, M., Expsito-camargo, J. A., & Antizar-ladislao, B. (2015). Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2015.1086306.</p><p></p><p>Cirs, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 2143. https://doi.org/10.1016/j.hal.2015.09.007</p><p></p><p>Cottingham, K. L., Ewing, H. A., Greer, M. L., Carey, C. C., & Weathers, K. C. (2015). Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere, 6(1), 119. https://doi.org/10.1890/ES14-00174.1.</p><p></p><p>Cross, B. K., & Moore, B. C. (2014). Lake and reservoir volume: Hydroacoustic survey resolution and accuracy. Lake and Reservoir Management, 30(4), 405411. https://doi.org/10.1080/10402381.2014.960115.</p><p></p><p>Cui, Y., Zhu, G., Li, H., Luo, L., Cheng, X., Jin, Y., & Trolle, D. (2016). Modeling the response of phytoplankton to reduced external nutrient load in a subtropical Chinese reservoir using DYRESM-CAEDYM. Lake and Reservoir Management, 32(2),146.157. https://doi.org/10.1080/10402381.2015.1136365.</p><p></p><p>Curtarelli, M., Leo, J., Ogashawara, I., Lorenzzetti, J., & Stech, J. (2015). Assessment of Spatial Interpolation Methods to Map the Bathymetry of an Amazonian Hydroelectric Reservoir to Aid in Decision Making for Water Management. ISPRS International Journal of Geo-Information, 4(1), 220235. https://doi.org/10.3390/ijgi4010220</p><p></p><p>Dalu, T., & Wasserman, R. J. (2018). Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. Science of the Total Environment, 643, 835841. https://doi.org/10.1016/j.scitotenv.2018.06.256.</p><p></p><p>Dao, T. S., Nimptsch, J., & Wiegand, C. (2016). Dynamics of cyanobacteria and cyanobacterial toxins and their correlation with environmental parameters in Tri An Reservoir, Vietnam. Journal of Water and Health, 699712. https://doi.org/10.2166/wh.2016.257.</p><p></p><p>Daud, M. K., Nafees, M., Ali, S., Rizwan, M., Bajwa, R. A., Shakoor, M. B., et al (2017). Drinking Water Quality Status and Contamination in Pakistan. BioMed Research International. https://doi.org/10.1155/2017/7908183.</p><p></p><p>Daud, N. N. N., Abdulrahman, A., & Idrus, S. (2016). Preliminary Assessment of lakes water quality status at campus area in Selangor, Malaysia. Malaysian Journal of Civil Engineering, 49(1), 4249.</p><p></p><p>Deng, J., Salmaso, N., Jeppesen, E., Qin, B., & Zhang, Y. (2019). The relative importance of weather and nutrients determining phytoplankton assemblages differs between seasons in large Lake Taihu, China. Aquatic Sciences, 81(3), 114. https://doi.org/10.1007/s00027-019-0645-0.</p><p></p><p>Dhote, S. (2007). Role of Macrophytes in improving water quality of an aquatic eco- system. J. Appl. Sci. Environ. Manage. December, 11(4), 133135. Retrieved from www.bioline.org.br/ja.</p><p></p><p>Diaconu, D. C., Bretcan, P., Peptenatu, D., Tanislav, D., & Mailat, E. (2019). The importance of the number of points, transect location and interpolation techniques in the analysis of bathymetric measurements. Journal of Hydrology, 570(2019), 774 785. https://doi.org/10.1016/j.jhydrol.2018.12.070.</p><p></p><p>Dinagara Pandi, P., Thena, T., Nirmal, B., Aswathy, M. R., Saravanan, K., & Mohan, K. (2017). Morphometric analyses of Neyyar River Basin, southern Kerala, India. Geology, Ecology, and Landscapes, 1(4), 249256. https://doi.org/10.1080/24749508.2017.1389494</p><p></p><p>Ding, S., Chen, M., Gong, M., Fan, X., Qin, B., Xu, H., et al (2018). Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment, 625, 872884. https://doi.org/10.1016/j.scitotenv.2017.12.348.</p><p></p><p>Dochin, K., Kuneva, V., & Iliev, I. (2017). Principal component analysis of the phytoplankton interactions with the environmental factors in two reservoirs in Bulgaria. Bulgarian Journal of Agricultural Science, 23(6), 10371046.</p><p></p><p>Dodds, W. K., Carney, E., & Angelo, R. T. (2006). Determining ecoregional reference conditions for nutrients, secchi depth and chlorophyll a in kansas lakes and reservoirs. Lake and Reservoir Management, 22(2), 151159. https://doi.org/10.1080/07438140609353892.</p><p></p><p>Dodds, W. K., & Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams.Inland Waters, 6(2), 155164. https://doi.org/10.5268/IW-6.2.909.</p><p></p><p>Dodds, W. K., & Whiles, M. R. (2010). Trophic State and Eutrophication. Freshwater Ecology. https://doi.org/10.1016/b978-0-12-374724-2.00018-0</p><p></p><p>Dogan, M., & Demirors Saygideger, S. (2018). Pysiological effects of NaCl on Ceratophyllum demersum L., a submerged rootless aquatic macrophyte. Iranian Journal of Fisheries Sciences, 17(2), 346356. https://doi.org/10.22092/IJFS.2018.115478.</p><p></p><p>Dokulil, M. T., & Teubner, K. (2011). Eutrophication: causes, consequences and control. In A. Ansari, G. S. Singh, G. Lanza, & R. W (Eds.), Eutrophication: Causes, Consequences and Control (pp.116). The Netherlands, Springer. https://doi.org/10.1007/978-90-481-9625-8.</p><p></p><p>Dolman, A. M., Rcker, J., Pick, F. R., Fastner, J., Rohrlack, T., Mischke, U., & Wiedner,C. (2012). Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038757.</p><p></p><p>Dondajewska, R., Godyn, R., Messyasz, B., Kowalczewska-Madura, K., & Cerbin, S. (2019). A shallow lake in an agricultural landscape - Water quality, nutrient loads, future management. Limnological Review, 19(1), 2535. https://doi.org/10.2478/limre-2019-0003.</p><p></p><p>Dorgham, M. M. (2014). Effects of eutrophication. In A. A. Ansari & S. S. Gill (Eds.), Eutrophication: Causes, Consequences and Control: Volume 2 (pp. 1262). Springer. https://doi.org/10.1007/978-94-007-7814-6.</p><p></p><p>Doubek, J. P., Carey, C. C., & Cardinale, B. J. (2015). Anthropogenic land use is associated with N-fixing cyanobacterial dominance in lakes across the continental United States. Aquatic Sciences, 77(4), 681694. https://doi.org/10.1007/s00027-015-0411-x.</p><p></p><p>Downing, J. A., Watson, S. B., & Mccauley, E. (2001). Predicting Cyanobacterial Dominance in Lakes. Canadian Journal of Fisheries and Aquatic Sciences. https://doi.org/10.1139/cjfas-58-10-1905.</p><p></p><p>Drobac, D., Tokodi, N., Simeunovi, J., & Stanic, D. (2013). Human Exposure to Cyanotoxins and their Effects on Health. Archives of Industrial Hygiene and Toxicology, 64, 305316. https://doi.org/10.2478/10004-1254-64-2013-2320.</p><p></p><p>Du, H., Chen, Z., Mao, G., Chen, L., Crittenden, J., Yi, R. M. L., & Chai, L. (2019). Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecological Indicators, 102, 686692. https://doi.org/10.1016/j.ecolind.2019.03.032.</p><p></p><p>Dubey, D., & Dutta, V. (2020). Nutrient Enrichment in Lake Ecosystem and Its Effects on Algae and Macrophytes. In V. Shukla & N. Kumar (Eds.), Environmental Concerns and Sustainable Development (pp. 81126). Singapore: Springer. https://doi.org/10.1007/978-981-13-6358-0_5.</p><p></p><p>Dubourg, P., North, R. L., Hunter, K., Vandergucht, D. M., Abirhire, O., Silsbe, G. M., et al (2015). Light and nutrient co-limitation of phytoplankton communities in a large reservoir: Lake Diefenbaker, Saskatchewan, Canada. Journal of Great Lakes Research, 41, 129143. https://doi.org/10.1016/j.jglr.2015.10.001.</p><p></p><p>Durand, P., Breuer, L., Johnes, P. J., Billen, G., Butturini, A., Pinay, G., et al (2011). Nitrogen processes in aquatic ecosystems. In M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, B. Grizzetti (Eds.), The European Nitrogen Assessment (pp. 126146). Cambridge University Press.</p><p></p><p>Dyson, K., & Huppert, D. D. (2010). Regional economic impacts of razor clam beach closures due to harmful algal blooms ( HABs ) on the Pacific coast of Washington. Harmful Algae, 9(3), 264271. https://doi.org/10.1016/j.hal.2009.11.003.</p><p></p><p>Eisakhani, M, Pauzi, A., Karim, O., & Malakahmad, A. (2011). Investigation and management of water pollution sources in Cameron highlands, Malaysia. WIT Transactions on Ecology and the Environment, 148, 231241. https://doi.org/10.2495/RAV110221.</p><p></p><p>Eisakhani, Mahdieh, & Malakahmad, A. (2009). Water quality assessment of Bertam river and its tributaries in Cameron Highlands, Malaysia. World Applied Sciences Journal, 7(6)(6), 769776. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.388.3202&rep=rep1&typ e=pdf</p><p></p><p>Ekholm, P., Malve, O., & Kirkkala, T. (1997). Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhajarvi (southwest Finland). Hydrobiologia, 345(1), 314. https://doi.org/10.1023/A:1002958727707.</p><p></p><p>Eller, F., Sklov, H., Caplan, J. S., Bhattarai, G. P., Burger, M. K., Cronin, J. T., et al (2017). Cosmopolitan species as models for ecophysiological responses to global change: The common reed Phragmites australis. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.01833.</p><p></p><p>Elmorsi, R. R., Hamed, M. A., & Abou-El-Sherbini, K. S. (2017). Physicochemical properties of manzala lake, Egypt. Egyptian Journal of Chemistry, 60(4), 519535. https://doi.org/10.21608/ejchem.2017.776.1025.</p><p></p><p>Engloner, A.I., Szalma, E., Sipos, K., & Dinka, M. (2013). Occurence and habitat preference of aquatic macrophytes in a large river channel. Community Ecology, (14), 243248.</p><p></p><p>Engloner, Attila I. (2012). Alternative ways to use and evaluate Kohlers ordinal scale to assess aquatic macrophyte abundance. Ecological Indicators, 20, 238243. https://doi.org/10.1016/j.ecolind.2012.02.023.</p><p></p><p>Epe, T. S., Finsterle, K., & Yasseri, S. (2017). Nine years of phosphorus management with lanthanum modified bentonite (Phoslock) in a eutrophic, shallow swimming lake in Germany. Lake and Reservoir Management, 33(2), 119129. https://doi.org/10.1080/10402381.2016.1263693.</p><p></p><p>Evtimova, V., & Donohue, I. (2016). Water-level fluctuations regulate the structure and functioning of natural lakes. Freshwater Biology, 61, 251264. https://doi.org/10.1111/fwb.12699.</p><p></p><p>Falconer, I. R. (1999). An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology, 14(1), 512. https://doi.org/10.1002/(SICI)1522-7278(199902)14:1<5::AID- TOX3>3.0.CO;2-0.</p><p></p><p>Falconer, I. R. (2005). Is there a human health hazard from microcystins in the drinking water supply? Acta Hydrochimica et Hydrobiologica, 33(1), 6471. https://doi.org/10.1002/aheh.200300551.</p><p></p><p>Falconer, I. R., & Humpage, A. R. (2005). Health risk assessment of cyanobacterial (blue - green algal) toxins in drinking water. International Journal of Environmental Research and Public Health, 2(1), 4350. https://doi.org/10.3390/ijerph2005010043.</p><p></p><p>Fastner, J., Abella, S., Litt, A., Morabito, G., Vrs, L., Plffy, K., et al (2016). Combating cyanobacterial proliferation by avoiding or treating inflows with high P load experiences from eight case studies. Aquatic Ecology, 50(3), 367383. https://doi.org/10.1007/s10452-015-9558-8.</p><p></p><p>Faucette, B., & Ferver, B. (2011). Phosphorus Reduction in Stormwater Runoff.Sustainable Land Development Today, 14.</p><p></p><p>Fazli, B., Shafie, A., Nasehir Khan, Y. E. M., Awang, S., Jusoh, A. M., Noordin, N. et al (2016). Lake and Watershed Management: Issues and Challenges in Managing Lake Water Quality. In Proceedings of the 2nd World Congress on New Technologies (NewTech16). https://doi.org/10.11159/icepr16.169.</p><p></p><p>Ferro-Filho, A. D. S., & Kozlowsky-Suzuki, B. (2011). Cyanotoxins: Bioaccumulation and effects on aquatic animals. Marine Drugs, 9(12), 27292772. https://doi.org/10.3390/md9122729.</p><p></p><p>Figueredo, C. C., Pinto-Coelho, R. M., Lopes, A. M. M. B., Lima, P. H. O., Gcker, B., & Giani, A. (2016). From intermittent to persistent cyanobacterial blooms: Identifying the main drivers in an urban tropical reservoir. Journal of Limnology, 75(3), 445454. https://doi.org/10.4081/jlimnol.2016.1330.