Biosynthesis of carbohydrate and lipid in Chlorella vulgaris UPSI-JRM01 for biofuel feedstock production

<p>This study aims to investigate the effect of photo-autotrophic cultural conditions (light intensity, temperature, pH, CO2 and NO3-) of C. vulgaris UPSI-JRM01 and to optimise the lipid, carbohydrate and biomass productivities for high biofuel feedstock production. In addition, carbon...

Full description

Saved in:
Bibliographic Details
Main Author: Norazela Nordin
Format: thesis
Language:eng
Published: 2020
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=8575
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:8575
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic
spellingShingle
Norazela Nordin
Biosynthesis of carbohydrate and lipid in Chlorella vulgaris UPSI-JRM01 for biofuel feedstock production
description <p>This study aims to investigate the effect of photo-autotrophic cultural conditions (light intensity, temperature, pH, CO2 and NO3-) of C. vulgaris UPSI-JRM01 and to optimise the lipid, carbohydrate and biomass productivities for high biofuel feedstock production. In addition, carbon partitioning mechanism under nitrogen stress was also elucidated. The method of single-factor experiment was used to determine the effect of each cultural condition. The optimisation process was performed using statistical method of Plackett-Burman Design and Central Composite Design. The whole transcriptome analysis of gene expression under nitrogen stress was also performed using RNA sequencing. The results indicated that the lipid and carbohydrate yields were increased 3.19-fold and 1.39-fold under nitrogen stress and 5% CO2, respectively. The highest biomass productivity was achieved at 10,500 lux, 28 oC, pH 8, 5% CO2 and 500 mg/L NO3-. Meanwhile, the highest lipid yield was achieved at 23,500 lux, 40 oC, pH 8, 0.03% CO2 and without NO3- addition. The biomass, lipid and carbohydrate productivities were optimised to 404.24 mg/L/day, 65.30 mg/L/day and 165.43 mg/L/day, respectively. The major fatty acid methyl ester components were C16:0 (33.54%) and C18:2 (30.29%), thereby producing biodiesel complied with ASTM D6751 standard. Moreover, the results of gene expression study revealed the two-stage response to nitrogen stress; i) carbohydrate accumulation, plastid protein degradation, and amino acid biosynthesis, and ii) lipid accumulation, carbohydrate degradation, and DNA damage. In conclusion, the production of biofuel feedstock from microalgae biomass was feasible. The nitrogen stress triggered high carbohydrate accumulation before the carbon partitioned into triacylglycerol (TAG) using two different pathways; chloroplastic TAG synthesis and glycerolipid metabolism. The implication of this study can be associated with the potential development of biofuel feedstock from microalgae for future application and providing insight of carbon partitioning mechanism in C. vulgaris UPSI-JRM01 under nitrogen stress.</p>
format thesis
qualification_name
qualification_level Doctorate
author Norazela Nordin
author_facet Norazela Nordin
author_sort Norazela Nordin
title Biosynthesis of carbohydrate and lipid in Chlorella vulgaris UPSI-JRM01 for biofuel feedstock production
title_short Biosynthesis of carbohydrate and lipid in Chlorella vulgaris UPSI-JRM01 for biofuel feedstock production
title_full Biosynthesis of carbohydrate and lipid in Chlorella vulgaris UPSI-JRM01 for biofuel feedstock production
title_fullStr Biosynthesis of carbohydrate and lipid in Chlorella vulgaris UPSI-JRM01 for biofuel feedstock production
title_full_unstemmed Biosynthesis of carbohydrate and lipid in Chlorella vulgaris UPSI-JRM01 for biofuel feedstock production
title_sort biosynthesis of carbohydrate and lipid in chlorella vulgaris upsi-jrm01 for biofuel feedstock production
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2020
url https://ir.upsi.edu.my/detailsg.php?det=8575
_version_ 1776104540527919104
spelling oai:ir.upsi.edu.my:85752023-01-06 Biosynthesis of carbohydrate and lipid in Chlorella vulgaris UPSI-JRM01 for biofuel feedstock production 2020 Norazela Nordin <p>This study aims to investigate the effect of photo-autotrophic cultural conditions (light intensity, temperature, pH, CO2 and NO3-) of C. vulgaris UPSI-JRM01 and to optimise the lipid, carbohydrate and biomass productivities for high biofuel feedstock production. In addition, carbon partitioning mechanism under nitrogen stress was also elucidated. The method of single-factor experiment was used to determine the effect of each cultural condition. The optimisation process was performed using statistical method of Plackett-Burman Design and Central Composite Design. The whole transcriptome analysis of gene expression under nitrogen stress was also performed using RNA sequencing. The results indicated that the lipid and carbohydrate yields were increased 3.19-fold and 1.39-fold under nitrogen stress and 5% CO2, respectively. The highest biomass productivity was achieved at 10,500 lux, 28 oC, pH 8, 5% CO2 and 500 mg/L NO3-. Meanwhile, the highest lipid yield was achieved at 23,500 lux, 40 oC, pH 8, 0.03% CO2 and without NO3- addition. The biomass, lipid and carbohydrate productivities were optimised to 404.24 mg/L/day, 65.30 mg/L/day and 165.43 mg/L/day, respectively. The major fatty acid methyl ester components were C16:0 (33.54%) and C18:2 (30.29%), thereby producing biodiesel complied with ASTM D6751 standard. Moreover, the results of gene expression study revealed the two-stage response to nitrogen stress; i) carbohydrate accumulation, plastid protein degradation, and amino acid biosynthesis, and ii) lipid accumulation, carbohydrate degradation, and DNA damage. In conclusion, the production of biofuel feedstock from microalgae biomass was feasible. The nitrogen stress triggered high carbohydrate accumulation before the carbon partitioned into triacylglycerol (TAG) using two different pathways; chloroplastic TAG synthesis and glycerolipid metabolism. The implication of this study can be associated with the potential development of biofuel feedstock from microalgae for future application and providing insight of carbon partitioning mechanism in C. vulgaris UPSI-JRM01 under nitrogen stress.</p> 2020 thesis https://ir.upsi.edu.my/detailsg.php?det=8575 https://ir.upsi.edu.my/detailsg.php?det=8575 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abdelaziz, A. E. M., Leite, G. B., Belhaj, M. A., & Hallenbeck, P. C. (2014). Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresource Technology, 157, 140148. https://doi.org/10.1016/j.biortech.2014. 01.114</p><p>Abdullah, B., Syed Muhammad, S. A. F., Shokravi, Z., Ismail, S., Kassim, K. A., Mahmood, A. N., & Aziz, M. M. A. (2019). Fourth generation biofuel: a review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107(February), 3750. https://doi.org/10.1016/j.rser.2019.02.018</p><p>Adams, C., Godfrey, V., Wahlen, B., Seefeldt, L., & Bugbee, B. (2013). Understanding precision nitrogen stress to optimize the growth and lipid content trade-off in oleaginous green microalgae. Bioresource Technology, 131, 188194. https://doi.org/10.1016/j.biortech.2012.12.143</p><p>Aguirre, A. M., & Bassi, A. (2013). Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology. Biotechnology and Bioengineering, 110(8), 21142122. https://doi.org/10.1002/bit.24871</p><p>Allen, J. W., DiRusso, C. C., & Black, P. N. (2015). Triacylglycerol synthesis during nitrogen stress involves the prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa subellipsoidea. Algal Research, 10, 110120. https://doi.org/10.1016/j.algal.2015.04.019</p><p>Al-lwayzy, S. H., Yusaf, T., & Al-Juboori, R. A. (2014). Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies, 7(3), 18291851. https://doi.org/10.3390/en7031829</p><p>Andersson, V., Broberg Viklund, S., Hackl, R., Karlsson, M., & Berntsson, T. (2014). Algae-based biofuel production as part of an industrial cluster. Biomass and Bioenergy, 71, 113124. https://doi.org/10.1016/j.biombioe.2014.10.019</p><p>Anjos, M., Fernandes, B. D., Vicente, A. A., Teixeira, J. A., & Dragone, G. (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 139, 149154. https://doi.org/10.1016/j.biortech.2013.04.032</p><p>Arora, N., Patel, A., Pruthi, P. A., & Pruthi, V. (2015). Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology, 213, 79-87. https://doi.org/10.1016/j.biortech.2016.02.112</p><p>Ashokkumar, V., Salam, Z., Tiwari, O. N., Chinnasamy, S., Mohammed, S., & Ani, F. N. (2015). An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Conversion and Management, 101, 778786. https://doi.org/10.1016/j.enconman.2015.06.006</p><p>Banerjee, A., Maiti, S. K., Guria, C., & Banerjee, C. (2016). Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis. Biotechnology Letters, 39(1), 111. https://doi.org/10.1007/s10529-016-2216-y</p><p>Barghbani, R., Rezaei, K., & Javanshir, A. (2012). Investigating the effects of several parameters on the growth of Chlorella vulgaris using Taguchis experimental approach. International Journal of Biotechnology for Wellness Industries, 1, 128133.</p><p>Battah, M., El-Ayoty, Y., El-Fatah Abomohra, A., El-Ghany, S. A., & Esmael, A. (2013). Optimization of growth and lipid production of the Chlorophyte microalga Chlorella vulgaris as a feedstock for biodiesel production. World Applied Sciences Journal, 28(11), 15361543. https://doi.org/10.5829/idosi.wasj.2013.28.11.1918</p><p>Beacham, T. A., Macia, V. M., Rooks, P., White, D. A., & Ali, S. T. (2015). Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis. Biotechnology Reports, 7, 8794. https://doi.org/10.1016/j.btre.2015.05.007</p><p>Bellinger, E. G., & Sigee, D. C. (2010). Freshwater Algae. Chichester, United Kingdom: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470689554</p><p>Bellou, S., Baeshen, M. N., Elazzazy, A. M., Aggeli, D., Sayegh, F., & Aggelis, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 32(8), 14761493. https://doi.org/10.1016/j.biotechadv.2014.10.003</p><p>Bhola, V., Desikan, R., Santosh, S. K., Subburamu, K., Sanniyasi, E., & Bux, F. (2011). Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Journal of Bioscience and Bioengineering, 111(3), 377382. https://doi.org/10.1016/j.jbiosc.2010.11.006</p><p>Bidle, K. D., & Falkowski, P. G. (2004). Cell death in planktonic photosynthetic microorganisms. Nature Reviews, 2, 643655. https://doi.org/10.1038/nrmicro956</p><p>Biller, P., Ross, A. B., Skill, S. C., Lea-Langton, A., Balasundaram, B., Hall, C., Llewellyn, C. A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 1(1), 7076. https://doi.org/10.1016/j.algal.2012.02.002</p><p>Binnal, P., & Babu, P. N. (2017). Statistical optimization of parameters affecting lipid productivity of microalga Chlorella protothecoides cultivated in photobioreactor under nitrogen starvation. South African Journal of Chemical Engineering, 23, 2637. https://doi.org/10.1016/j.sajce.2017.01.001</p><p>Biondi, N., Tredici, M. R., Bassi, N., Guccione, A., Rodolfi, L., & Sampietro, G. (2014). Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnology for Biofuels, 7(1), 84. https://doi.org/10.1186/1754-6834-7-84</p><p>Blair, M. F., Kokabian, B., & Gude, V. G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665674. https://doi.org/10.1016/j.jece.2013.11.005</p><p>Borde, V. & Lichten, M. (2014). A timeless but timely connection between replication and recombination. Cell, 158(4), 697698. https://doi.org/10.1016/j.cell.2014.07.029</p><p>Brnyikov, I., Marlkov, B., Doucha, J., Brnyik, T., Biov, K., Zachleder, V., & Vtov, M. (2011). Microalgae-novel highly efficient starch producers. Biotechnology and Bioengineering, 108(4), 766776. https://doi.org/10.1002/bit.23016</p><p>Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217226. https://doi.org/10.1016/j.biortech.2012.08.003</p><p>Cabanelas, I. T. D., Arbib, Z., Chinalia, F. A., Souza, C. O., Perales, J. A., Almeida, P. F., Nascimento, I. A. (2013). From waste to energy: microalgae production in wastewater and glycerol. Applied Energy, 109, 283290. https://doi.org/10.1016/j.apenergy.2013.04.023</p><p>Campenni, L., Nobre, B. P., Santos, C. A., Oliveira, A. C., Aires-Barros, M. R., Palavra, A. M. F., & Gouveia, L. (2013). Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Applied Microbiology and Biotechnology, 97(3), 13831393. https://doi.org/10.1007/s00253-012-4570-6</p><p>Crdenas, C., Miller, R. A., Smith, I., Bui, T., Molg, J., Mller, M., & Foskett, J. K. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 142(2), 270283. https://doi.org/10.1016/j.cell.2010.06.007</p><p>Castellanos, C. S. (2013). Batch and Continuous Studies of Chlorella vulgaris in Photo-bioreactors (Master of Science dissertation). The University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/1113</p><p>Chen, C., Zhao, X., Yen, H., Ho, S., & Cheng, C. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 110. https://doi.org/10.1016/j.bej.2013.03.006</p><p>Chen, G., Zhao, L., & Qi, Y. (2015). Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Applied Energy, 137, 282291. https://doi.org/10.1016/j.apenergy.2014.10.032</p><p>Cheng, D., Li, D., Yuan, Y., Zhou, L., Li, X., Wu, T., Sun, Y. (2017). Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnology for Biofuels, 10(1), 114. https://doi.org/10.1186/s13068-017-0753-9</p><p>Cheng, L., Zhang, L., Chen, H., & Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, 50(3), 324329. https://doi.org/10.1016/j.seppur.2005.12.006</p><p>Chi, X., Zhang, X., Guan, X., Ding, L., Li, Y., Wang, M., Qin, S. (2008). Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: Identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii. Journal of Microbiology, 46(2), 189201. https://doi.org/10.1007/s12275-007-0223-3</p><p>Chisti, Y., & Yan, J. (2011). Energy from algae: current status and future trends. Algal biofuels - a status report. Applied Energy, 88(10), 32773279. https://doi.org/10.1016/j.apenergy.2011.04.038</p><p>Chu, F. F., Chu, P. N., Cai, P. J., Li, W. W., Lam, P. K. S., & Zeng, R. J. (2013). Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresource Technology, 134, 341346. https://doi.org/10.1016/j.biortech.2013.01.131</p><p>Chu, F. F., Chu, P. N., Shen, X. F., Lam, P. K. S., & Zeng, R. J. (2014). Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresource Technology, 152, 241246. https://doi.org/10.1016/j.biortech.2013.11.013</p><p>Concas, A., Antonio, G., Pisu, M., & Cao, G. (2012). Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100% (v/v) CO2. Chemical Engineering Journal, 213, 203213. https://doi.org/10.1016/j.cej.2012.09.119</p><p>Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 11461151. https://doi.org/10.1016/j.cep.2009.03.006</p><p>Costa, S. S., Miranda, A. L., Andrade, B. B., Assis, D. J., Souza, C. O., de Morais, M. G., Druzian, J. I. (2018). Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. International Journal of Biological Macromolecules, 116, 552562. https://doi.org/10.1016/j.ijbiomac.2018.05.064</p><p>Cuellar-Bermudez, S. P., Aleman-Nava, G. S., Chandra, R., Garcia-Perez, J. S., Contreras-Angulo, J. R., Markou, G., & Parra-Saldivar, R. (2017). Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research, 24, 438449. https://doi.org/10.1016/j.algal.2016.08.018</p><p>Culture Collection of Algae and Protozoa (CCAP) (2013). Media Recipes Used by CCAP to Maintain Microalgal Strains. Retrieved from http://www.ccap.ac.uk/media/pdfrecipes.htm</p><p>Daliry, S., Hallajisani, A., Roshandeh, J. M., Nouri, H., & Golzary, A. (2017). Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global J. Environ. Sci. Manage, 3(2), 217230. https://doi.org/10.22034/gjesm.2017.03.02.010</p><p>Dasgupta, C. N., Suseela, M. R., Mandotra, S. K., Kumar, P., Pandey, M. K., Toppo, K., & Lone, J. a. (2015). Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production. Applied Energy, 146, 202208. https://doi.org/10.1016/j.apenergy.2015.01.070</p><p>Dayananda, C., Sarada, R., Shamala, T. R., & Ravishankar, G. A. (2006). Influence of nitrogen sources on growth, hydrocarbon and fatty acid production by Botryococcus braunii. Asian Journal of Plant Sciences, 5(5), 799-804. https://doi.org/10.3923/ajps.2006.799.804</p><p>Dayana-Priyadharshini, S., & Bakthavatsalam, A. K. (2016). Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman design and response surface methodology. Bioresource Technology, 207, 150156. https://doi.org/10.1016/j.biortech.2016.01.138</p><p>De Farias Silva, C. E., & Sforza, E. (2016). Carbohydrate productivity in continuous reactor under nitrogen limitation: effect of light and residence time on nutrient uptake in Chlorella vulgaris. Process Biochemistry, 51(12), 21122118. https://doi.org/10.1016/j.procbio.2016.09.015</p><p>De Souza, M. P., Hoeltz, M., Gressler, P. D., Benitez, L. B., & Schneider, R. C. S. (2018). Potential of Microalgal Bioproducts: General Perspectives and Main Challenges. Waste and Biomass Valorization, 10(8), 21392156. https://doi.org/10.1007/s12649-018-0253-6</p><p>Dianursanti, B. T. R., Gumelar, M. T., & Abdullah, T. H. (2014). Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris. Energy Procedia, 47, 5661. https://doi.org/10.1016/j.egypro.2014.01.196</p><p>El-Kassas, H. Y., & Mohamed, L. A. (2014). Bioremediation of the textile waste effluent by Chlorella vulgaris. The Egyptian Journal of Aquatic Research, 40(3), 301308. https://doi.org/10.1016/j.ejar.2014.08.003</p><p>Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., & Kuppam, C. (2018). Production of biofuels from microalgae - a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94(May 2017), 4968. https://doi.org/10.1016/j.rser.2018.05.012</p><p>Factsheet. (2011). Fatty Acid Methyl Esters (FAME). European Biofuels Technology Platform, 1, 12.</p><p>Fan, J., Andre, C., & Xu, C. (2011). A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Letters, 585(12), 19851991. https://doi.org/10.1016/j.febslet.2011.05.018</p><p>Fan, J., Cui, Y., Wan, M., Wang, W., & Li, Y. (2014a). Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels, 7(1), 17. https://doi.org/10.1186/1754-6834-7-17</p><p>Fan, J., Cui, Y., Zhou, Y., Wan, M., Wang, W., Xie, J., & Li, Y. (2014b). The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription. Bioresource Technology, 164, 214220. https://doi.org/10.1016/j.biortech.2014.04.087</p><p>Fan, J., Xu, H., Luo, Y., Wan, M., Huang, J., Wang, W., & Li, Y. (2015). Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella. Applied Microbiology and Biotechnology, 99(5), 24512462. https://doi.org/10.1007/s00253-015-6397-4</p><p>Fan, L., Zhang, Y., Cheng, L., Zhang, L., Tang, D., & Chen, H. (2007). Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chemical Engineering and Technology, 30(8), 10941099. https://doi.org/10.1002/ceat.200700141</p><p>Farooq, W., Suh, W. I., Park, M. S., & Yang, J. (2015). Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 184, 7381. https://doi.org/10.1016/j.biortech.2014.10.140</p><p>Fung, K. S., Ngu, H. L. N., Ngee, L., Liew, E. W. T., Teng, W., & Ngu, H. L. N. (2013). Optimization of nutrient media composition for microalgae biomass production using central composite design. In: Wang L, editors. Proceeding of Chemeca 2013: Challenging Tomorrow; 2013 Sept 29-Oct 2; Barton, ACT: Engineers Australia; 2013. p. 278-282.</p><p>Galarza, J. I., Delgado, N., & Henrquez, V. (2016). Cisgenesis and intragenesis in microalgae: promising advancements towards sustainable metabolites production. Applied Microbiology and Biotechnology, 100(24), 1022510235. https://doi.org/10.1007/s00253-016-7948-z</p><p>Galarza, J. I., Gimpel, J. A., Rojas, V., Arredondo-Vega, B. O., & Henrquez, V. (2018). Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Research, 31(March 2017), 291297. https://doi.org/10.1016/j.algal.2018.02.024</p><p>Ganapathi, S., Shetty, V., & Mokashi, K. (2015). Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels: a review. Journal of the Energy Institute, 89(3), 15. https://doi.org/10.1016/j.joei.2015.03.008</p><p>Gao, C., Wang, Y., Shen, Y., Yan, D., He, X., Dai, J., & Wu, Q. (2014). Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics, 15, 582. https://doi.org/10.1186/1471-2164-15-582</p><p>Gardner, R. D., Lohman, E., Gerlach, R., Cooksey, K. E., & Peyton, B. M. (2013). Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 110(1), 8796. https://doi.org/10.1002/bit.2 4592</p><p>Ghafari, M., Rashidi, B., & Haznedaroglu, B. Z. (2018). Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae. Biofuels, 9(2), 147156. https://doi.org/10.1080/17597269.2016.1221644</p><p>Goncalves, E. C., Johnson, J. V., & Rathinasabapathi, B. (2013). Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta, 238(5), 895906. https://doi.org/10.1007/s00425-013-1946-5</p><p>Goncalves, E. C., Wilkie, A. C., Kirst, M., & Rathinasabapathi, B. (2016). Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnology Journal, 14(8), 112. https://doi.org/10.1111/pbi.12523</p><p>Gonzlez-Fernndez, C., & Ballesteros, M. (2012). Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnology Advances, 30(6), 16551661. https://doi.org/10.1016/j.biotechadv.2012.07.003</p><p>Graham, L. E., Graham, J. M., & Wilcox, L. W. (2009). Algae (Second Edi). New York: Benjamin Cunnings.</p><p>Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493507. https://doi.org/10.1007/s10811-008-9392-7</p><p>Griffiths, M. J., Van Hille, R. P., & Harrison, S. T. L. (2014). The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Applied Microbiology and Biotechnology, 98(5), 23452356. https://doi.org/10.1007/s00253-013-5442-4</p><p>Hadjoudja, S., Deluchat, V., & Baudu, M. (2010). Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. Journal of Colloid and Interface Science, 342(2), 293299. https://doi.org/10.1016/j.jcis.2009.10.078</p><p>Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: a review. Biotechnology Advances, 30(3), 709732. https://doi.org/10.1016/j.biotechadv.2012.01.001</p><p>Han, F., Pei, H., Hu, W., Song, M., Ma, G., & Pei, R. (2015). Optimization and lipid production enhancement of microalgae culture by efficiently changing the conditions along with the growth-state. Energy Conversion and Management, 90, 315322. https://doi.org/10.1016/j.enconman.2014.11.032</p><p>Han, L., Pei, H., Hu, W., Jiang, L., Ma, G., Zhang, S., & Han, F. (2015). Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresource Technology, 175, 262268. https://doi.org/10.1016/j.biortech.2014.10.100</p><p>Haynes, W. M., Lide, D. R., & Bruno, T. J. (2016). CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data (97th ed.). Bota Racon, Florida: CRC Press.</p><p>Heidari, M., Kariminia, H. R., & Shayegan, J. (2016). Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris. Process Safety and Environmental Protection, 104, 111122. https://doi.org/10.1016/j.psep.2016.07.012</p><p>Heilmann, I. (2004). Identification of the Arabidopsis palmitoyl-monogalactosyldiacylglycerol 7-desaturase gene FAD5, and effects of plastidial retargeting of Arabidopsis desaturases on the FAD5 mutant phenotype. Plant Physiology, 136(4), 42374245. https://doi.org/10.1104/pp.104.052951</p><p>Hill, J. A., Lavandero, S., & Rothermel, B. A. (2012). Autophagy in cardiac physiology and disease. Muscle (First Edition). Elsevier Inc. https://doi.org/10.1016/B978-0-12-381510-1.00030-2</p><p>Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244252. https://doi.org/10.1016/j.biortech.2011.11.133</p><p>Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, 135, 157165. https://doi.org/10.1016/j.biortech.2012.10.100</p><p>Ho, S. H., Nakanishi, A., Kato, Y., Yamasaki, H., Chang, J. S., Misawa, N., & Kondo, A. (2017). Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Scientific Reports, 7(April), 17. https://doi.org/10.1038/srep45471</p><p>Hong, S. J., & Lee, C. G. (2008). Statistical optimization of culture media for production of phycobiliprotein by Synechocystis sp. PCC 6701. Biotechnology and Bioprocess Engineering, 13(4), 491498. https://doi.org/10.1007/s12257-008-0154-9</p><p>Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54(4), 621639. https://doi.org/10.1111/j.1365-313X.2008.03492.x</p><p>Hu, Q., Zeng, R., Zhang, S. X., Yang, Z. H., & Huang, H. (2014). Production of microalgal lipids as biodiesel feedstock with fixation of CO2 by Chlorella vulgaris. Food Technology and Biotechnology, 52(3), 285291.</p><p>Hu, X., Liu, B., Deng, Y., Bao, X., Yang, A., & Zhou, J. (2019). A novel two-stage culture strategy used to cultivate Chlorella vulgaris for increasing the lipid productivity. Separation and Purification Technology, 211(June 2018), 816822. https://doi.org/10.1016/j.seppur.2018.10.056</p><p>Ikaran, Z., Urreta, I., & Castan, S. (2015). The effect of nitrogen limitation on the physiology and metabolism of Chlorella vulgaris var L3. Algal, 10, 134144. https://doi.org/10.1016/j.algal.2015.04.023</p><p>Islam, M. A., Ayoko, G. A., Brown, R., Stuart, D., & Heimann, K. (2013). Influence of fatty acid structure on fuel properties of algae derived biodiesel. Procedia Engineering, 56, 591596. https://doi.org/10.1016/j.proeng.2013.03.164</p><p>Izumo, A., Fujiwara, S., Oyama, Y., Satoh, A., Fujita, N., Nakamura, Y., & Tsuzuki, M. (2007). Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: comparison of structure and properties of pyrenoid and stroma starch. Plant Science, 172(6), 11381147. https://doi.org/10.1016/j.plantsci.2007.03.001</p><p>Jia, J., Han, D., Gerken, H. G., Li, Y., Sommerfeld, M., Hu, Q., & Xu, J. (2015). Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Research, 7, 6677. https://doi.org/10.1016/j.algal.2014.11.005</p><p>Jiang, G., Li, F., Wang, S., Sun, J., & Liu, Z. (2019). Positive correlation between lipid accumulation and gene expression of a copper-containing amine oxidase gene in Chlorella under nitrogen starvation. Algal Research, 40, 18. https://doi.org/10.1016/j.algal.2019.101504</p><p>Jones, C. S., & Mayfield, S. P. (2012). Algae biofuels: versatility for the future of bioenergy. Current Opinion in Biotechnology, 23(3), 346351. https://doi.org/10.1016/j.copbio.2011.10.013</p><p>Kamalanathan, M., Chaisutyakorn, P., Gleadow, R., & Beardall, J. (2018). A comparison of photoautotrophic, heterotrophic, and mixotrophic growth for biomass production by the green alga Scenedesmus sp. (Chlorophyceae). Phycologia, 57(3), 309317. https://doi.org/10.2216/17-82.1</p><p>Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2014). Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Research, 42, 199205. https://doi.org/10.1093/nar/gkt1076</p><p>Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44, 457462. https://doi.org/10.1093/nar/gkv1070</p><p>Khoeyi, Z. A., Seyfabadi, J., & Ramezanpour, Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International, 20(1), 4149. https://doi.org/10.1007/s10499-011-9440-1</p><p>Kim, J., & Lee, J. (2009). Growth kinetic study of Chlorella vulgaris. AIChE Annual Meeting, Conference Proceedings, 11, 27. Retrieved from http://www.aicheproceedings.org/2009/Fall/data/papers/Paper154015.pdf</p><p>Kim, J., Lee, J. Y., & Lu, T. (2014). Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris. Biochemical Engineering Journal, 82, 3440. https://doi.org/10.1016/j.bej.2013.11.007</p><p>Kirrolia, A., Bishnoi, N. R., & Singh, R. (2013). Microalgae as a boon for sustainable energy production and its future research & development aspects. Renewable and Sustainable Energy Reviews, 20, 642656. https://doi.org/10.1016/j.rser.2012.12.003</p><p>Klein, B. C., Bonomi, A., & Filho, R. M. (2018). Integration of microalgae production with industrial biofuel facilities: a critical review. Renewable and Sustainable Energy Reviews, 82, 13761392. https://doi.org/10.1016/j.rser.2017.04.063</p><p>Kong, W. B., Hua, S. F., Cao, H., Mu, Y. W., Yang, H., Song, H., & Xia, C. G. (2012). Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 43(3), 360367. https://doi.org/10.1016/j.jtice.2011.11.007</p><p>Kovcs, E., Wirth, R., Marti, G., Bagi, Z., Rkhely, G., & Kovcs, K. L. (2013). Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition. PLoS ONE, 8(10), 118. https://doi.org/10.1371/journal.pone.0077265</p><p>Krienitz, L., Huss, V. A. R., & Bock, C. (2015). Chlorella: 125 years of the green survivalist. Trends in Plant Science, 20(2), 6769. https://doi.org/10.1016/j.tplants.2014.11.005</p><p>Krisnangkura, K. (1986). A simple method for estimation of cetane index of vegetable oil methyl esters. Journal of the American Oil Chemists Society, 63(4), 552553. https://doi.org/10.1007/BF02645752</p><p>Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Van Langenhove, H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology, 28(7), 371380. https://doi.org/10.1016/j.tibtech.2010.04.004</p><p>Kumar, S., Kaushik, P., Malik, A., & Kumar, V. (2013). Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnology Advances, 31(8), 14081425. https://doi.org/10.1016/j.biotechadv.2013.06.005</p><p>Kyoto (KEGG) (2018). KEGG pathway maps for Chlorella variabilis. Retrieved from https://www.genome.jp/keggbin/show_organism?menu_type=pathway_maps&org=cvr.</p><p>Lehninger, D., Nelson, D., & Cox, M. (2005). Principles of biochemistry, 4th edition. New York: W. H. Freeman</p><p>Li, L., Cui, J., Liu, Q., Ding, Y., & Liu, J. (2015). Screening and phylogenetic analysis of lipid-rich microalgae. Algal Research, 11, 381386. https://doi.org/10.1016/j.algal.2015.02.028</p><p>Li, T., Gargouri, M., Feng, J., Park, J. J., Gao, D., Miao, C., Chen, S. (2015). Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresource Technology, 180, 250257. https://doi.org/10.1016/j.biortech.2015.01.005</p><p>Li, T., Xu, J., Gao, B., Xiang, W., Li, A., & Zhang, C. (2016). Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Research, 16, 481491. https://doi.org/10.1016/j.algal.2016.04.008</p><p>Li, X., Yuan, Y., Cheng, D., Gao, J., Kong, L., Zhao, Q., Sun, Y. (2018). Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt. Bioresource Technology, 250(November 2017), 495504. https://doi.org/10.1016/j.biortech.2017.11.072</p><p>Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., & Ruan, R. (2011b). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 51385144. https://doi.org/10.1016/j.biortech.2011.01.091</p><p>Li, Y., Fei, X., & Deng, X. (2012). Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass and Bioenergy, 42, 199211. https://doi.org/10.1016/j.biombioe.2012.03.010</p><p>Li, Y., Han, D., Sommerfeld, M., & Hu, Q. (2011a). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresource Technology, 102(1), 123129. https://doi.org/10.1016/j.biortech.2010.06.036</p><p>Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 10431049. https://doi.org/10.1007/s10529-009-9975-7</p><p>Liu, Y., Xu, Y., Yu, Y. P., Yu, R., Li, P., Qiao, D., & Cao, Y. (2014). The biodiversity of oleaginous microalgae in Northern Qinghai-Tibet Plateau. African Journal of Microbiology Research 8(1), 6674. https://doi.org/10.5897/AJMR12.806</p><p>Mallick, N., Mandal, S., Singh, A. K., Bishai, M., & Dash, A. (2012). Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. Journal of Chemical Technology and Biotechnology, 87(1), 137145. https://doi.org/10.1002/jctb.2694</p><p>Mallick, N., Mandal, S., Singh, A. K., Bishai, M., & Dash, A. (2012). Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. Journal of Chemical Technology and Biotechnology, 87(1), 137145. https://doi.org/10.1002/jctb.2694</p><p>Mandotra, S. K., Kumar, P., Suseela, M. R., Nayaka, S., & Ramteke, P. W. (2016). Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresource Technology, 201, 222229. https://doi.org/10.1016/j.biortech.2015.11.042</p><p>Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, 88(10), 33893401. https://doi.org/10.1016/j.apenergy.2010.12.042</p><p>Markou, G., Depraetere, O., Vandamme, D., & Muylaert, K. (2015). Cultivation of Chlorella vulgaris and Arthrospira platensis with recovered phosphorus from wastewater by means of zeolite sorption. International Journal of Molecular Sciences, 16(2), 42504264. https://doi.org/10.3390/ijms16024250</p><p>Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Research, 65, 186202. https://doi.org/10.1016/j.watres.2014.07.025</p><p>Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217232. https://doi.org/10.1016/j.rser.2009.07.020</p><p>Md Nadzir, S., Yusof, N., Nordin, N., Abdullah, H., & Kamari, A. (2019). Optimisation of carbohydrate, lipid and biomass productivity in Tetradesmus obliquus using response surface methodology. Biofuels, Online First, 110. https://doi.org/10.1080/17597269.2018.1542568</p><p>Memmola, F., Mukherjee, B., Moroney, J. V, & Giordano, M. (2014). Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism. Photosynthesis Research, 121(23), 201211. https://doi.org/10.1007/s11120-014-0005-9</p><p>Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Browse, J. (2001). Production of polyunsaturated fatty acids by potyketide synthases in both prokaryotes and eukaryotes. Science, 293(5528), 290293. https://doi.org/10.1126/science.1059593</p><p>Milano, J., Ong, H. C., Masjuki, H. H., Chong, W. T., Lam, M. K., Loh, P. K., & Vellayan, V. (2016). Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews, 58, 180197. https://doi.org/10.1016/j.rser.2015.12.150</p><p>Mitra, D., Van Leeuwen, J. (Hans), & Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research, 1(1), 4048. https://doi.org/10.1016/j.algal.2012.03.002</p><p>Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2016). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry and Biotechnology, 46(2), 150156. https://doi.org/10.1080/10826068.2014.995812</p><p>Mohammady, N. G. E., El-Sayed, H. S., El-Kassas, H. Y., & Elsherbiny, B. A. (2017). A preliminary study on some Chlorella spp. For biodiesel production. Biotechnologia, 98(4), 323331. https://doi.org/10.5114/bta.2017.72294</p><p>Mohd Yusoff, M. Z., Maeda, T., Sanchez-Torres, V., Ogawa, H. I., Shirai, Y., Hassan, M. A., & Wood, T. K. (2012). Uncharacterized Escherichia coli proteins YdjA and YhjY are related to biohydrogen production. International Journal of Hydrogen Energy, 37(23), 1777817787. https://doi.org/10.1016/j.ijhydene.2012.08.115</p><p>Morales-Snchez, D., Kyndt, J., Ogden, K., & Martinez, A. (2016). Toward an understanding of lipid and starch accumulation in microalgae: A proteomic study of Neochloris oleoabundans cultivated under N-limited heterotrophic conditions. Algal Research, 20, 2234. https://doi.org/10.1016/j.algal.2016.09.006</p><p>Mubarak, M., Shaija, A., & Suchithra, T. V. (2018). Cost effective approach for production of Chlorella pyrenoidosa: a RSM based study. Waste and Biomass Valorization, 1-13. https://doi.org/10.1007/s12649-018-0330-x</p><p>Mhlroth, A., Li, K., Rkke, G., Winge, P., Olsen, Y., Hohmann-Marriott, M., Bones, A. (2013). Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Marine Drugs, 11(11), 46624697. https://doi.org/10.3390/md11114662</p><p>Mujtaba, G., Choi, W., Lee, C. G., & Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123, 279283. https://doi.org/10.1016/j.biortech.2012.07.057</p><p>Murray, K. E., Shields, J. a., Garcia, N. D., & Healy, F. G. (2012). Productivity, carbon utilization, and energy content of mass in scalable microalgae systems. Bioresource Technology, 114, 499506. https://doi.org/10.1016/j.biortech.2012.03.012</p><p>Mustapa, M., Sallehudin, N. J., Mohamed, M. S., & Noor, N. M. (2016). Decontamination of chlorella sp. culture using antibiotics and antifungal cocktail treatment. ARPN Journal of Engineering and Applied Sciences, 11(1), 104109.