</p><p></p><p>Filstrup, C. T., & Downing, J. A. (2017). Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters, 7(4), 385400. https://doi.org/10.1080/20442041.2017.1375176.</p><p></p><p>Fornarelli, R., Galelli, S., Castelletti, A., Antenucci, J. P., & Marti, C. L. (2013). An empirical modeling approach to predict and understand phytoplankton dynamics in a reservoir affected by interbasin water transfers. Water Resources Research, 49, 3626 3641. https://doi.org/10.1002/wrcr.20268.</p><p></p><p>Fourounjian, P., Fakhoorian, T., & Cao, X. H. (2020). The Duckweed Genomes. In Cao,X. H., Fourounjian, P. & Wang, W. (Eds.), Compendium of plant genomes (Vol. 49, p. 6221). Springer. https://doi.org/10.1007/978-3-662-53389-5.</p><p></p><p>Freitas de Magalhes, V., Moraes Soares, R., & Azevedo, S. M. F. O. (2001). Microcystin contamination in fish from the Jacarepagu Lagoon (Rio de Janeiro, Brazil): Ecological implication and human health risk. Toxicon, 39(7), 10771085. https://doi.org/10.1016/S0041-0101(00)00251-8.</p><p></p><p>Fridrich, B., Krcmar, D., Dalmacija, B., Molnar, J., Pesic, V., Kragulj, M., & Varga, N. (2014). Impact of wastewater from pig farm lagoons on the quality of local groundwater. Agriculture Water Management, 135, 4053. https://doi.org/10.1016/j.agwat.2013.12.014.</p><p></p><p>Frumin, G. T., & Gildeeva, I. M. (2014). Eutrophication of water bodies A global environmental problem. Russian Journal of General Chemistry, 84(13), 24832488. https://doi.org/10.1134/S1070363214130015.</p><p></p><p>Fuentes, E. V, & Petrucio, M. M. (2015). Water level decrease and increased water stability promotes phytoplankton growth in a mesotrophic subtropical lake. Marine and Freshwater Research, 711718.</p><p></p><p>Gafri, H. F., Zuki, F. M., Zeeda, F. M., Affan, N., Sulaiman, A. H., & Norasiah, S. (2018). A study on water quality status of varsity lake and Pantai River, Anak Air Batu River in UM Kuala Lumpur, Malaysia, and classify it based on (WQI) Malaysia. Environmental Quality, 29, 5165. https://doi.org/10.6092/issn.2281-4485/7967.</p><p></p><p>Galal, T. M., & Farahat, E. A. (2015). The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environmental Monitoring and Assessment, 187(11). https://doi.org/10.1007/s10661-015-4941-4.</p><p></p><p>Gandaseca, S., & Rosli, N. (2011). Status of Water Quality Based on the Physico-Chemical Assessment on River Water at Wildlife Sanctuary Sibuti Mangrove Forest, Miri Sarawak. American Journal of Environmental Sciences, 7(3), 269275. https://doi.org/10.3844/ajessp.2011.269.275.</p><p></p><p>Gao, Y., Yu, J., Song, Y., Zhu, G., Paerl, H. W., & Qin, B. (2019). Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu, China. Environmental Science and Pollution Research, 26(7), 68986910. https://doi.org/10.1007/s11356-019-04154-w.</p><p></p><p>Garca, R., & Johnstone, R. W. (2006). Effects of Lyngbya majuscula (Cyanophycea) blooms on sediment nutrients and meiofaunal assemblages in seagrass beds in Moreton Bay, Australia. Marine and Freshwater Research, 57(2), 155165. https://doi.org/10.1071/MF05053.</p><p></p><p>Gerling, A. B., Munger, Z. W., Doubek, J. P., Hamre, K. D., Gantzer, P. A., Little, J. C., & Carey, C. C. (2016). Whole-Catchment Manipulations of Internal and External Loading Reveal the Sensitivity of a Century- Old Reservoir to Hypoxia. Ecosystems, 19(3), 555571. https://doi.org/10.1007/s10021-015-9951-0.</p><p></p><p>Germ, M., Remec-Rekar, ., & Gaberik, A. (2018). Weather conditions and chlorophyll concentrations determine long-term macrophyte community dynamics of Lake Bohinj (Slovenia). Regional Environmental Change. https://doi.org/10.1007/s10113-018- 1345-3.</p><p></p><p>Ghaly, A., & Ramakrishnan, V. (2015). Nitrogen Sources and Cycling in the Ecosystem and its Role in Air , Water and Soil Pollution : A Critical Review. Journal of Pollution Effects & Control, 3(2). https://doi.org/10.4172/2375-4397.1000136.</p><p></p><p>Ghani, L. A., Mahmood, N. Z., & Othman, F. (2019). Assessment of phosphorus load in water river using substance flow analysis (SFA) methods. Journal of Engineering Science and Technology, 14(3), 12891300.</p><p></p><p>Gibble, C. M., Peacock, M. B., & Kudela, R. M. (2016). Evidence of freshwater algal toxins in marine shellfish: Implications for human and aquatic health. Harmful Algae, 59, 5966. https://doi.org/10.1016/j.hal.2016.09.007.</p><p></p><p>Gilmore, K. L., Doubleday, Z. A., & Gillanders, B. M. (2019). Prolonged exposure to low oxygen improves hypoxia tolerance in a freshwater fish. Conservation Physiology, 7(1), 110. https://doi.org/10.1093/conphys/coz058</p><p></p><p>Glibert, P. M. (2017). Eutrophication, harmful algae and biodiversity Challenging paradigms in a world of complex nutrient changes. Marine Pollution Bulletin, 124(2), 591606. https://doi.org/10.1016/j.marpolbul.2017.04.027.</p><p></p><p>Gonzlez, M. A., Jeppesen, E., Gom, J., Sndergaard, M., Jensen, J. P., Lauridsen, T., & Landkildehus, F. (2005). Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations ? Freshwater Biology, 50, 2741. https://doi.org/10.1111/j.1365-2427.2004.01290.x.</p><p></p><p>Goonetilleke, A., & Lampard, J. (2018). Stormwater Quality, Pollutant Sources, Processes, and Treatment Options. In Approaches to Water Sensitive Urban Design (pp. 4974). Elsevier Inc. https://doi.org/10.1016/b978-0-12-812843-5.00003-4.</p><p></p><p>Gorde, S. P., & Jadhav, M. V. (2013). Assessment of Water Quality Parameters : A Review. International Journal of Engineering Research and Applications , 3(6), 20292035.</p><p></p><p>Goswami, C., & Majumder, A. (2015). Potential of Lemna minor in Ni and Cr removal from aqueous solution. Pollution, 1(4), 373385. Retrieved from https://jpoll.ut.ac.ir/article_54664_897d1e2a9f07923e00c667ef07cbd3b8.pdf.</p><p></p><p>Grzybowski, M. (2014). Natural dimictic and polymictic lakes: Similarities and differences in relationships among chlorophyll, nutrients, Secchi depth, and aquatic macrophytes. Journal of Freshwater Ecology, 29(1), 5368. https://doi.org/10.1080/02705060.2013.820153.</p><p></p><p>Guiry, M.D. & Guiry G.M. 2021. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org: searched on 30May 2021.</p><p></p><p>Guo, X., Yu, T., Li, M. Y., & Guo, W. H. (2018). The effects of salt and rainfall pattern on morphological and photosynthetic characteristics of Phragmites australis (Poaceae)1. Journal of the Torrey Botanical Society, 145(3), 212224. https://doi.org/10.3159/TORREY-D-17-00003.1.</p><p></p><p>Haakonsson, S., Rodrguez-Gallego, L., Somma, A., & Bonilla, S. (2017). Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems. Science of the Total Environment, 609, 11321139. https://doi.org/10.1016/j.scitotenv.2017.07.067.</p><p></p><p>Hacsaliholu, S., Karaer, F., & Katip, A. (2016). Applications of Geographic Information System (GIS) analysis of Lake Uluabat. Environmental Monitoring and Assessment,188(6). https://doi.org/10.1007/s10661-016-5332-1</p><p></p><p>Hamilton, P. B., Gajewski, K., Atkinson, D. E., & Lean, D. R. S. (2001). Physical and chemical limnology of 204 lakes from the Canadian Arctic Archipelago. Hydrobiologia, 457, 133148. https://doi.org/10.1023/A:1012275316543.</p><p></p><p>Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54, 420. https://doi.org/10.1016/j.hal.2015.12.007</p><p></p><p>Hartmann, J., van der Aa, M., Wuijts, S., de Roda Husman, A. M., & van der Hoek, J. P. (2018). Risk governance of potential emerging risks to drinking water quality: Analysing current practices. Environmental Science and Policy, 84, 97104. https://doi.org/10.1016/j.envsci.2018.02.015.</p><p></p><p>Hasan, M. K., Shahriar, A., & Jim, K. U. (2019). Water pollution in Bangladesh and its impact on public health. Heliyon, 5(8), e02145. https://doi.org/10.1016/j.heliyon.2019.e02145.</p><p></p><p>Hellweger, F. L. (2017). 75 years since Monod: It is time to increase the complexity of our predictive ecosystem models (opinion). Ecological Modelling, 346, 7787. https://doi.org/10.1016/j.ecolmodel.2016.12.001.</p><p></p><p>Hennemann, M. C., & Petrucio, M. M. (2016). High chlorophyll a concentration in a low nutrient context: Discussions in a subtropical lake dominated by cyanobacteria. Journal of Limnology, 75(3), 520530. https://doi.org/10.4081/jlimnol.2016.1347.</p><p></p><p>Henry-Silva, G. G., & Camargo, A. F. M. (2008). Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia, 610, 153160. https://doi.org/10.1007/s10750-008-9430-0.</p><p></p><p>Hillebrand, H., Drselen, C.-D., Kirschtel, D., Utsa, P., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 424, 403424.</p><p></p><p>Hoagland, P., Jin, D., Polansky, L. Y., Kirkpatrick, B., Kirkpatrick, G., Fleming, L. E., et al (2009). The Costs of Respiratory Illnesses Arising from Florida Gulf Coast Karenia brevis Blooms. Environmental Health Perspectives, 117(8), 12391243. https://doi.org/10.1289/ehp.0900645.</p><p></p><p>Horppila, J. (2019). Sediment nutrients, ecological status and restoration of lakes. Water Research, 160, 206208. https://doi.org/10.1016/j.watres.2019.05.074.</p><p></p><p>Horppila, J., Holmroos, H., Niemist, J., Massa, I., Nygrn, N., Schnach, P., et al (2017). Variations of internal phosphorus loading and water quality in a hypertrophic lake during 40 years of different management efforts. Ecological Engineering, 103, 264274. https://doi.org/10.1016/j.ecoleng.2017.04.018.</p><p>Hossain, N., & Mahmud, L. (2019). Experimental Investigation of Water Quality and Inorganic Solids in Malaysian Urban Lake, Taman Tasik Medan Idaman. Lakes and Reservoirs, 107114. https://doi.org/10.1111/lre.12259.</p><p></p><p>Hou, D., He, J., L, C., Sun, Y., Zhang, F., & Otgonbayar, K. (2013). Effects of Environmental Factors on Nutrients Release at Sediment-Water Interface and Assessment of Trophic Status for a Typical Shallow Lake , Northwest China. The Scientific World Journal, 16. https://doi.org/http://dx.doi.org/10.1155/2013/716342.</p><p></p><p>Hou, Z., Jiang, Y., Liu, Q., Tian, Y., He, K., & Fu, L. (2018). Impacts of environmental variables on a phytoplankton community: A case study of the tributaries of a subtropical river, Southern China. Water (Switzerland), 10(2). https://doi.org/10.3390/w10020152.</p><p></p><p>Howladar, M. F., Al Numanbakth, M. A., & Faruque, M. O. (2017). An application of Water Quality Index (WQI) and multivariate statistics to evaluate the water quality around Maddhapara Granite Mining Industrial Area, Dinajpur, Bangladesh. Environmental Systems Research, 6(13). https://doi.org/10.1186/s40068-017-0090-9.</p><p></p><p>Hu, S., Wang, T., Xu, S., Ma, L., & Sun, X. (2019). Seasonal Release Potential of Sediments in Reservoirs and Its Impact on Water Quality Assessment. International Journal of Environmental Research and Public Health, 16. https://doi.org/doi:10.3390/ijerph16183303.</p><p></p><p>Huang, L., Fu, L., Jin, C., Gielen, G., Lin, X., Wang, H., & Zhang, Y. (2011). Effect of temperature on phosphorus sorption to sediments from shallow eutrophic lakes. Ecological Engineering, 37(10), 15151522. https://doi.org/10.1016/j.ecoleng.2011.05.006.</p><p></p><p>Huang, L., Smith, M. D., & Craig, J. K. (2010). Quantifying the Economic Effects of Hypoxia on a Fishery for Brown Shrimp Farfantepenaeus aztecus. Marine and Coastal Fisheries, 2(1), 232248. https://doi.org/10.1577/C09-048.1.</p><p></p><p>Huang, X., Zhao, F., Yu, G., Song, C., Geng, Z., & Zhuang, P. (2017). Removal of Cu , Zn, Pb , and Cr from Yangtze Estuary Using the Phragmites australis Artificial Floating Wetlands. Hindawi, 2017. https://doi.org/https://doi.org/10.1155/2017/6201048.</p><p></p><p>Huo, S., He, Z., Su, J., Xi, B., & Zhu, C. (2013). Using Artificial Neural Network Models for Eutrophication Prediction. Procedia Environmental Sciences, 18, 310316. https://doi.org/10.1016/j.proenv.2013.04.040.</p><p></p><p>Huser, B. J., Futter, M., Lee, J. T., & Perniel, M. (2016). In-lake measures for phosphorus control: The most feasible and cost-effective solution for long-term management of water quality in urban lakes. Water Research, 97, 142152. https://doi.org/10.1016/j.watres.2015.07.036.</p><p></p><p>Ibelings, B. W., & Chorus, I. (2007). Accumulation of cyanobacterial toxins in freshwater seafood and its consequences for public health: A review. Environmental Pollution, 150(1), 177192. https://doi.org/10.1016/j.envpol.2007.04.012.</p><p></p><p>Imanhomayoonnezhad, A. H., Arjmandi, R., & Lahijanian, A. (2019). Assessment of Chahnimeh Water Quality through the Water Quality Index ( WQI ). Asian Journal of Water, Environment and Pollution, 16(3), 5562. https://doi.org/10.3233/AJW190033.</p><p></p><p>Ismail, S. N., Subehi, L., Mansor, A., & Mashhor, M. (2019). Invasive Aquatic Plant Species of Chenderoh Reservoir , Malaysia and Invasive Aquatic Plant Species of Chenderoh Reservoir, Malaysia and Jatiluhur Reservoir, Indonesia. IOP Conference Series: Earth and Environmental Science PAPER, 380.</p><p></p><p>Ismail, W. R., & Najib, S. A. M. (2011). Sediment and nutrient balance of Bukit Merah Reservoir, Perak (Malaysia). Lakes and Reservoirs: Research and Management, 16(3), 179184. https://doi.org/10.1111/j.1440-1770.2011.00453.x.</p><p></p><p>Jalal, K. C. ., John, A., Sheikh, B. H. I., Shahbudin, S., & Nor Hafiza, Y. A. A. (2017). Study On Physicochemical Parameters And Distribution Of Phytoplankton In Kuantan Estuary , Pahang. Environment & Ecosystem Science ( EES ), 1(1), 812.</p><p></p><p>James, W. (2016). Internal P Loading : A Persistent Management Problem in Lake Recovery. NALMS.</p><p></p><p>James, W. F., Sorge, P. W., & Garrison, P. J. (2015). Managing internal phosphorus loading and vertical entrainment in a weakly stratified eutrophic lake. Lake and Reservoir Management, 31(4), 292305. https://doi.org/10.1080/10402381.2015.1079755.</p><p></p><p>Janke, B. D., Finlay, J. C., & Hobbie, S. E. (2017). Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution. Environmental Science and Technology. https://doi.org/10.1021/acs.est.7b02225.</p><p></p><p>Jankowiak, J., Hattenrath-lehmann, T., Kramer, B. J., Ladds, M., & Gobler, C. J. (2019). Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnology and Oceanography, 64, 13471370. https://doi.org/10.1002/lno.11120.</p><p></p><p>Jarosiewicz, A. (2009). Seasonal changes of nutrients concentration in two shallow estuarine lakes Gardno and ebsko; Comparison. Baltic Coastal Zone, 13, 121133. Retrieved fromhttps://pdfs.semanticscholar.org/9723/8c4b07df8e63f3a8c518e89420d55ce78ce1.pd f?_ga=2.57759658.1031027633.1590032722-621158998.1565668199.</p><p>Jeon, J. C., Kwon, K. H., Jung, Y. J., Kang, M. J., & Min, K. S. (2015). Characteristics of stormwater runoff from junkyard. Desalination and Water Treatment, 53(11), 3039 3047. https://doi.org/10.1080/19443994.2014.922305.</p><p></p><p>Jeppesen, E., Sndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., et al (2005). Lake responses to reduced nutrient loading - An analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 50(10), 17471771. https://doi.org/10.1111/j.1365-2427.2005.01415.x.</p><p></p><p>Jeppesen, E., Sndergaard, M., Meerhoff, M., Lauridsen, T. L., & Jensen, J. P. (2007). Shallow lake restoration by nutrient loading reduction - Some recent findings and challenges ahead. In Hydrobiologia (Vol. 584, pp. 239252). https://doi.org/10.1007/s10750-007-0596-7.</p><p></p><p>Jeyaraj, M., Ramakrishan, K., Jai Anandhi, A., Arunachalam, S., & Magudeswaran, P. N. (2016). Investigation of physico-chemical and biological characteristics of various lake water in Coimbatore district, Tamilnadu, India. Oriental Journal of Chemistry, 32(4), 20872094. https://doi.org/10.13005/ojc/320436</p><p></p><p>Jiang, B., Chen, J., Luo, Q., Lai, J., Xu, H., Wang, Y., & Yu, K. (2016). Long-Term Changes in Water Quality and Eutrophication of Chinas Liujiang River. Polish Journal of Environmental Studies, 25(3), 10331043. https://doi.org/10.15244/pjoes/61819.</p><p></p><p>Jimeno-Sez, P., Senent-Aparicio, J., Cecilia, J. M., & Prez-Snchez, J. (2020). Using machine-learning algorithms for eutrophication modeling: Case study of Mar Menor lagoon (spain). International Journal of Environmental Research and Public Health ,17(4). https://doi.org/10.3390/ijerph17041189.</p><p></p><p>Jin, D., Thunberg, E., & Hoagland, P. (2008). Economic impact of the 2005 red tide event on commercial shellfish fisheries in New England. Ocean & Coastal Management, 51, 420429. https://doi.org/10.1016/j.ocecoaman.2008.01.004.</p><p></p><p>Joanna, S., Urban, D., & Monika, R.-B. (2020). Phenomenon of Macrophyte Differentiation in a Small Lake. Sains Malaysiana, 49(6), 12091222.</p><p></p><p>Johnson, J. (2010). Estimation of Internal Phosphorus Loading for Cedar Island Lake .Freshwater Scientific Services.</p><p></p><p>Juahir, H., Ghazali, A., Ismail, A., & Mohamad, M. (2019). The assessment of Danau Kota Lake water quality using chemometrics approach T. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757- 899X/621/1/012019.</p><p></p><p>Kalaitzidou, M. P., Nannou, C. I., Lambropoulou, D. A., Papageorgiou, K. V, Theodoridis,A. M., Economou, V. K., Giantsis, I.A., Angelidis, P.G., Kritas, S.K. & Petridou, E.J. (2021). First report of detection of microcystins in farmed mediterranean mussels Mytilus galloprovincialis in Thermaikos gulf in Greece. Journal of Biological Research-Thessaloniki, 28(8), 114. https://doi.org/10.1186/s40709-021-00139-4</p><p></p><p>Kakarla, L., Allu, P. R., Rama, C., & Botlagunta, M. (2015). A Review on Biological and Chemical Properties of Cyperus Species. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(4).</p><p></p><p>Kale, V. S. (2016). Consequence of Temperature , pH , Turbidity and Dissolved Oxygen Water Quality Parameters. International Advanced Research Journal in Science, Engineering and Technology, 3(8), 186190. https://doi.org/10.17148/IARJSET.2016.3834.</p><p></p><p>Kamarainen, A. M., Penczykowski, R. M., Van De Bogert, M. C., Hanson, P. C., & Carpenter, S. R. (2009). Phosphorus sources and demand during summer in a eutrophic lake. Aquatic Sciences, 71(2), 214227. https://doi.org/10.1007/s00027- 009-9165-7.</p><p></p><p>Kane, D. D., Conroy, J. D., Peter Richards, R., Baker, D. B., & Culver, D. A. (2014). Re- eutrophication of Lake Erie: Correlations between tributary nutrient loads and phytoplankton biomass. Journal of Great Lakes Research, 40(3), 496501. https://doi.org/10.1016/j.jglr.2014.04.004.</p><p></p><p>Kleinman, P. J. A., Srinivasan, M. S., Dell, C. J., Schmidt, J. P., Sharpley, A. N., & Bryant,</p><p>R. B. (2006). Role of Rainfall Intensity and Hydrology in Nutrient Transport via Surface Runoff. Journal of Environment Quality, (3), 12481259. https://doi.org/10.2134/jeq2006.0015.</p><p></p><p>Khler, J., Hilt, S., Adrian, R., Nicklisch, A., Kozerski, H. P., & Walz, N. (2005). Long- term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshwater Biology, 50(10), 16391650. https://doi.org/10.1111/j.1365-2427.2005.01430.x.</p><p></p><p>Kouzminov, A., Ruck, J., & Wood, S. A. (2007). New Zealand risk management approach for toxic cyanobacteria in drinking water. Australian and New Zealand Journal of Public Health, 31(3), 275281. https://doi.org/10.1111/j.1753-6405.2007.00061.x.</p><p></p><p>Kowalczewska-Madura, K., Dondajewska, R., & Goldyn, R. (2010). Internal phosphorus loading in selected lakes of the Cybina River valley. Oceanological and Hydrobiological Studies, (3), 3545. https://doi.org/10.2478/v10009-010-0035-3.</p><p></p><p>Kowalczewska-Madura, K., Dondajewska, R., Goldyn, R., Kozak, A., & Messyasz, B. (2018). Internal Phosphorus Loading from the Bottom Sediments of a Dimictic Lake During Its Sustainable Restoration. Water Air Soil Pollution, 229(280).Kowalczewska-Madura, K., Dondajewska, R., Goldyn, R., Rosiska, J., & Podsiadowski,S. (2019). Internal phosphorus loading as the response to complete and then limited sustainable restoration of a shallow lake. Annual Limnology-International Journal of Limnology, 55(4).</p><p></p><p>Kowalczewska-Madura, K., & Goldyn, R. (2011). Spatial and seasonal variability of pore water phosphorus concentration in shallow Lake Swarz edzkie , Poland. Environmental Monitoring and Assessment, 184, 15091516. https://doi.org/10.1007/s10661-011-2056-0.</p><p></p><p>Kowalczewska-Madura, K., Godyn, R., Bogucka, J., & Strzelczyk, K. (2019). Impact of environmental variables on spatial and seasonal internal phosphorus loading in a mesoeutrophic lake. International Journal of Sediment Research, 34(1), 1426. https://doi.org/10.1016/j.ijsrc.2018.08.008.</p><p></p><p>Kowalczewska-Madura, K., Goldyn, R., & Dera, M. (2014). Spatial and seasonal changes of phosphorus internal loading in two lakes with different trophy. Ecological Engineering, 74, 187195. https://doi.org/10.1016/j.ecoleng.2014.10.033.</p><p></p><p>Kowalczewska-Madura, K., Kozak, A., Dera, M., & Goldyn, R. (2019). Internal Loading of Phosphorus from Bottom Sediments of Two Meso eutrophic Lakes. International Journal of Environmental Research. https://doi.org/10.1007/s41742-019-00167-y.</p><p></p><p>Kozak, A., Kowalczewska-Madura, K., Godyn, R., & Czart, A. (2014). Phytoplankton composition and physicochemical properties in Lake Swarz dzkie ( midwestern Poland ) during restoration : Preliminary results. Arch. Pol. Fish, 22, 1728. https://doi.org/10.2478/aopf-2014-0003.</p><p></p><p>Kubickova, B., Babica, P., Hilscherov, K., & indlerov, L. (2019). Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environmental Sciences Europe, 31(31). https://doi.org/10.1186/s12302-019-0212-2.</p><p></p><p>Kuiper, J. J., Verhofstad, M. J. J. M., Louwers, E. L. M., Bakker, E. S., Brederveld, R. J., Gerven, L. P. A. Van, et al (2017). Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys? Environmental Management, 59, 619634. https://doi.org/10.1007/s00267-016-0811-2.</p><p></p><p>Kurmayer, R., Deng, L., & Entfellner, E. (2016). Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae, 54, 6986. https://doi.org/10.1016/j.hal.2016.01.004</p><p></p><p>Larkin, S. L., & Adams, C. M. (2007). An Harmful Algal Blooms and Coastal Business: Economic Consequences in Florida Insights and Applications Harmful Algal Blooms and Coastal Business: Economic Consequences in Florida. Society & Natural Resources : An International Journal, 20(9), 3741. https://doi.org/10.1080/08941920601171683.</p><p></p><p>Larsdotter, K., La Cour Jansen, J., & Dalhammar, G. (2010). Phosphorus removal from wastewater by microalgae in Sweden - A year-round perspective. Environmental Technology, 31(2), 117123. https://doi.org/10.1080/09593330903382815.</p><p></p><p>Lashari, K. H., Korai, A. L., Sahato, G. A., & Kazi, T. G. (2009). Limnological Studies of Keenjhar Lake, District,Thatta, Sindh, Pakistan. Pak. J. Anal. Environ. Chem, 10(1&2), 3947.</p><p></p><p>Lawniczak-Maliska, A., Ptak, M., Celewicz, S., & Choiski, A. (2018). Impact of lake morphology and shallowing on the rate of overgrowth in hard-water eutrophic lakes. Water (Switzerland), 10(1827). https://doi.org/10.3390/w10121827.</p><p></p><p>Lee, G. F. (1973). Role of phosphorus in eutrophication and diffuse source control. Water Research, 7(12), 111128. https://doi.org/10.1016/0043-1354(73)90156-5.