</p><p>Mustapha, N. A., Sharuddin, S. S., Mohd Zainudin, M. H., Ramli, N., Shirai, Y., & Maeda, T. (2017). Inhibition of methane production by the palm oil industrial waste phospholine gum in a mimic enteric fermentation. Journal of Cleaner Production, 165, 621629. https://doi.org/10.1016/j.jclepro.2017.07.129</p><p>Mutlu, Y. B., Isik, O., Uslu, L., Ko, K., & Durmaz, Y. (2011). The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella</p><p>vulgaris (Chlorophyceae). African Journal of Biotechnology, 10(3), 453456. https://doi.org/10.5897/AJB10.1390</p><p>Nan, Y., Liu, J., Lin, R., & Tavlarides, L. L. (2015). Production of biodiesel from microalgae oil (Chlorella protothecoides) by non-catalytic transesterification in supercritical methanol and ethanol: process optimization. The Journal of Supercritical Fluids, 97, 174182. https://doi.org/10.1016/j.supflu.2014.08.025</p><p>Neves, B., Jacob, L. E., & Franco, T. T. (2010). Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. Journal of Chemical Technology and Biotechnology, 85(October 2009), 395403. https://doi.org/10.1002/jctb.2338</p><p>Nguyen, T. D. P., Frappart, M., Jaouen, P., Pruvost, J., & Bourseau, P. (2014). Harvesting Chlorella vulgaris by natural increase in pH: effect of medium composition. Environmental Technology, 35(11), 13781388. https://doi.org/10.1080/09593330.2013.868531</p><p>Nordin, N., Samsudin, S., & Yusof, N. (2019). Isolation and identification of microalgae from high nitrate landfill leachate. Jurnal Teknologi, 81(5), 6167. https://doi.org/10.11113/jt.v81.13581</p><p>Nordin, N., Yusof, N., & Samsudin, S. (2016). Biomass production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in nitrified landfill leachate. Waste and Biomass Valorization, 8(7), 23012311. https://doi.org/10.1007/s12649-016-9709-8</p><p>Olinares, P. D. B., Kim, J., & Van Wijk, K. J. (2011). The Clp protease system; a central component of the chloroplast protease network. Biochimica et Biophysica Acta - Bioenergetics, 1807(8), 9991011. https://doi.org/10.1016/j.bbabio.2010.12.003</p><p>Oo, T. T., Nway, W., Oo, N., Thu, M. K., & Oo, M. M. (2008). Optimization of oil-rich microalgae (Scenedesmus sp. and Chlorella sp.) culture for biodiesel research and development. GMSARN International Conference on Sustainable Development: Issues and Prospects for the GMS, 12-14 Nov. 2008, 24.</p><p>rdg, V., Stirk, W. A., Blint, P., Lovsz, C., Pulz, O., & Van Staden, J. (2013). Lipid productivity and fatty acid composition in Chlorella and Scenepdesmus strains grown in nitrogen-stressed conditions. Journal of Applied Phycology, 25(1), 233243. https://doi.org/10.1007/s10811-012-9857-6</p><p>Otondo, A., Kokabian, B., Stuart-Dahl, S., & Gude, V. G. (2018). Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. Journal of Environmental Chemical Engineering, 6(2), 32133222. https://doi.org/10.1016/j.jece.2018.04.064</p><p>Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146154. https://doi.org/10.1016/j.biortech.2014.01.025</p><p>Pancha, I., Chokshi, K., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2015). Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus. Bioresource Technology, 193, 315323. https://doi.org/10.1016/j.biortech.2015.06.107</p><p>Pires, J. C. M., Gonalves, A. L., Martins, F. G., Alvim-Ferraz, M. C. M., & Simes, M. (2014). Effect of light supply on CO2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata. Mitigation and Adaptation Strategies for Global Change, 19(7), 11091117. https://doi.org/10.1007/s11027-013-9463-1</p><p>Pufelski, N., Aravinthan, V., & Yusaf, T. (2010). How effective is microalgae treatment of nursery wastewater for nutrient removal? Proceedings of the 2010, November, Toowoomba, Australia, 18. Retrieved from http://eprints.usq.edu.au/18190</p><p>QIAGEN. (2017). De Novo Assembly of Paired Data. Retrieved from http://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current/index.php?manual=De_Novo_Assembly.html.</p><p>Raeesossadati, M. J., Ahmadzadeh, H., McHenry, M. P., & Moheimani, N. R. (2014). CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, 6, 7885. https://doi.org/10.1016/j.algal.2014.09.007</p><p>Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., & Luque, R. (2018). A review on sustainable microalgae based biofuel and bioenergy production: recent developments. Journal of Cleaner Production, 181, 4259. https://doi.org/10.1016/j.jclepro.2018.01.125</p><p>Rai, M. P., Gautom, T., & Sharma, N. (2015). Effect of Salinity, pH, Light Intensity on Growth and Lipid Production of Microalgae for Bioenergy Application. OnLine Journal of Biological Sciences, 15(4), 260267. https://doi.org/10.3844/ojbsci.2015.260.267</p><p>Ramanna, L., Guldhe, A., Rawat, I., & Bux, F. (2014). The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresource Technology, 168, 127135. https://doi.org/10.1016/j.biortech.2014.03.064</p><p>Ramirez-Lopez, C., Chairez, I., & Fernandez-Linares, L. (2016). A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26. Bioresource Technology, 212, 207216. https://doi.org/10.1016/j.biortech.2016.04.051</p><p>Ramos, M. J., Fernndez, C. M., Casas, A., Rodrguez, L., & Prez, . (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261268. https://doi.org/10.1016/j.biortech.2008.06.039</p><p>Rawat, I., Ranjith, K. R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied Energy, 103, 444467. https://doi.org/10.1016/j.apenergy.2012.10.004</p><p>Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturingA review. Renewable and Sustainable Energy Reviews, 27, 622653. https://doi.org/10.1016/j.rser.2013.05.063</p><p>Reddy, N. R. R., Mehta, R. H., Soni, P. H., Makasana, J., Gajbhiye, N. A., Ponnuchamy, M., & Kumar, J. (2015). Next generation sequencing and transcriptome analysis predicts biosynthetic pathway of sennosides from senna (Cassia angustifolia Vahl.), a non-model plant with potent laxative properties. PLoS ONE, 10(6). https://doi.org/10.1371/journal.pone.0129422</p><p>Ribeiro, L. A., da Silva, P. P., Mata, T. M., & Martins, A. A. (2015). Prospects of using microalgae for biofuels production: results of a Delphi study. Renewable Energy, 75, 799804. https://doi.org/10.1016/j.renene.2014.10.065</p><p>Roberson, C. E. (2010). Carbonate equilibria in selected natural waters. American Journal of Science, 262(1), 5665. https://doi.org/10.2475/ajs.262.1.56</p><p>Robles-Heredia, J. C., Sacramento-Rivero, J. C., Canedo-Lpez, Y., Ruiz-Marn, A., & Vilchiz-Bravo, L. E. (2015). A multistage gradual nitrogenreduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedesmus obliquus. Brazilian Journal of Chemical Engineering, 32(2), 335345. https://doi.org/10.1590/0104-6632.20150322s00003304</p><p>Roleda, M. Y., Slocombe, S. P., Leakey, R. J. G., Day, J. G., Bell, E. M., & Stanley, M. S. (2013). Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology, 129, 439449. https://doi.org/10.1016/j.biortech.2012.11.043</p><p>Rottet, S., Besagni, C., & Kessler, F. (2015). The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochimica et Biophysica Acta - Bioenergetics, 1847(9), 889899. https://doi.org/10.1016/j.bbabio.2015.02.002</p><p>Sacasa Castellanos, C. (2013). Batch and continuous studies of Chlorella vulgaris in photo-bioreactors. Electronic Thesis and Dissertation Repository. Paper 1113. The University of Western Ontario, Canada.</p><p>Sadhukhan, S., & Sarkar, U. (2015). Production of biodiesel from Crotalaria juncea (sunn-hemp) oil using catalytic trans-esterification: process optimisation using a factorial and BoxBehnken design. Waste and Biomass Valorization, 7(2), 343355. https://doi.org/10.1007/s12649-015-9454-4</p><p>Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable and Sustainable Energy Reviews, 35, 265278. https://doi.org/10.1016/j.rser.2014.04.007</p><p>Sakarika, M., & Kornaros, M. (2017). Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: effect of different nutrient limitation strategies. Bioresource Technology, 243, 356365. https://doi.org/10.1016/j.biortech.2017.06.110</p><p>Sakarika, M., & Kornaros, M. (2019). Chlorella vulgaris as a green biofuel factory: comparison between biodiesel, biogas and combustible biomass production. Bioresource Technology, 273, 237243. https://doi.org/10.1016/j.biortech.2018.11.017</p><p>San Pedro, A., Gonzlez-Lpez, C. V., Acin, F. G., & Molina-Grima, E. (2013). Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresource Technology, 134, 353361. https://doi.org/10.1016/j.biortech.2013.02.032</p><p>Sarayloo, E., Tardu, M., Unlu, Y. S., Simsek, S., Cevahir, G., Erkey, C., & Kavakli, I. H. (2017). Understanding lipid metabolism in high-lipid-producing Chlorella vulgaris mutants at the genome-wide level. Algal Research, 28(April), 244252. https://doi.org/10.1016/j.algal.2017.11.009</p><p>Sawaengsak, W., Silalertruksa, T., Bangviwat, A., & Gheewala, S. H. (2014). Life cycle cost of biodiesel production from microalgae in Thailand. Energy for Sustainable Development, 18(1), 6774. https://doi.org/10.1016/j.esd.2013.12.003</p><p>Sayan, T., Ayush, P., Vijayalakshmi, S., & Ranjitha, J. (2016). Optimization of growth and lipid production of the Chlorophyte microalga Chlorella vulgaris as a feedstock for biodiesel production. International Journal of ChemTech Research CODEN, 9(11), 5462.</p><p>Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research, 1(1), 2043. https://doi.org/10.1007/s12155-008-9008-8</p><p>Schultrich, B. (2018). Carbon. Springer Series in Materials Science, 263, 340. https://doi.org/10.1007/978-3-662-55927-7_1</p><p>Selvarajan, R., Felfldi, T., Tauber, T., Sanniyasi, E., Sibanda, T., & Tekere, M. (2015). Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production. Energies, 8(7), 75027521. https://doi.org/10.3390/en8077502</p><p>Serra-Maia, R., Bernard, O., Gonzalves, A., Bensalem, S., & Lopes, F. (2016). Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Research, 18, 352359. https://doi.org/10.1016/j.algal.2016.06.016</p><p>Sharma, A. K., Sahoo, P. K., Singhal, S., & Patel, A. (2016). Impact of various media and organic carbon sources on biofuel production potential from Chlorella sp. 3 Biotech, 6(2), 116. https://doi.org/10.1007/s13205-016-0434-6</p><p>Sharma. C., Singh, B., & Korstad, J. (2011). A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chemistry, 13(11), 2993. https://doi.org/10.1039/c1gc15535k</p><p>Shekh, A. Y., Shrivastava, P., Krishnamurthi, K., Mudliar, S. N., Devi, S. S., Kanade, G. S., & Chakrabarti, T. (2016). Stress enhances poly-unsaturation rich lipid accumulation in Chlorella sp. and Chlamydomonas sp. Biomass and Bioenergy, 84, 5966. https://doi.org/10.1016/j.biombioe.2015.11.013</p><p>Shelest, E., Heimerl, N., Fichtner, M., & Sasso, S. (2015). Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genomics, 16(1), 115. https://doi.org/10.1186/s12864-015-2222-9</p><p>Shen, Q. H., Gong, Y. P., Fang, W. Z., Bi, Z. C., Cheng, L. H., Xu, X. H., & Chen, H. L. (2015). Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresource Technology, 193, 6875. https://doi.org/10.1016/j.biortech.2015.06.050</p><p>Shen, X. F., Liu, J. J., Chauhan, A. S., Hu, H., Ma, L. L., Lam, P. K. S., & Zeng, R. J. (2016). Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Research, 17, 261267. https://doi.org/10.1016/j.algal.2016.05.018</p><p>Shinichi Goto, Oguma, M., & Chollacoop, N. (2010). Chapter 7: Current Status of Biodiesel Fuel in East-Asia and ASEAN countries. EAS-ERIA Biodiesel Fuel Trade Handbook: 2010, 7, 96169.</p><p>Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88(10), 35483555. https://doi.org/10.1016/j.apenergy.2010.12.012</p><p>Singh, P., Guldhe, A., Kumari, S., Rawat, I., & Bux, F. (2015). Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal, 94, 2229. https://doi.org/10.1016/j.bej.2014.10.019</p><p>Sinha, S. K., Gupta, A., & Bharalee, R. (2016). Production of biodiesel from freshwater microalgae and evaluation of fuel properties based on fatty acid methyl ester profile. Biofuels, 7(1), 105121. https://doi.org/10.1080/17597269.2015.1118781</p><p>Sirikhachornkit, A., Suttangkakul, A., Vuttipongchaikij, S., & Juntawong, P. (2018). De novo transcriptome analysis and gene expression profiling of an oleaginous microalga Scenedesmus acutus TISTR8540 during nitrogen deprivation-induced lipid accumulation. Scientific Reports, 8(1), 112. https://doi.org/10.1038/s41598-018-22080-8</p><p>Sivakumar, G., Vail, D. R., Xu, J., Burner, D. M., Lay, J. O., Ge, X., & Weathers, P. J. (2010). Bioethanol and biodiesel: alternative liquid fuels for future generations. Engineering in Life Sciences, 10(1), 818. https://doi.org/10.1002/elsc.200900061</p><p>Sivashankari, S., & Shanmughavel, P. (2012). Functional annotation of hypothetical proteins a review. Bioinformation, 1(8), 335338. https://doi.org/10.6026/97320630001335</p><p>Spicer, A. & Molnar, A. (2018). Gene editing of microalgae: scientific progress and regulatory challenges in Europe. Biology, 7(1), 21. https://doi.org/10.3390/biology7010021</p><p>Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 8796. https://doi.org/10.1263/jbb.101.87</p><p>Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171205. https://doi.org/10.1128/mmbr.35.2.171-205.1971</p><p>Su, Y. C., Liu, Y. A., Diaz Tovar, C. A., & Gani, R. (2011). Selection of prediction methods for thermophysical properties for process modeling and product design of biodiesel manufacturing. Industrial and Engineering Chemistry Research, 50(11), 68096836. https://doi.org/10.1021/ie102441u</p><p>Sun, B., Guo, X., Fan, C., Chen, Y., Wang, J., & Hu, Z. (2018). Newly identified essential amino acids affecting Chlorella ellipsoidea dgat1 function revealed by site-directed mutagenesis. International Journal of Molecular Sciences, 19(11), 113. https://doi.org/10.3390/ijms19113462</p><p>Suthar, S., Verma, R., & Kumar, K. (2018). Production of Chlorella vulgaris under varying nutrient and abiotic conditions: a potential microalga for bioenergy feedstock. Process Safety and Environmental Protection, 113, 141148. https://doi.org/10.1016/j.psep.2017.09.018</p><p>Taghavi, N. & Robinson, G. (2016). Improving the optimum yield and growth of Chlamydomonas reinhardtii CC125 and CW15 using various carbon sources and growth regimes. African Journal of Biotechnology, 15(23), 10831100. https://doi.org/10.5897/AJB2015.14789</p><p>Takeshita, T., Ota, S., Yamazaki, T., Hirata, A., Zachleder, V., & Kawano, S. (2014). Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresource Technology, 158, 127134. https://doi.org/10.1016/j.biortech.2014.01.135</p><p>Tale, M., Ghosh, S., Kapadnis, B., & Kale, S. (2014). Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresource Technology, 169, 328335. https://doi.org/10.1016/j.biortech.2014.06.017</p><p>Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Bakhtiari, S. (2013). Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2(3), 258267. https://doi.org/10.1016/j.algal.2013.04.003</p><p>Talebi, A. F., Tohidfar, M., Tabatabaei, M., Bagheri, A., Mohsenpor, M., & Mohtashami, S. K. (2013). Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Molecular Biology Reports, 40(7), 44214428. https://doi.org/10.1007/s11033-013-2532-4</p><p>Tanabe, M., & Kanehisa, M. (2012). Using the KEGG database resource. Current Protocols in Bioinformatics, 38, 1-43. https://doi.org/10.1002/0471250953.bi0112s38</p><p>Tetlow, I. J., Morell, M. K., & Emes, M. J. (2004). Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany, 55(406), 21312145. https://doi.org/10.1093/jxb/erh248</p><p>Thawechai, T., Cheirsilp, B., Louhasakul, Y., Boonsawang, P., & Prasertsan, P. (2016). Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: effect of light illumination and carbon dioxide feeding strategies. Bioresource Technology, 219, 139149. https://doi.org/10.1016/j.biortech.2016.07.109</p><p>Thiruvenkadam, S., Izhar, S., Yoshida, H., Danquah, M. K., & Harun, R. (2015). Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production. Applied Energy, 154, 815828. https://doi.org/10.1016/j.apenergy.2015.05.076</p><p>Thomas, J., & Jayachithra, E. V. (2015). Growth kinetics of Chlorococcum humicola - a potential feedstock for biomass with biofuel properties. Ecotoxicology and Environmental Safety, 121, 15. https://doi.org/10.1016/j.ecoenv.2015.03.008</p><p>Thornton, A., Weinhart, T., Bokhove, O., Kumar, K., Pisarenco, M., Rudnaya, M., Veerman, F. (2010). Modeling and optimization of algae growth. In Proceeding of 72nd European Study Group Mathematics with Industry (SWI 2010). Amsterdam, The Netherlands, January 2529, 5485.</p><p>Tuantet, K., Temmink, H., Zeeman, G., & Janssen, M. (2014). Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Research, 5, 162174. https://doi.org/10.1016/j.watres.2014.02.027</p><p>Uslu, L., Durmaz, Y., Isik, O., Mutlu, Y., Koc, K., & Ak, B. (2013). Nitrogen limitation increases lipid content of Chlorella vulgaris at photobioreactor system. Journal of Animal and Veterinary Advances, 12(1), 5257. https://doi.org/10.3923/javaa.2013.52.57</p><p>Vaiciulyte, S., Padovani, G., Kostkeviciene, J., & Carlozzi, P. (2014). Batch growth of Chlorella vulgaris CCALA 896 versus semi-continuous regimen for enhancing oil-rich biomass productivity. Energies, 7(6), 38403857. https://doi.org/10.3390/en7063840</p><p>Vello, V., Phang, S. M., Chu, W. L., Abdul Majid, N., Lim, P. E., & Loh, S. K. (2014). Lipid productivity and fatty acid composition-guided selection of Chlorella strains isolated from Malaysia for biodiesel production. Journal of Applied Phycology, 26(3), 13991413. https://doi.org/10.1007/s10811-013-0160-y</p><p>Vishwanatha, K. S., Mains, R. E., & Eipper, B. A. (2013). Peptidylglycine Amidating Monoxygenase (PAM). Handbook of Biologically Active Peptides (Second Edi, Vol. 3). Elsevier Inc. https://doi.org/10.1016/b978-0-12-385095-9.00244-x</p><p>Wan, M., Jin, X., Xia, J., Rosenberg, J. N., Yu, G., Nie, Z., Betenbaugh, M. J. (2014). The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Applied Microbiology and Biotechnology, 98(22), 94739481. https://doi.org/10.1007/s00253-014-6088-6</p><p>Wan, M., Liu, P., Xia, J., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., Qiu, G. (2011). The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 91(3), 835844. https://doi.org/10.1007/s00253-011-3399-8</p><p>Wase, N., Black, P. P. N., Stanley, B. A., & Dirusso, C. C. (2014). Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. Journal of Proteome, 3(13), 13731396. https://doi.org/10.1021/pr400952z</p><p>Wensel, P., Helms, G., Hiscox, B., Davis, W. C., Kirchhoff, H., Bule, M., & Chen, S. (2014). Isolation, characterization, and validation of oleaginous, multi-trophic, and haloalkaline-tolerant microalgae for two-stage cultivation. Algal Research, 4(1), 211. https://doi.org/10.1016/j.algal.2013.12.005</p><p>Wong, Y. (2017). Growth medium screening for Chlorella vulgaris growth and lipid production. Journal of Aquaculture & Marine Biology, 6(1), 110. https://doi.org/10.15406/jamb.2017.06.00143</p><p>Xin, L., Hong-ying, H., & Yu-ping, Z. (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102(3), 30983102. https://doi.org/10.1016/j.biortech.2010.10.055</p><p>Xin, L., Hu, H., Ke, G., & Sun, Y. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 54945500. https://doi.org/10.1016/j.biortech.2010.02.016</p><p>Yadavalli, R., Rao, S. R., & Rao, C. S. (2013). Response surface methodological approach to optimize process parameters for the biomass production of Chlorella pyrenoidosa. International Journal of Bio-Technology & Research (IJBTR), 3(1), 3748.</p><p>Yeesang, C., & Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102(3), 30343040. https://doi.org/10.1016/j.biortech.2010.10.013</p><p>Yeh, K. L., Chang, J. S., & Chen, W. M. (2010). Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences, 10(3), 201208. https://doi.org/10.1002/elsc.200900116</p><p>Yu, T. S., Zeeman, S. C., Thorneycroft, D., Fulton, D. C., Dunstan, H., Lue, W. L., Smith, S. M. (2005). a-amylase is not required for breakdown of transitory starch in Arabidopsis leaves. Journal of Biological Chemistry, 280(11), 97739779. https://doi.org/10.1074/jbc.M413638200</p><p>Zeeman, S. C., Delatte, T., Messerli, G., Umhang, M., Stettler, M., Mettler, T., Ktting, O. (2007). Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms. Functional Plant Biology, 34(6), 465473. https://doi.org/10.1071/FP06313</p><p>Zeng, X., Danquah, M. K., Chen, X. D., & Lu, Y. (2011). Microalgae bioengineering: from CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews, 15(6), 32523260. https://doi.org/10.1016/j.rser.2011.04.014</p><p>Zhang, J. D., & Wiemann, S. (2009). KEGGgraph: a graph approach to KEGG pathway in R and bioconductor. Bioinformatics, 25(11), 14701471. https://doi.org/10.1093/bioinformatics/btp167</p><p>Zhao, B., & Su, Y. (2014). Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renewable and Sustainable Energy Reviews, 31, 121132. https://doi.org/10.1016/j.rser.2013.11.054</p><p>Zhao, L., Qi, Y., & Chen, G. (2015). Isolation and characterization of microalgae for biodiesel production from seawater. Bioresource Technology, 184, 4246. https://doi.org/10.1016/j.biortech.2014.10.063</p><p>Zhu, L. D., Hiltunen, E., Antila, E., Zhong, J. J., Yuan, Z. H., & Wang, Z. M. (2014a). Microalgal biofuels: flexible bioenergies for sustainable development. Renewable and Sustainable Energy Reviews, 30, 10351046. https://doi.org/10.1016/j.rser.2013.11.003</p><p>Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J., & Yuan, Z. (2014b). Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresource Technology, 152, 292298. https://doi.org/10.1016/j.bi ortech.2013.10.092</p><p>Zuo, Z., Rong, Q., Chen, K., Yang, L., Chen, Z., Peng, K., Wang, Y. (2012). Study of amino acids as nitrogen source in Chlamydomonas reinhardtii. Phycological Research, 60(3), 161168. https://doi.org/10.1111/j.1440-1835.2012.00646.x</p><p>Zuppini, A., Andreoli, C., & Baldan, B. (2007). Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol, 48(7), 10001009. https://doi.org/10.1093/pcp/pcm070</p>