</p><p></p><p>Lee, H. W., Lee, Y. S., Kim, J., Lim, K. J., & Choi, J. H. (2019). Contribution of Internal Nutrients Loading on the Water Quality of a Reservoir. Water.</p><p></p><p>Lee, J. H., Bang, K. W., Ketchum, L. H., Choe, J. S., & Yu, M. J. (2002). First flush analysis of urban storm runoff. Science of the Total Environment, 293, 163175.</p><p></p><p>Lee, J., Lee, S., & Jiang, X. (2017). Cyanobacterial Toxins in Freshwater and Food: Important Sources of Exposure to Humans. Annual Review of Food Science and Technology, 8(1), 281304. https://doi.org/10.1146/annurev-food-030216-030116.</p><p></p><p>Lee, T. A., Rollwagen-bollens, G., Bollens, S. M., & Faber-hammond, J. J. (2015). Ecotoxicology and Environmental Safety Environmental in fl uence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotoxicology and Environmental Safety, 114, 318325. https://doi.org/10.1016/j.ecoenv.2014.05.004.</p><p></p><p>Les, D. H. (1993). Ceratophyllaceae. In K. Kubitzki, J. G. Rohwer, & V. Bittrich (Eds.),Flowering Plants: Dicotyledons (pp. 246250). Springer-Verlag Berlin Heidelberg.</p><p></p><p></p><p>Levec, F., & Skinner, A. (2004). Manual of Instructions Bathymetric Surveys. Cochrane, ON, Canada.</p><p></p><p>Lewis, D. B., & Grimm, N. B. (2007). Hierarchical regulation of nitrogen export from urban catchments: interactions of storms and landscapes. Ecological Applications, 17(8), 23472364.</p><p></p><p></p><p>Lewis, W. M. (2011). Rationale for control of anthropogenic nitrogen and phosphorus in inland waters. Environmental Science & Technology, 45, 1003010035.</p><p></p><p></p><p>Li, G., Lin, Q., Lin, J., Song, X., Tan, Y., & Huang, L. (2014). Environmental gradients regulate the spatial variations of phytoplankton biomass and community structure in surface water of the Pearl River estuary. Acta Ecologica Sinica, 34(2), 129133. https://doi.org/10.1016/j.chnaes.2014.01.002.</p><p></p><p></p><p>Li, H., Wang, Y., Shi, L. Q., Mi, J., Song, D., & Pan, X. J. (2012). Distribution and Fractions of Phosphorus and Nitrogen in Surface Sediments from Dianchi Lake, China. International Journal of Environmental Research , 6(1), 195208.</p><p></p><p></p><p>Li, J. & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists:Geoscience Australia. Canberra: Australia.</p><p></p><p></p><p>Li, J., Hansson, L.-A., & Persson, K. M. (2018). Nutrient Control to Prevent the Occurrence of Cyanobacterial Blooms in a Eutrophic Lake in Southern Sweden, Used for drinking water supply. Water, 10(919). https://doi.org/10.3390/w10070919.</p><p></p><p></p><p>Li, J., Zhang, Y., & Katsev, S. (2018). Phosphorus recycling in deeply oxygenated sediments in Lake Superior controlled by organic matter mineralization. Limnology and Oceanography, (Katsev 2017). https://doi.org/10.1002/lno.10778.</p><p></p><p>Li, L., & Davis, A. P. (2014). Urban Stormwater Runoff Nitrogen Composition and Fate in Bioretention Systems. Environmental Science & Technology, 48, 34033410. https://doi.org/dx.doi.org/10.1021/es4055302. |</p><p></p><p></p><p>Li, Y., Liu, Y., Zhao, L., Hastings, A., & Guo, H. (2015). Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model. Ecological Modelling, 313, 137148. https://doi.org/10.1016/j.ecolmodel.2015.06.025.</p><p></p><p></p><p>Li, Y. P., Yang, C. Y., Yu, Z. B., & Acharya, K. (2014). Correlations between algae and water quality: factors driving eutrophication in Lake Taihu, China. International Journal of Environmental Science & Technology, 11, 169182. https://doi.org/10.1007/s13762-013-0436-4.</p><p></p><p></p><p>Li, Z., Xiao, H., Cheng, S., Zhang, L., Xie, X., & Wu, Z. (2014). A comparison on the phytoremediation ability of triazophos by di ff erent macrophytes. Journal of Environmental Sciences, 26(2), 315322. https://doi.org/10.1016/S1001-0742(13)60417-9.</p><p></p><p></p><p>Liang, H., Zhou, W., Zhang, Y., Qiao, Q., & Zhang, X. (2015). Are fish fed with cyanobacteria safe, nutritious and delicious? A laboratory study. Scientific Reports, 5, 117. https://doi.org/10.1038/srep15166.</p><p></p><p></p><p>Liao, M., Yu, G., & Guo, Y. (2017). Eutrophication in Poyang Lake ( Eastern China ) over the Last 300 Years in Response to Changes in Climate and Lake Biomass. PLOS ONE, 12(1), 122. https://doi.org/10.1371/journal.pone.0169319.</p><p></p><p></p><p>Lim, H. S., & Lu, X. X. (2016). Sustainable urban stormwater management in the tropics: An evaluation of Singapores ABC Waters Program. Journal of Hydrology, 538, 842 862. https://doi.org/10.1016/j.jhydrol.2016.04.063.</p><p></p><p>Liu, C., Lin, K., & Kuo, Y. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(02), 7789. https://doi.org/10.1016/S0048-9697(02)00683-6.</p><p></p><p>Liu, W., Zhang, Q., & Liu, G. (2010). Lake eutrophication associated with geographic location, lake morphology and climate in China. Hydrobiologia, 644(1), 289299. https://doi.org/10.1007/s10750-010-0151-9.</p><p></p><p>Low, K. H., Koki, I. B., Juahir, H., Azid, A., Behkami, S., Ikram, R., et al (2016). Evaluation of water quality variation in lakes, rivers, and ex-mining ponds in Malaysia (review). Desalination and Water Treatment, 57(58), 2821528239. https://doi.org/10.1080/19443994.2016.1185382.</p><p></p><p>Lukcs, B. A., Tthmrsz, B., Borics, G., Vrbr, G., Juhsz, P., Kiss, B., et al (2015). Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica, 53, 7483. https://doi.org/10.1016/j.limno.2015.06.002.</p><p></p><p>Ma, J., Qin, B., Paerl, H. W., Brookes, J. D., Hall, N. S., Shi, K., et al (2016). The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu, China. Limnology and Oceanography, 61(2), 711722. https://doi.org/10.1002/lno.10246.</p><p></p><p>Ma, J., Qin, B., Paerl, H. W., Brookes, J. D., Wu, P., Zhou, J., et al (2015). Green algal over cyanobacterial dominance promoted with nitrogen and phosphorus additions in a mesocosm study at Lake Taihu, China. Environmental Science and Pollution Research, 22(7), 50415049. https://doi.org/10.1007/s11356-014-3930-4.</p><p></p><p>Magee, M. R., & Wu, C. H. (2017). Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrology and Earth System Sciences, 21, 62536274. https://doi.org/https://doi.org/10.5194/hess-21-6253-2017.</p><p></p><p>Maheshwari, K., Vashistha, J., Paulose, P. V., & Agarwal, T. (2015). Seasonal Changes in Phytoplankton Community of Lake Ramgarh, India. International Journal of Current Microbiology and Applied Sciences, 4(11), 318330.</p><p></p><p>Malek, S., Syed Ahmad, S. M., Singh, S. K. K., Milow, P., & Salleh, A. (2011). Assessment of predictive models for chlorophyll-a concentration of a tropical lake. BMC Bioinformatics, 12(SUPPL. 13), S12. https://doi.org/10.1186/1471-2105-12-S13- S12.</p><p></p><p>Malik, D. S., & Joshi, N. (2013). Distribution pattern of aquatic macrophytes and their biomass in relation to some nutrients in Asan wetland , India. International Journal for Environmental Rehabilitation and Cinservation, 4(1), 116.</p><p></p><p>Mamun, M., Kim, J. J., Alam, M. A., & An, K. G. (2020). Prediction of algal chlorophyll- a and water clarity in monsoon-region reservoir using machine learning approaches. Water (Switzerland), 12(1). https://doi.org/10.3390/w12010030.</p><p></p><p>Mavromati, E., Kagalou, I., Kemitzoglou, D., Apostolakis, A., & Tsiaoussi, V. (2017). Linkages between physicochemical status and hydromorphology in Greek lakes under WFD policy. European Water, 58, 273279.</p><p></p><p>Mayer, B. K., Gerrity, D., Rittmann, B. E., Reisinger, D., & Brandt-Williams, S. (2013). Innovative strategies to achieve low total phosphorus concentrations in high water flows. Critical Reviews in Environmental Science and Technology , 43(4), 409441. https://doi.org/10.1080/10643389.2011.604262.</p><p></p><p>McCarthy, J. (2008). Chapter 8 Pollutant Loading Calculations. In New Hampshire Stormwater Manual: Volume 1:Stormwater and Antidegradation. New Hampshire Department of Environmental Services.</p><p></p><p>McGorum, B. C., Pirie, R. S., Glendinning, L., McLachlan, G., Metcalf, J. S., Banack, S. A., et al (2015). Grazing livestock are exposed to terrestrial cyanobacteria. Veterinary Research, 46(1), 110. https://doi.org/10.1186/s13567-015-0143-x.</p><p></p><p>Merem, E. C., Twumasi, Y., Wesley, J., Isokpehi, P., Shenge, M., Fageir, S., Crisler, M., Romorno, C., Hines, A., Hirse, G., Ochai, S., Leggett, S. & Nwagboso, E. (2017). Analyzing Water Management Issues Using GIS: The Case of Nigeria. Geosciences, 7(1), 2046. https://doi.org/10.5923/j.geo.20170701.03</p><p></p><p>Mentzafou, A., & Dimitriou, E. (2019). Nitrogen loading and natural pressures on the water quality of a shallow Mediterranean lake. Science of the Total Environment, 646, 134143. https://doi.org/10.1016/j.scitotenv.2018.07.249.</p><p></p><p>Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., et al (2013). Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences, 110(16), 64486452. https://doi.org/10.1073/pnas.1216006110.</p><p></p><p>Mir, S. I., Sahid, I., Gasim, M. B., & Rahim, S. A. (2015). Prediction of Soil and Nutrient Losses from the Lake Chini. Journal of Physical Science, 26(1), 5370.</p><p></p><p>Modugno, M. Di, Gioia, A., Gorgoglione, A., Iacobellis, V., Forgia, G., Piccinni, A. F., & Ranieri, E. (2015). Build-Up/Wash-Off Monitoring and Assessment for Sustainable Management of First Flush in an Urban Area. Sustainability, 7, 50505070. https://doi.org/10.3390/su7055050.</p><p></p><p></p><p>Mokhtar, M. Z., Sofiana, M. S., Wan Maznah, W. O., & Teh, S. Y. (2020). Water quality assessment of Bukit Merah Reservoir, Malaysia using mathematical modeling. IOP Conf.Ser: Earth Environ. Sci., 535. https://doi.org/10.1088/1755-1315/535/1/012023</p><p></p><p></p><p>Monchamp, M. E., Pick, F. R., Beisner, B. E., & Maranger, R. (2014). Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0085573</p><p></p><p></p><p>Mooij, W. M., Janse, J. H., De Senerpont Domis, L. N., Hlsmann, S., & Ibelings, B. W. (2007). Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia, 584, 443454. https://doi.org/10.1007/s10750-007-0600-2.</p><p></p><p></p><p>Morgan, K. L., Larkin, S. L., & Adams, C. M. (2009). Firm-level economic effects of HABS: A tool for business loss assessment. Harmful Algae, 8, 212218. https://doi.org/10.1016/j.hal.2008.05.002.</p><p></p><p></p><p>Moses, S. A., Janaki, L., Joseph, S., Justus, J., & Vimala, S. R. (2011). Influence of lake morphology on water quality. Environmental Monitoring and Assessment, 182(14), 443454. https://doi.org/10.1007/s10661-011-1888-y.</p><p></p><p>Moustaka-Gouni, M., Hiskia, A., Genitsaris, S., Katsiapi, M., Manolidi, K., Zervou, S-K, Christophoridis, C., Triantis, T.M., Kaloudis, T. & Orfanidis, S. (2016). First report of Aphanizomenon favaloroi occurrence in Europe associated with saxitoxins and a massive fish kill in Lake Vistonis, Greece. Marine and Freshwater Research, 68, 793800. https://doi.org/http://dx.doi.org/10.1071/MF16029 First</p><p></p><p></p><p>Mulvenna, V., Dale, K., Priestly, B., Mueller, U., Humpage, A., Shaw, G., et al (2012). Health risk assessment for cyanobacterial toxins in seafood. International Journal of Environmental Research and Public Health, 9(3), 807820. https://doi.org/10.3390/ijerph9030807.</p><p></p><p></p><p>Muri, G., ermelj, B., Jaimovi, R., Ravnikar, T., muc, A., Turi, J., & Vrea, P. (2017). Factors that contributed to recent eutrophication of two Slovenian mountain lakes. Journal of Paleolimnology, 59(4), 411426. https://doi.org/10.1007/s10933- 017-9996-5.</p><p></p><p></p><p>Mustapha, A., & Aris, A. Z. (2012). Multivariate statistical analysis and environmental modeling of heavy metals pollution by industries. Polish Journal of Environmental Studies, 21(5), 13591367.</p><p></p><p>Nagalakshmi, R., Prasanna, K., & Prakash Chandar, S. (2016). Water quality analysis using GIS interpolation method in serthalaikadu Lagoon, east coast of India. Rasayan Journal of Chemistry, 9(4), 634640.</p><p></p><p>NAHRIM. (2015). National Lake Water Quality Criteria and Standards. National Hydraulic Research Institute of Malaysia (NAHRIM), 125.</p><p></p><p>Najib, S. A. M., Ismail, W. R., & Omar, M. A. (2017). Suspended sediment and phosphorus budget and trophic status of Bukit Merah Reservoir, Perak, Malaysia. Journal of Environmental Geography, 10(34), 18. https://doi.org/10.1515/jengeo-2017-0007.</p><p></p><p>Naubi, I., Zardari, N. H., Shirazi, S., Ibrahim, F., & Baloo, L. (2016). Effectiveness of Water Quality Index for Monitoring Malaysian River Water Quality. Polish Journal of Environmental Studies, 25(1), 231239. https://doi.org/10.15244/pjoes/60109.</p><p></p><p>Nayan, N., Yusri Che Ngah, M.S., Ibrahim, M. H., Saleh, Y. Ahmad Baharom, A., Hashim,M. & Mat Said, Z. 2012. Sebaran kualiti air untuk rekreasi sukan air di Tasik YDP, Slim River, Perak. In Abdul Rahman, H., Harith, S. & Abdullah, H. (Eds.), Isu Persekitaran dan Kesihatan di Malaysia. Penerbit UTHM. Page 19</p><p></p><p>Nazahiyah, R., Yusop, Z., & Abustan, I. (2007). Stormwater quality and pollution loading from an urban residential catchment in Johor, Malaysia. Water Science & Technology, 56(7), 19. https://doi.org/10.2166/wst.2007.692.</p><p></p><p>Nelson, G. H. J., & Fussmann, G. F. (2013). Lake ecosystems. In Encyclopedia of Life Science (pp. 13). Macmillan Publishers Ltd.</p><p></p><p>Newell, S. E., Davis, T. W., Johengen, T. H., Gossiaux, D., Burtner, A., Palladino, D., & Mccarthy, M. J. (2019). Reduced forms of nitrogen are a driver of non-nitrogen- fixing harmful cyanobacterial blooms and toxicity in Lake Erie. Harmful Algae, 81, 8693. https://doi.org/10.1016/j.hal.2018.11.003.</p><p></p><p>Noges, T. (2009). Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia, 3343. https://doi.org/10.1007/s10750-009-9874-x.</p><p></p><p>Norris, B., & Laws, E. A. (2017). Nutrients and phytoplankton in a shallow, hypereutrophic urban lake: Prospects for restoration. Water (Switzerland), 9(431). https://doi.org/10.3390/w9060431.</p><p></p><p>North, R. L., Johansson, J., Vandergucht, D. M., Doig, L. E., Liber, K., Lindenschmidt, K., et al (2015). Evidence for internal phosphorus loading in a large prairie reservoir (Lake Diefenbaker, Saskatchewan). Journal of Great Lakes Research, 41, 9199. https://doi.org/10.1016/j.jglr.2015.07.003.</p><p></p><p>Nur Hishaam, S., Saiful Iskandar, K., Zati, S., Mohd Saiful, S., & Azman, A. (2018). Seasonal variations of water quality and heavy metals in two ex- mining lake using chemometric assessment approach. Malaysian Journal of Fundamental and Applied Sciences, 14(1), 6772.</p><p></p><p>Nrnberg, G. K., LaZerte, B. D., Loh, P. S., & Molot, L. A. (2013). Quantification of internal phosphorus load in large, partially polymictic and mesotrophic Lake Simcoe, Ontario. Journal of Great Lakes Research, 39(2), 271279. https://doi.org/10.1016/j.jglr.2013.03.017.</p><p></p><p></p><p>Nrnberg, G. K., Molot, L. A., Connor, E. O., Jarjanazi, H., Winter, J., & Young, J. (2013). Evidence for internal phosphorus loading , hypoxia and effects on phytoplankton in partially polymictic Lake Simcoe , Ontario. Journal of Great Lakes Research, 39(2), 259270. https://doi.org/10.1016/j.jglr.2013.03.016.</p><p></p><p></p><p>Okech, E. O., Kitaka, N., Oduor, S. O., & Verschuren, D. (2018). Trophic state and nutrient limitation in Lake Baringo, Kenya. African Journal of Aquatic Science, 43(2), 169173. https://doi.org/10.2989/16085914.2018.1462139.</p><p></p><p></p><p>Orihel, D. M., Baulch, H. M., Casson, N. J., North, R. L., Parsons, C. T., Seckar, D. C. M., & Venkiteswaran, J. J. (2017). Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis. Canadian Journal of Fish and Aquatic Sciences, 74(12), 20052029. https://doi.org/dx.doi.org/10.1139/cjfas-2016-0500.</p><p></p><p></p><p>Othman, R., Azlen, N., Hanifah, B., Ramya, R., Mohd hatta, F. A., Wan Sulaiman, W. S. H., et al (2014). Aquatic plants as ecological indicator for urban lakes eutrophication status and indices. International Journal of Sustainable Energy and Environmental Research, 3(4), 178184.</p><p></p><p></p><p>zkan, K., Jeppesen, E., Sndergaard, M., Lauridsen, T. L., Liboriussen, L., & Svenning,J. C. (2013). Contrasting roles of water chemistry, lake morphology, land-use, climate and spatial processes in driving phytoplankton richness in the Danish landscape. Hydrobiologia, 710(1), 173187. https://doi.org/10.1007/s10750-011-0996-6.</p><p></p><p>Paerl, H. W., & Paul, V. J. (2011). Climate change : Links to global expansion of harmful cyanobacteria. Water Research, 46(5), 13491363. https://doi.org/10.1016/j.watres.2011.08.002.</p><p></p><p>Paerl, H. W., Scott, J. T., McCarthy, M. J., Newell, S. E., Gardner, W. S., Havens, K. E., et al (2016). It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. Environmental Science and Technology, 50(20), 1080510813. https://doi.org/10.1021/acs.est.6b02575.</p><p></p><p></p><p>Paytan, A., Roberts, K., Watson, S., Peek, S., Chuang, P., Defforey, D., & Kendall, C. (2017). Internal loading of phosphate in Lake Erie Central Basin. Science of the Total Environment, 579, 13561365. https://doi.org/10.1016/j.scitotenv.2016.11.133.</p><p></p><p></p><p>Peng, Y., Liu, L., Jiang, L., & Xiao, L. (2017). The roles of cyanobacterial bloom in nitrogen removal. Science of the Total Environment, 609, 297303. https://doi.org/10.1016/j.scitotenv.2017.03.149.</p><p></p><p></p><p>Perkins, R. G., & Underwood, G. J. C. (2001). The potential for phosphorus release across the sediment-water interface in an eutrophic reservoir dosed with ferric sulphate. Water Research, 35(6), 13991406.</p><p></p><p></p><p>Pettersson, K. (1998). Mechanisms for internal loading of phosphorus in lakes.Hydrobiologia, 373374, 2125. https://doi.org/10.1023/A:1017011420035.</p><p></p><p></p><p>Pham, T. L., & Utsumi, M. (2018). An overview of the accumulation of microcystins in aquatic ecosystems. Journal of Environmental Management, 213, 520529. https://doi.org/10.1016/j.jenvman.2018.01.077.</p><p></p><p></p><p>Pin, D. C. M., Guo, X., Wang, K., Chng, L., Wong, L.-P., & Zhao, X. (2019). Assessment of water eutrophication in Kampar, Malaysia. In International Symposium On Green And Sustainable Technology (ISGST2019) (Vol. 2157, p. 020022). https://doi.org/10.1063/1.5126557</p><p></p><p></p><p>Preece, E. P., Hardy, F. J., Moore, B. C., & Bryan, M. (2017). A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae, 61, 3145. https://doi.org/10.1016/j.hal.2016.11.006.</p><p></p><p>Pretty, J. N., Mason, C. F., Nedwell, D. B., Hine, R. E., Leaf, S., & Dils, R. (2003). Environmental Costs of Freshwater Eutrophication in England and Wales. Environmental Science & Technology, 37(2), 201208. https://doi.org/10.1021/es020793k.</p><p></p><p></p><p>Qiu, X., Huang, T., Zeng, M., & Zhou, S. (2019). Three-year Survey of Nitrogen Dynamics in a Stratified Reservoir of the North China Plain. IOP Conf.Ser: Earth Environ. Sci. https://doi.org/10.1088/1755-1315/252/5/052040.</p><p></p><p></p><p>Qu, J., & Fan, M. (2010). The current state of water quality and technology development for water pollution control in China. Critical Reviews in Environmental Science and Technology, 40(6), 519560. https://doi.org/10.1080/10643380802451953.</p><p></p><p></p><p>Quevedo-castro, A., Bandala, E. R., Rangel-peraza, J. G., Ambilis-Sosa, L. E., Sanhouse- Garia, A., & Bustos-Terrones, Y. A. (2019). Temporal and Spatial Study of Water Quality and Trophic Evaluation of a Large Tropical Reservoir. Environments, 6(61). https://doi.org/:10.3390/environments6060061.</p><p></p><p>Qureshimatva, U., Maurya, R., Gamit, S., Patel, R., & Solanki, H. (2015). Determination of Physico-Chemical Parameters and Water Quality Index (Wqi) of Chandlodia Lake, Ahmedabad, Gujarat, India. Journal of Environmental & Analytical Toxicology,05(04). https://doi.org/10.4172/2161-0525.1000288.</p><p></p><p></p><p>Ratheesh, R. K., Purushothaman, C. S., Sreekanth, G. B., N, M. L., Sandeep, K. P., & Pandey, P. K. (2013). State of Water Quality of Two Tropical Urban Lakes Located at Mumbai Megacity. International Journal of Science and Research , 4(5), 1991 1998.</p><p></p><p></p><p>Rabalais, N. N. (2002). Nitrogen in Aquatic Ecosystems. AMBIO: A Journal of the Human Environment, 31(2), 102112. https://doi.org/10.1579/0044-7447-31.2.102.</p><p></p><p></p><p>Rahaman, Z. A., Farhana, S., Rus, C. H. E., Omar, M. A., & Ismail, W. A. N. R. (2016). Rivers and Lakes as Natural Heritage : Water Quality Status in the Northern States of Peninsular Malaysia. Kemanusiaan, 23, 109128.</p><p></p><p>Rahimi, S., & Mortazavi, S. (2019). Role of Phragmites Australis for Biomonitoring and Phytoremediation of Heavy Metals Pollution in Badavar River, Lorestan Province (Iran). Archives of Hygiene Sciences, 8(2), 7179.</p><p></p><p></p><p>Rajaee, T., & Boroumand, A. (2015). Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models. Applied Ocean Research, 53, 208217. https://doi.org/10.1016/j.apor.2015.09.001.</p><p></p><p></p><p>Rajendran, R., Rajan, A. P., Raja, A. S., Prathipa, V., & Dheenadayalan, M. S. (2015). Assessment of Physico Chemical Parameters of River Cauvery In and Around Nerur. Journal of Environmental Science and Pollution Research, 1(1), 17-19.</p><p></p><p></p><p>Ralston, E. P., Kite-powell, H., Beet, A., Hole, W., & Hole, W. (2011). An estimate of the cost of acute food and water borne health effects from marine pathogens and toxins in the United States. Journal of Water Health, 9(4), 680694. https://doi.org/10.2166/wh.2011.157.An</p><p></p><p></p><p>Randall, M. C., Carling, G. T., Dastrup, D. B., Miller, T., Nelson, S. T., Rey, K. A., et al (2019). Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake. PLoS ONE, 14(2) 117. https://doi.org/https://doi.org/10.1371/journal.pone.0212238.</p><p></p><p></p><p></p><p>Ready, K. R., Kadlec, R. H., Flaig, E., & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: A review. Critical Reviews in Environmental Science and Technology, 29(1), 83146. https://doi.org/10.1080/10643389991259182.</p><p></p><p></p><p>Reddy, K. R., Newman, S., Osborne, T. Z., White, J. R., & Fitz, H. C. (2011). Technology Phosphorous Cycling in the Greater Everglades Ecosystem: Legacy Phosphorous Implications for Management and Restoration Phosphorous Cycling in the Greater Everglades Ecosystem: Legacy Phosphorous Implications. Critical Reviews in Environmental Science and Technology, 3389.https://doi.org/10.1080/10643389.2010.530932.</p><p></p><p>Rice, E.W., Baird, R.B., Eaton, A.D., & Clesceri, L.S. (2012). 22nd Ed. Standard Methods for the Examination of Water and Wastewater. The University of California: American Public Health Association.</p><p></p><p></p><p>Richardson, J., Feuchtmayr, H., Miller, C., Hunter, P. D., Maberly, S. C., & Carvalho, L. (2019). Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Global Change Biology, (April), 33653380. https://doi.org/10.1111/gcb.14701.</p><p></p><p></p><p>Rigosi, A., Carey, C. C., Ibelings, B. W., & Brookes, J. D. (2014). The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr, 59(1), 99114. https://doi.org/10.4319/lo.2014.59.01.0099.</p><p></p><p></p><p>Robertson, D. M., Juckem, P. F., Dantoin, E. D., & Winslow, L. A. (2018). Effects of water level and climate on the hydrodynamics and water quality of Anvil Lake, Wisconsin, a shallow seepage lake. Lake and Reservoir Management, 34(3), 211231. https://doi.org/10.1080/10402381.2017.1412374.</p><p></p><p></p><p>Roqaiya, M., Begum, W., Majeedi, S. F., & Saiyed, A. (2015). A Review on Herbs with Uterotonic Property. The Journal of Phytopharmacology JPHYTO, 4(43), 190196.</p><p></p><p></p><p>Roy, E. D., Nguyen, N. T., Bargu, S., & White, J. R. (2012). Internal loading of phosphorus from sediments of Lake Pontchartrain (Louisiana, USA) with implications for eutrophication. Hydrobiologia, 684(1), 6982. https://doi.org/10.1007/s10750-011-0969-9.</p><p></p><p></p><p>Sabri, N. A. S. M., Abdullah, M. P., Mat, S., Elfithri, R., & Khalik, W. M. A. W. M. (2016). Evaluation of hydrochemistry variation in water quality of Cempaka Lake, Malaysia using multivariate statistical analysis. Journal of Materials and Environmental Science, 7(12), 44034410.</p><p></p><p>Safwan Miswan, M., Maya Saphira Radin Mohamed, R., Ali Saeed Al-Gheethi, A., & Hashim Mohd Kassim, A. (2019). Preliminary Assessment of Teknologi Lake Quality Status at Universiti Tun Hussein Onn Malaysia (UTHM) Campus in Parit Raja, Johor, Malaysia. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899x/601/1/012013.</p><p></p><p>Sajitha, V., & Vijayamma, S. A. (2016). Study of Physico-Chemical Parameters and Pond Water Quality Assessment by using Water Quality Index at Athiyannoor Panchayath, Kerala, India. Emer Life Sci Res, 2(1), 4651.</p><p></p><p></p><p>Sansalone, J. J., & Cristina, C. M. (2004). First Flush Concepts for Suspended and Dissolved Solids in Small Impervious Watersheds. Journal of Environmental Engineering, 130, 13011314. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:11(1301) CE.</p><p></p><p></p><p>Sanyal, S., & Paul, D. K. (2019). Monthly variation and interrelationship of physicochemical characteristics of a perennial pond at a biological park in Patna, Bihar, India. Journal of Applied and Natural Science, 11(2), 492502. https://doi.org/10.31018/jans.v11i2.2103.</p><p></p><p></p><p>Saunders, D. L., & Kalff, J. (2001). Nitrogen retention in wetlands, lakes and rivers.Hydrobiologia, 205212.</p><p></p><p>Scavia, D., Allan, J. D., Arend, K. K., Bartell, S., Beletsky, D., Bosch, N. S., et al (2014). Assessing and addressing the re-eutrophication of Lake Erie : Central basin hypoxia. Journal of Great Lakes Research. https://doi.org/10.1016/j.jglr.2014.02.004.</p><p></p><p>Schallenberg, M., Winton, M. D. De, Verburg, P., Kelly, D. J., Hamill, K. D., & Hamilton,D. P. (2013). Ecosystem services of lakes. In D. JR (Ed.), Ecosystem services in New Zealand-condition and trends (pp. 203225). Lincoln, New Zealand: Manaaki Whenua Press.</p><p></p><p>Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L. R., & Van Nes E. H. (2008). On the Dominance of Filamentous Cyanobacteria in Shallow, Turbid Lakes. Ecology 78(1), 272282.</p><p></p><p>Schiff, K. C., Tiefenthaler, L. L., Bay, S. M., & Greenstein, D. J. (2016). Effects of Rainfall Intensity and Duration on the First Flush from Parking Lots. Water, 8(320). https://doi.org/10.3390/w8080320.</p><p></p><p>Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 43224333. https://doi.org/10.1098/rspb.2012.1032.</p><p></p><p>Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., et al (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, 105(32), 1125411258. https://doi.org/10.1073/pnas.0805108105.</p><p></p><p>Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. In Proceedings of The Royal Society (pp. 43224333). https://doi.org/10.1098/rspb.2012.1032.</p><p></p><p>Schindler, D. W, Carpenter, S. R., Chapra, S. C., Hecky, R. E., & Orihel, D. M. (2016). Reducing phosphorus to curb lake eutrophication is a success. Environmental Science and Technology, 50(17), 89238929. https://doi.org/10.1021/acs.est.6b02204.</p><p></p><p>Schindler, D.W. & Vallentyne, J.R. (2008). The Algal Bowl: Overfertilization of the World's Freshwater and Estuaries. Earthscan. Canada.</p><p></p><p>Schmale, D. G., Ault, A. P., Saad, W., Scott, D. T., & Westrick, J. A. (2019). Perspectives on Harmful Algal Blooms ( HABs ) and the Cyberbiosecurity of Freshwater Systems. Frontiers in Bioengineering and Biotechnology, 7(128), 17. https://doi.org/10.3389/fbioe.2019.00128</p><p></p><p>Schneider, S. C., Cara, M., Eriksen, T. E., Budzakoska Goreska, B., Imeri, A., Kupe, L., et al (2014). Eutrophication impacts littoral biota in Lake Ohrid while water phosphorus concentrations are low. Limnologica, 44, 9097. https://doi.org/10.1016/j.limno.2013.09.002.</p><p></p><p></p><p>Schnbrunner, I. M., Preiner, S., & Hein, T. (2012). Impact of drying and re-flooding of sediment on phosphorus dynamics of river- floodplain systems. Science of the Total Environment, 432, 329337. https://doi.org/10.1016/j.scitotenv.2012.06.025.</p><p></p><p>Shang, S. (2013). Lake surface area method to define minimum ecological lake level from level area storage curves. Journal of Arid Land, 5, 133142. https://doi.org/10.1007/s40333-013-0153-3.</p><p></p><p>Sharip, Z., Yusoff, F. M., & Jamin, A. (2018). Seasonal water quality and trophic status of shallow lentic waters and their association with water levels. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-2172-2.</p><p></p><p>Sharip, Z., Saman, J. M., Noordin, N., Majizat, A., Suratman, S., & Shaaban, A. J. (2016). Assessing the spatial water quality dynamics in Putrajaya Lake: a modelling approach. Modeling Earth Systems and Environment, 2(46), 114. https://doi.org/10.1007/s40808-016-0104-z.</p><p></p><p>Sharip, Z., & Zakaria, S. (2008). Lakes and Reservoir in Malaysia: Management and Research Challenges. The 12th World Lake Conference, (January), 13491355.</p><p></p><p>Sharip, Z., Zaki, A. T. A., Shapai, M. A. H. M., Suratman, S., & Shaaban, A. J. (2014). Lakes of Malaysia: Water quality, eutrophication and management. Lakes and Reservoirs: Research and Management, 19(2), 130141. https://doi.org/10.1111/lre.12059.</p><p></p><p>Shatwell, T., & Khler, J. (2018). Decreased nitrogen loading controls summer cyanobacterial blooms without promoting nitrogen- fixing taxa: Long-term response of a shallow lake. Limnology and Oceanography, 113. https://doi.org/10.1002/lno.11002.</p><p></p><p>Shayo, S., & Limbu, S. M. (2018). Nutrient release from sediments and biological nitrogen fixation: Advancing our understanding of eutrophication sources in Lake Victoria, Tanzania. Lakes and Reservoirs, 00, 112. https://doi.org/10.1111/lre.12242.</p><p></p><p>Shi, P., Zhang, Y., Song, J., Li, P., Wang, Y., Zhang, X., et al (2019). Response of nitrogen pollution in surface water to land use and social- economic factors in the Weihe River watershed, northwest China. Sustainable Cities and Society, 50(June), 101658. https://doi.org/10.1016/j.scs.2019.101658.</p><p></p><p>Shuhaimi-Othman, M., Ahmad, A., Mushrifah, I., & Lim, E. C. (2008). Seasonal influence on water quality and heavy metals concentration in Tasik Chini, Peninsular Malaysia. Taal 2007: The 12th World Lake Conference, 300303. Retrieved from https://www.semanticscholar.org/paper/Seasonal-Influence-on-Water-Quality-and- Heavy-in-Shuhaimi-Othman-Ahmad/53cc143aa03c7143e3ffe12a2afa0d7fd814464f.</p><p></p><p>Silva, T. F. G., Vinon-leite, B., Lemaire, B. J., Petrucci, G., Giani, A., Figueredo, C. C., & Nascimento, N. D. O. (2019). Impact of Urban Stormwater Runoff on Cyanobacteria Dynamics in A Tropical Urban Lake. Water. https://doi.org/10.3390/w11050946.</p><p></p><p>Simola, O., Wiberg, M., Jokela, J., Wahlsten, M., Sivonen, K., & Syrj, P. (2012). Pathologic Findings and Toxin Identification in Cyanobacterial (Nodularia spumigena) Intoxication in a Dog. Veterinary Pathology, 49(5), 755759. https://doi.org/10.1177/0300985811415703.</p><p></p><p>Sinang, S. C., Reichwaldt, E. S., & Ghadouani, A. (2015). Local nutrient regimes determine site-specific environmental triggers of cyanobacterial and microcystin variability in urban lakes. Hydrology and Earth System Sciences, 19(5), 21792195. https://doi.org/10.5194/hess-19-2179-2015.</p><p></p><p>Sinang, S. C., Daud, N., Kamaruddin, N., & Poh, K. B. (2019). Potential growth inhibition of freshwater algae by herbaceous plant extracts. Acta Ecologica Sinica, 39(3), 229233. https://doi.org/10.1016/j.chnaes.2018.12.005.</p><p></p><p>Sinang, S. C., Poh, K. B., Shamsudin, S., & Sinden, A. (2015). Preliminary assessment of cyanobacteria diversity and toxic potential in Ten Freshwater Lakes in Selangor, Malaysia. Bulletin of Environmental Contamination and Toxicology, 95(4), 542547. https://doi.org/10.1007/s00128-015-1620-7.</p><p></p><p>Sinden, A., & Sinang, S. C. (2015). Presence and abundance of cyanobacteria in selected aquaculture ponds in Perak, Malaysia. Jurnal Teknologi, 76(1), 187194. https://doi.org/10.11113/jt.v76.3649.</p><p></p><p>Sinha, E., Michalak, A., & Balaji, V. (2017). Eutrophication will increase during the 21st century as a result of precipitation changes. Science, (July), 14.</p><p></p><p>Smith, V., Wood, S., McBride, C., Atalah, J., & Hamilton, D. (2016). Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand. Inland Waters, 6(2), 273283. https://doi.org/10.5268/IW- 6.2.998.</p><p></p><p>Sobczyski, T., & Joniak, T. (2013). The Variability and Stability of Water Chemistry in a Deep Temperate Lake : Results of Long-Term Study of Eutrophication. Polish Journal of Environmental Studies, 22(1), 227237.</p><p></p><p>Sndergaard, M., Bjerring, R., & Jeppesen, E. (2013). Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia, 710(1), 95107. https://doi.org/10.1007/s10750-012-1091-3.</p><p></p><p>Sndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506509, 135145. https://doi.org/10.1023/B:HYDR.0000008611.12704.dd.</p><p></p><p>Sndergaard, M., Lauridsen, T. L., Johansson, L. S., & Jeppesen, E. (2017). Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia, 795(1), 3548. https://doi.org/10.1007/s10750-017-3110-x.</p><p></p><p>Song, K., Adams, C. J., & Burgin, A. J. (2017). Relative importance of external and internal phosphorus loadings on affecting lake water quality in agricultural landscapes. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2017.06.008.</p><p></p><p>Song, K., & Burgin, A. J. (2017). Perpetual Phosphorus Cycling: Eutrophication Amplifies Biological Control on Internal Phosphorus Loading in Agricultural Reservoirs. Ecosystems, 20, 14831493. https://doi.org/10.1007/s10021-017-0126-z.</p><p></p><p>Spaulding, S. A., Otu, M. K., Wolfe, A. P., & Baron, J. S. (2015). Paleolimnological Records of Nitrogen Deposition in Shallow, High-Elevation Lakes of Grand Teton National Park, Wyoming, U.S.A. Arctic, Antarctic, and Alpine Research, 47(4), 703 717. https://doi.org/10.1657/AAAR0015-008.</p><p></p><p>Stefanidis, K., & Papastergiadou, E. (2012). Relationships between lake morphometry, water quality, and aquatic macrophytes, in greek lakes. Fresenius Environmental Bulletin, 21(10 A), 30183026.</p><p></p><p>Stefanidis, K., & Papastergiadou, E. (2019). Linkages between Macrophyte Functional Traits and Water Quality : Insights from a Study in Freshwater Lakes of Greece. Water, 11. https://doi.org/10.3390/w11051047.</p><p></p><p>Steinman, A., Chu, X., & Ogdahl, M. (2007). Spatial and temporal variability of internal and external phosphorus loads in Mona Lake, Michigan. Aquatic Ecology. https://doi.org/10.1007/s10452-007-9147-6.</p><p></p><p>Steinman, A. D., Isely, E. S., & Thompson, K. (2015). Stormwater runoff to an impaired lake : impacts and solutions. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4776-z.</p><p></p><p>Sukenik, A., Quesada, A., & Salmaso, N. (2015). Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodivers Conserv, 24, 889908. https://doi.org/10.1007/s10531-015-0905-9</p><p></p><p>Sun, C. C., Wang, Y. S., Wu, M. L., Dong, J. De, Wang, Y. T., Sun, F. L., & Zhang, Y. Y.(2011). Seasonal variation of water quality and phytoplankton response patterns in Daya Bay, China. International Journal of Environmental Research and Public Health, 8(7), 29512966. https://doi.org/10.3390/ijerph8072951.</p><p></p><p>Sun, X., Zhang, H., Zhong, M., Wang, Z., Liang, X., Huang, T., & Huang, H. (2019). Analyses on the temporal and spatial characteristics of water quality in a seagoing river using multivariate statistical techniques: A case study in the Duliujian river, China. International Journal of Environmental Research and Public Health , 16(6), 118. https://doi.org/10.3390/ijerph16061020.</p><p></p><p>Sundeep Kumar, H. K., Dinda, S. C., & Raju, M. B. V. (2015). Morpho-anatomical studies on leaf and root of Pistia stratiotes Linn. (Family: Araceae). Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(1), 361371.</p><p></p><p>Suratman, S., Bedurus, E., & Seng, T. A. N. H. (2017). A Preliminary Study of the Distribution of Nitrogen Compounds in Tasik Kenyir, Malaysia. Oriental Journal of Chemistry, 33, 13251330.</p><p></p><p>Svirev, Z., Lali, D., Bojadija Savi, G., Tokodi, N., Drobac Backovi, D., Chen, L., Meriluoto, J. & Codd, G. A. (2019). Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of Toxicology (Vol. 93). Springer Berlin Heidelberg. https://doi.org/10.1007/s00204-019-02524-4</p><p></p><p>Svirev, Z., Drobac, D., Tokodi, N., Vidovi, M., Simeunovi, J., Miladinov-Mikov, M., & Balti, V. (2013). Epidemiology of Primary Liver Cancer in Serbia and Possible Connection With Cyanobacterial Blooms. Journal of Environmental Science and Health , Part C : Environmental Carcinogenesis and Ecotoxicology Reviews, 31(3), 181200. https://doi.org/10.1080/10590501.2013.824187.</p><p></p><p>Svirev, Z. B., Tokodi, N., Drobac, D., & Codd, G. A. (2014). Cyanobacteria in aquatic ecosystems in Serbia: Effects on water quality, human health and biodiversity. Systematics and Biodiversity, 12(3), 261270. https://doi.org/10.1080/14772000.2014.921254.</p><p></p><p>Svirev, Z., Krsti, S., Miladinov-mikov, M., Balti, V., & Vidovi, M. (2009). Freshwater Cyanobacterial Blooms and Primary Liver Cancer Epidemiological Studies in Serbia. Journal of Environmental Science and Health, Part C: EnvironmentalCarcinogenesis and Ecotoxicology Reviews, 3741. https://doi.org/10.1080/10590500802668016.</p><p></p><p>Szoszkiewicz, K., Ciecierska, H., Kolada, A., Schneider, S. C., Szwabiska, M., & Ruszczyska, J. (2014). Parameters structuring macrophyte communities in rivers and lakes results from a case study in North-Central Poland. Knowledge and Management of Aquatic Ecosystems, 116. https://doi.org/10.1051/kmae/2014034.</p><p></p><p>Taebi, A., & Droste, R. L. (2004). First flush pollution load of urban stormwater runoff. Journal of Environmental Engineering and Science, 309, 301309. https://doi.org/10.1139/S04-018.</p><p></p><p>Tal, A. (2019). The implications of climate change driven depletion of Lake Kinneret water levels : the compelling case for climate change-triggered precipitation impact on Lake Kinnerets low water levels . Science of the Total Environment, 664, 10451051. https://doi.org/10.1016/j.scitotenv.2019.02.106.</p><p></p><p>Tammeorg, O., Horppila, J., Tammeorg, P., Haldna, M., & Niemist, J. (2016). Internal phosphorus loading across a cascade of three eutrophic basins: A synthesis of short- and long-term studies. Science of the Total Environment, 12. https://doi.org/10.1016/j.scitotenv.2016.07.224.</p><p></p><p>Tan, B., He, H., Gu, J., & Li, K. (2018). Eutrophic water or fertile sediment: Which is more important for the growth of invasive aquatic macrophyte Myriophyllum aquaticum? Knowledge and Management of Aquatic Ecosystems, 419(3). https://doi.org/10.1051/kmae/2017057.</p><p></p><p>Taranu, Z. E., & Gregory-Eaves, I. (2008). Quantifying relationships among phosphorus, agriculture, and lake depth at an inter-regional scale. Ecosystems, 11(5), 715725. https://doi.org/10.1007/s10021-008-9153-0.</p><p></p><p>Tarkowska-kukuryk, M., & Mieczan, T. (2017). Submerged macrophytes as bioindicators of environmental conditions in shallow lakes in eastern Poland. Ann. Limnol. Int. J. of Limnology, 53, 2734. https://doi.org/10.1051/limn/2016031.</p><p></p><p>Taylor, G. D., Fletcher, T. D., Wong, T. H. F., Breen, P. F., & Duncan, H. P. (2005). Nitrogen composition in urban runoff implications for stormwater management. Water Research, 39, 19821989. https://doi.org/10.1016/j.watres.2005.03.022.</p><p></p><p>Teow, Y. H., Mohamad, A. W., Ramli, S., Sajab, M. S., & Mohamad Mazuki, N. I. (2018). Potential of Membrane Technology for Treatment and Reuse of Water from Old Mining Lakes. Sains Malaysiana, 47(11), 28872897.</p><p></p><p>Thomas, S. M., Esteves, F. de A., Murphy, K. J., Santos, A., Caliman, A., & Guariento, R.D. (2009). Aquatic Macrophytes in The Tropics: Ecology of Populations and Communities, Impacts of Invasion and Use by Man. In Encyclopedia of Life Support Systems: International Commision on Tropical Biology and Natural Resources (pp. 127).</p><p></p><p>Thornton, J. A., Harding, W. R., Dent, M., Hart, R. C., Lin, H., Rast, C. L., et al (2013). Eutrophication as a wicked problem. Lakes and Reservoirs: Research and Management, 18(4), 298316. https://doi.org/10.1111/lre.12044.</p><p></p><p>Tibebe, D., Kassa, Y., Melaku, A., & Lakew, S. (2019). Investigation of spatio-temporal variations of selected water quality parameters and trophic status of Lake Tana for sustainable management, Ethiopia. Microchemical Journal, 148, 374384. https://doi.org/10.1016/j.microc.2019.04.085.</p><p></p><p>Tonetta, D., Staehr, P. A., Schmitt, R., & Petrucio, M. M. (2016). Physical conditions driving the spatial and temporal variability in aquatic metabolism of a subtropical coastal lake. Limnologica, 58, 3040. https://doi.org/10.1016/j.limno.2016.01.006.</p><p></p><p>Toor, G. S., Occhipinti, M. L., Yang, Y., Majcherek, T., Haver, D., & Oki, L. (2017). Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff. PLoS ONE, 12(6), 117. https://doi.org/https://doi.org/10.1371/journal.pone.0179151 June.</p><p></p><p>Topuzovi, M. (2016). Temporal and habitat distribution of macrophytes in lowland eutrophic reservoir Grua in Serbia. Periodicum Biologorum, 118(1), 6773. https://doi.org/10.18054/pb.2016.118.1.4110.</p><p></p><p>Torres, R., Pereira, E., Vasconcelos, V., & Teles, L. O. (2011). Forecasting of cyanobacterial density in Torro reservoir using artificial neural networks. Journal of Environmental Monitoring, 13(6), 17611767. https://doi.org/10.1039/c1em10127g.</p><p></p><p>Trajanovska, S., Talevska, M., Imeri, A., & Schneider, S. C. (2014). Assessment of littoral eutrophication in Lake Ohrid by submerged macrophytes. Biologia (Poland), 69(6), 756764. https://doi.org/10.2478/s11756-014-0365-9.</p><p></p><p>Troitsky, B., Zhu, D. Z., Loewen, M., van Duin, B., & Mahmood, K. (2019). Nutrient processes and modeling in urban stormwater ponds and constructed wetlands. Canadian Water Resources Journal, 44(3), 230247. https://doi.org/10.1080/07011784.2019.1594390.</p><p></p><p>Tse, T. J., Doig, L. E., Leavitt, P. R., Quiones-Rivera, Z. J., Codling, G., Lucas, B. T., et al (2015). Long-term spatial trends in sedimentary algal pigments in a narrow river- valley reservoir, Lake Diefenbaker, Canada. Journal of Great Lakes Research, 41, 5666. https://doi.org/10.1016/j.jglr.2015.08.002.</p><p></p><p>Tulika, T., & Mala, A. (2014). Pharmaceutical Potential of Aquatic Plant Pistia stratiotes (L.) and Eichhornia crassipes. Journal of Plant Sciences, 3(1), 10. https://doi.org/10.11648/j.jps.s.2015030101.12.</p><p></p><p>Varol, M. (2020). Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey. Environmental Pollution, 259, 113860. https://doi.org/10.1016/j.envpol.2019.113860.</p><p></p><p>Ventel, A. M., Kirkkala, T., Lendasse, A., Tarvainen, M., Helminen, H., & Sarvala, J. (2011). Climate-related challenges in long-term management of Skyln Pyhjrvi (SW Finland). Hydrobiologia, 660(1), 4958. https://doi.org/10.1007/s10750-010-0415-4.</p><p></p><p>Verhofstad, M. J. J. M., Alirangues Nez, M. M., Reichman, E. P., van Donk, E., Lamers,L. P. M., & Bakker, E. S. (2017). Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: Roles of light, sediment nutrient levels, and propagule density. Aquatic Botany, 141(May), 2938. https://doi.org/10.1016/j.aquabot.2017.04.004.</p><p></p><p>Verma, P. U., Purohit, A. R., & Patel, N. J. (2012). Pollution Status Of Chandlodia Lake Located In Ahmedabad- Gujarat. International Jounral of Engineering Research and Applications (IJERA), 2(4), 16001606.</p><p></p><p>Vinon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment, 651, 29853001. https://doi.org/10.1016/j.scitotenv.2018.09.320.</p><p></p><p>Wagner, T., & Erickson, L. E. (2017). Sustainable Management of Eutrophic Lakes and Reservoirs. Journal of Environmental Protection, 8, 436463. https://doi.org/10.4236/jep.2017.84032.</p><p></p><p>Wan, Y., Shan, N., Tong, S., Chen, Y., & He, J. (2020). Nitrogen Occurrence Characteristics and Reason Analysis in Different Trophic Status Freshwater Lakes. Nature Environment and Pollution Technology, 19(1), 179189.</p><p></p><p>Wang, M., Xu, X., Wu, Z., Zhang, X., Sun, P., Wen, Y., et al (2019). Seasonal Pattern of Nutrient Limitation in a Eutrophic Lake and Quantitative Analysis of the Impacts from Internal Nutrient Cycling. Environmental Science & Technology, 53, 13675 13686. research-article. https://doi.org/10.1021/acs.est.9b04266.</p><p></p><p>Wang, S., Lin, X., Yu, H., Wang, Z., Xia, H., An, J., & Fan, G. (2017). Nitrogen removal from urban stormwater runoff by stepped bioretention systems. Ecological Engineering, 106, 340348. https://doi.org/10.1016/j.ecoleng.2017.05.055.</p><p></p><p>Wang, W. W., Jiang, X., Zheng, B. H., Chen, J. Y., Zhao, L., Zhang, B., & Wang, S. H. (2018). Composition, mineralization potential and release risk of nitrogen in the sediments of Keluke Lake, a Tibetan Plateau freshwater lake in China. Royal Society Open Science, 5. https://doi.org/http://dx.doi.org/10.1098/rsos.180612.</p><p></p><p>Wang, Z., Li, Z., & Li, D. (2012). A niche model to predict Microcystis bloom decline in Chaohu Lake, China. Chinese Journal of Oceanology and Limnology , 30(4), 587594. https://doi.org/10.1007/s00343-012-1254-0.</p><p></p><p>Waters, M. N. (2016). A 4700-Year History of Cyanobacteria Toxin Production in a Shallow Subtropical Lake. Ecosystems, 19(3), 426436. https://doi.org/10.1007/s10021-015-9943-0</p><p></p><p>Watson, S. B., Ridal, J., & Boyer, G. L. (2008). Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65(8), 17791796. https://doi.org/10.1139/F08-084.</p><p></p><p>Wen, S., Zhong, J., Li, X., Liu, C., Yin, H., Li, D., et al (2020). Does external phosphorus loading diminish the effect of sediment dredging on internal phosphorus loading? An in-situ simulation study. Journal of Hazardous Materials, 394, 122548. https://doi.org/10.1016/j.jhazmat.2020.122548.</p><p></p><p>Weyhenmeyer, G. A., & Broberg, N. (2014). Increasing algal biomass in Lake Vanern despite decreasing phosphorus concentrations: A lake-specific phenomenon? Aquatic Ecosystem Health and Management, 17(4), 341348. https://doi.org/10.1080/14634988.2014.976532.</p><p></p><p>Wilson, G. L., & Richards, J. M. (2006). Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area / Capacity Tables for Small Reservoirs . Uinted States Geological Survey:Reston, VA, USA.</p><p></p><p>Winter, J. G., Desellas, A. M., Fletcher, R., Heintsch, L., Morley, A., Nakamoto, L., & Utsumi, K. (2011). Algal blooms in Ontario, Canada: Increases in reports since 1994. Lake and Reservoir Management, 27(2), 105112. https://doi.org/10.1080/07438141.2011.557765.</p><p></p><p>Withers, P. J. A., Neal, C., Jarvie, H. P., & Doody, D. G. (2014). Agriculture and eutrophication: Where do we go from here? Sustainability (Switzerland). https://doi.org/10.3390/su6095853.</p><p></p><p>Wong, C L, Venneker, R., Uhlenbrook, S., Jamil, A. B. M., & Zhou, Y. (2009). Variability of rainfall in Peninsular Malaysia. Hydrology and Earth System Sciences, 6, 5471 5503. https://doi.org/10.5194/hessd-6-5471-2009.</p><p></p><p>Wong, C. L., Yusop, Z., & Ismail, T. (2018). Trend Of daily rainfall and temperature in Peninsular Malaysia based on gridded data set. International Journal of GEOMATE, 14(44), 6572. https://doi.org/10.21660/2018.44.3707.</p><p></p><p>Woodland, R. J., Thomson, J. R., Mac Nally, R., Reich, P., Evrard, V., Wary, F. Y., et al (2015). Nitrogen loads explain primary productivity in estuaries at the ecosystem scale. Limnology and Oceanography, 60(5), 17511762. https://doi.org/10.1002/lno.10136.</p><p></p><p>Worako, A. W. (2015). Physicochemical and biological water quality assessment of lake hawassa for multiple designated water uses. Journal of Urban and Environmental Engineering, 9(2), 146157. https://doi.org/10.4090/juee.2015.v9n2.146157.</p><p></p><p>Wu, M., Wang, Y., Wang, Y., Sun, F., Sun, C., Jiang, Z., & Cheng, H. (2014). Influence of environmental changes on phytoplankton pattern in Daya Bay, South China Sea. Revista de Biologa Marina y Oceanografa , 49(2), 323337. https://doi.org/10.4067/S0718-19572014000200011.</p><p></p><p>Wu, S., Wu, Z., Liang, Z., Liu, Y., & Wang, Y. (2018). Denitrification and the controlling factors in Yunnan Plateau Lakes (China): Exploring the role of enhanced internal nitrogen cycling by algal blooms. Journal of Environmental Sciences, 110. https://doi.org/10.1016/j.jes.2018.05.028.</p><p></p><p>Wu, Y., Wen, Y., Zhou, J., & Wu, Y. (2014). Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. KSCE Journal of Civil Engineering, 18(1), 323329. https://doi.org/10.1007/s12205-014-0192-0.</p><p></p><p>Xia, R., Zhang, Y., Critto, A., Wu, J., Fan, J., Zheng, Z., & Zhang, Y. (2016). The potential impacts of climate change factors on freshwater eutrophication: Implications for research and countermeasures of water management in China. Sustainability (Switzerland), 8(3). https://doi.org/10.3390/su8030229.</p><p></p><p>Xia, X., Zhang, S., Li, S., Zhang, L., Wang, G., Zhang, L., et al (2018). The cycle of nitrogen in river systems: Sources, transformation, and flux. Environmental Science: Processes & Impacts. https://doi.org/10.1039/C8EM00042E.</p><p></p><p>Xu, S., Wang, Y., Huang, B., Wei, Z., Miao, A., & Yang, L. (2015). Nitrogen and phosphorus limitation of phytoplankton growth in different areas of Lake. Journal of Freshwater Ecology, 30(1), 113127. https://doi.org/10.1080/02705060.2014.960901</p><p></p><p>Xu, T., Yang, T., & Xiong, M. (2020). Time scales of external loading and spatial heterogeneity in nutrients- chlorophyll a response : Implication on eutrophication control in a large shallow lake. Ecological Engineering, 142(May 2019), 105636. https://doi.org/10.1016/j.ecoleng.2019.105636.</p><p></p><p>Xu, X., Liu, H., Jiao, F., Ren, Y., Gong, H., Lin, Z., & Changchun, H. (2020). Influence of climate change and human activity on total nitrogen and total phosphorus: a case study of Lake Taihu, China. Lake and Reservoir Management, 0(0), 117. https://doi.org/10.1080/10402381.2019.1711471.</p><p></p><p>Xu, Z. H., Yin, X. A., & Yang, Z. F. (2014). An optimisation approach for shallow lake restoration through macrophyte management. Hydrology and Earth System Sciences, 18, 21672176. https://doi.org/10.5194/hess-18-2167-2014.</p><p></p><p>Xu, Z., & Xu, Y. J. (2016). A Deterministic Model for Predicting Hourly Dissolved Oxygen Change : Development and Application to a Shallow Eutrophic Lake. Water, 8(41), 115. https://doi.org/10.3390/w8020041.</p><p></p><p>Yalin, W., Tao, H., Changchun, H., Yinyin, S., Yang, L., Hao, Y., et al (2018). Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China. Chinese Geographical Science, 28(5), 851862.</p><p></p><p>Yan, D., Xu, H., Yang, M., Lan, J., Hou, W., Wang, F., et al (2019). Responses of cyanobacteria to climate and human activities at Lake Chenghai over the past 100 years. Ecological Indicators, 104, 755763. https://doi.org/10.1016/j.ecolind.2019.03.019.</p><p></p><p>Yang, L., Lei, K., Yan, W., & Li, Y. (2013). Internal Loads of Nutrients in Lake Chaohu of China : Implications for lake Eutrophication. International Journal of Environmental Research, 7(4), 10211028. https://doi.org/10.22059/IJER.2013.686</p><p></p><p>Yanti Siregar, E. S., Rosmasita, Fitria, D. M., Rahimah, I., & Siburian, J. P. (2020). Morphometry of Lake Pandan in Tapanuli tengah district, north Sumatera province. International Journal of GEOMATE, 19(72), 131136. https://doi.org/10.21660/2020.72.ICGEO51</p><p></p><p>Ye, H., Yuan, X., Han, L., Marip, J. B., & Qin, J. (2017). Risk Assessment of Nitrogen and Phosphorus Loss in a Hilly-Plain Watershed Based on the Different Hydrological Period : A Case Study in Tiaoxi Watershed. Sustainability, 9(1493), 113. https://doi.org/10.3390/su9081493.</p><p></p><p>Yesuf, H. M., Alamirew, T., Melesse, A. M., & Assen, M. (2012). Bathymetric Mapping for Lake Hardibo in Northeast Ethiopia Using Sonar. International Journal of Water Sciences, 1(1), 19. https://doi.org/10.5772/52886.</p><p></p><p>Yesuf, H. M., Alamirew, T., Melesse, A. M., & Assen, M. (2013). Bathymetric study of Lake Hayq, Ethiopia. Lakes and Reservoirs: Research and Management, 18(2), 155165. https://doi.org/10.1111/lre.12024.</p><p></p><p>Yi, H. S., Park, S., An, K. G., & Kwak, K. C. (2018). Algal bloom prediction using extreme learning machine models at artificial weirs in the nakdong river, Korea. International Journal of Environmental Research and Public Health , 15(10). https://doi.org/10.3390/ijerph15102078.</p><p></p><p>Yin, H., Wang, J., Zhang, R., & Tang, W. (2019). Performance of physical and chemical methods in the co-reduction of internal phosphorus and nitrogen loading from the sediment of a black odorous river. Science of the Total Environment, 663, 6877. https://doi.org/10.1016/j.scitotenv.2019.01.326.</p><p></p><p>Yuk, F.H., Shin, Y.A., Khia, M.L., & Teang, S. L. (2015). Quality of Water Resources in Malaysia. In Research and Practice Water Quality (Vol. DS 84, pp. 411420). https://doi.org/10.5772/50570.</p><p></p><p>Zakaria, S., & Sharip, Z. (2007). Water. In National Conference and Exhibition on Sustainability Malaysia (Vol. 2007, pp. 3031).</p><p></p><p>Zanchett, G., & Oliveira-Filho, E. C. (2013). Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 5(10), 18961917. https://doi.org/10.3390/toxins5101896.</p><p></p><p>Zhang, L., Zhong, M., Xu, Y., Wang, Z., & Huang, H. (2019). The Water Quality Evaluation in Balihe Lake Based on Principal Component Analysis. Journal of Geoscience and Environment Protection, 07(08), 3848. https://doi.org/10.4236/gep.2019.78003.</p><p></p><p>Zhang, L., Wang, S., & Wu, Z. (2014). Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water - sediment interface of Erhai Lake, China. Estuarine, Coastal and Shelf Science, 149, 178186. https://doi.org/10.1016/j.ecss.2014.08.009.</p><p></p><p>Zhang, W., Lou, I. C., Kong, Y., Ung, W. K., & Mok, K. M. (2013). Eutrophication analyses and principle component regression for two subtropical storage reservoirs in Macau. Desalination and Water Treatment, 51(3739), 73317340. https://doi.org/10.1080/19443994.2013.793921.</p><p></p><p>Zhang, Y., Huang, J. J., Chen, L., & Qi, L. (2015). Eutrophication forecasting and management by artificial neural network: A case study at Yuqiao Reservoir in North China. Journal of Hydroinformatics, 17(4), 679695. https://doi.org/10.2166/hydro.2015.115.</p><p></p><p>Zhang, Y., Shi, P., Li, F., Wei, A., Song, J., & Ma, J. (2018). Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model. Chemosphere, 208, 493501. https://doi.org/10.1016/j.chemosphere.2018.05.164</p><p></p><p>Zhang, Y., Song, C., Zhou, Z., Cao, X., & Zhou, Y. (2019). Coupling between Nitrification and Denitrification as well as Its Effect on Phosphorus Release in Sediments of Chinese Shallow Lakes. Water, 11. https://doi.org/10.3390/w1109180.</p><p></p><p>Zhang, Y., Yang, N., Xu, J., & Yin, Y. (2017). Long-Term Study of the Relationship between Precipitation and Aquatic Vegetation Succession in East Taihu Lake, China. Scientifica. https://doi.org/10.1155/2017/6345138.</p><p></p><p>Zhang, Y., Liu, L., & Lu, C. (2015). Impacts of lake water environmental condition on bioavailable- phosphorus of surface sediments in Lixia River basin, China. Remote Sensing and GIS for Hydrology and Water Resources, 424429. https://doi.org/10.5194/piahs-368-424-2015.</p><p></p><p>Zhao, G., Gao, J., Tian, P., Tian, K., & Ni, G. (2011). Spatial-temporal characteristics of surface water quality in the Taihu Basin, China. Environmental Earth Sciences, 64(3), 809819. https://doi.org/10.1007/s12665-011-0902-6.</p><p></p><p>Zheng, L., Wang, H. P., Huang, M. S., & Liu, Y. (2019). Relationships between temporal and spatial variations of water quality and water level changes in poyang lake based on 5 consecutive years monitoring. Applied Ecology and Environmental Research , 17(5), 1168711699.</p><p></p><p>Zhou, G., Zhao, X., Bi, Y., & Hu, Z. (2012). Effects of rainfall on spring phytoplankton community strucutr in Xiangxi Bay of the Three-Gorges Reservoir, China. Fresenius Environmental Bulletin, 21(11).</p><p></p><p>Zhou, N., Zhao, S., & Shen, X. (2014). Nitrogen cycle in the hyporheic zone of natural wetlands. Chinese Science Bulletin, 59(24), 29452956. https://doi.org/10.1007/s11434-014-0224-7.</p><p></p><p>Zhou, X., Wang, M., Liu, L., Chen, Z., Li, Y., & Zhang, J. (2015). Nitrogen Dynamics Variation in Overlying Water of Jinshan Lake, China. Journal of Chemistry, 2015.</p><p></p><p>Zieliski, R., Dunalska, J., Grochowska, J., Bigaj, I., & Szymaski, D. (2013). Variation of nitrogen forms in lakes with different intensity of anthropogenic pressure. Limnological Review, 13(3), 181188. https://doi.org/10.2478/limre-2013-0020.</p><p></p><p>Zohary, T., & Ostrovsky, I. (2011). Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters, 1(1), 4759. https://doi.org/10.5268/IW-1.1.406.</p><p></p><p>Zou, Y., Zhang, L., Wang, L., Zhang, S., & Yu, X. (2018). Effects of aeration, vegetation, and iron input on total P removal in a lacustrine wetland receiving agricultural drainage. Water (Switzerland), 10(1), 411. https://doi.org/10.3390/w10010061.</p><p></p><p>Zuraini, N. A., Alias, N., Mohamed Yusof, Z., Hanapi, M. N., & Harun, S. (2018). First flush analysis of urban stormwater runoff from an urban catchment in Johor, Malaysia. MATEC Web of Conferences, 250, 06014.https://doi.org/10.1051/matecconf/201825006014.</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p>Katsev, S., & Dittrich, M. (2013). Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions. Ecological Modelling, 251, 246259. https://doi.org/10.1016/j.ecolmodel.2012.12.008.</p><p></p><p></p><p>Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 3769(8:1), 2339. https://doi.org/10.1080/21553769.2014.933716.</p><p></p><p></p><p>Kim, H. H., Ko, B. C., & Nam, J. Y. (2016). Predicting chlorophyll-a using Landsat 8 OLI sensor data and the non-linear RANSAC method a case study of Nakdong River, South Korea. International Journal of Remote Sensing, 37(14), 32553271. https://doi.org/10.1080/01431161.2016.1196839.</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p>