The determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface

<p>The research aimed to determine the effective radius (r*) of a trapped polystyrene</p><p>microbead near a water-air interface and to develop a 3-dimensional piezostage control module for</p><p>optical trapping within micrometre...

Full description

Saved in:
Bibliographic Details
Main Author: Muhammad Safuan Mat Yeng@Mat Zin
Format: thesis
Language:eng
Published: 2019
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=8690
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:8690
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic
spellingShingle
Muhammad Safuan Mat Yeng@Mat Zin
The determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface
description <p>The research aimed to determine the effective radius (r*) of a trapped polystyrene</p><p>microbead near a water-air interface and to develop a 3-dimensional piezostage control module for</p><p>optical trapping within micrometre range. This study involved the development of a control</p><p>program so called PZStage and the determination of r* near the water-air interface. PZStage was</p><p>developed on the LabVIEW platform to control laser focus location in the trapping medium. A 3 m</p><p>bead was trapped in water at several heights towards the free space in a special design test cell.</p><p>The temporal displacement data of the trapped bead was recorded by a quadrant photodiode (QPD) and</p><p>analysed by a custom made program namely OSCal to determine r*. PZStage was well developed which</p><p>enabled precise laser focus control in 20 m range in three mutually orthogonal directions. The</p><p>result showed that r* was constant at any focus height at fixed water thickness and laser power.</p><p>Besides, r* depended on laser power at fixed laser focus height and water thickness in the form of</p><p>exponentially decaying relation. In conclusion, PZStage was successfully developed to precisely</p><p>control laser focus toward water-air interface, and the r* was found to be dependent on laser power</p><p>rather than laser focus height within the set experimental conditions. The research implied that</p><p>the low laser power was possible for optical trapping near the water-air interface with appropriate</p><p>water thickness selection. However, consideration must be taken into account since the trap was</p><p>shifted away from the laser focus as the focus height increases due to scattering</p><p>force.</p><p></p>
format thesis
qualification_name
qualification_level Master's degree
author Muhammad Safuan Mat Yeng@Mat Zin
author_facet Muhammad Safuan Mat Yeng@Mat Zin
author_sort Muhammad Safuan Mat Yeng@Mat Zin
title The determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface
title_short The determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface
title_full The determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface
title_fullStr The determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface
title_full_unstemmed The determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface
title_sort determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2019
url https://ir.upsi.edu.my/detailsg.php?det=8690
_version_ 1776104555496341504
spelling oai:ir.upsi.edu.my:86902023-02-14 The determination of an effective radius of an optically trapped polystyrene microbead distribution near a water air interface 2019 Muhammad Safuan Mat Yeng@Mat Zin <p>The research aimed to determine the effective radius (r*) of a trapped polystyrene</p><p>microbead near a water-air interface and to develop a 3-dimensional piezostage control module for</p><p>optical trapping within micrometre range. This study involved the development of a control</p><p>program so called PZStage and the determination of r* near the water-air interface. PZStage was</p><p>developed on the LabVIEW platform to control laser focus location in the trapping medium. A 3 m</p><p>bead was trapped in water at several heights towards the free space in a special design test cell.</p><p>The temporal displacement data of the trapped bead was recorded by a quadrant photodiode (QPD) and</p><p>analysed by a custom made program namely OSCal to determine r*. PZStage was well developed which</p><p>enabled precise laser focus control in 20 m range in three mutually orthogonal directions. The</p><p>result showed that r* was constant at any focus height at fixed water thickness and laser power.</p><p>Besides, r* depended on laser power at fixed laser focus height and water thickness in the form of</p><p>exponentially decaying relation. In conclusion, PZStage was successfully developed to precisely</p><p>control laser focus toward water-air interface, and the r* was found to be dependent on laser power</p><p>rather than laser focus height within the set experimental conditions. The research implied that</p><p>the low laser power was possible for optical trapping near the water-air interface with appropriate</p><p>water thickness selection. However, consideration must be taken into account since the trap was</p><p>shifted away from the laser focus as the focus height increases due to scattering</p><p>force.</p><p></p> 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=8690 https://ir.upsi.edu.my/detailsg.php?det=8690 text eng closedAccess Masters Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>A. Gutirrez-Campos, R. C. (2010). Optical trapping of particles at the air / water interface for studies in Langmuir monolayers. Revista Mexicana de Fsica, 56(4), 339347.http://www.scielo.org.mx/scielo.php?pid=S0035001X2010000400012&script=sci_arttext&tlng=pt</p><p>Abidi, K., & abanovic, A. (2007). Sliding-mode control for high-precision motion of a piezostage. IEEE Transactions on Industrial Electronics, 54(1), 629637. https://doi.org/10.1109/TIE.2006.885477</p><p>Ahlawat, S., Dasgupta, R., & Gupta, P. K. (2008). Optical trapping near a colloidal cluster formed by a weakly focused laser beam. Journal of Physics D: Applied Physics, 41(10), 105107. https://doi.org/10.1088/0022-3727/41/10/105107</p><p>Ambardekar, A. A., & Li, Y. (2005). Optical levitation and manipulation of stuck particles with pulsed optical tweezers. Optics Letters, 30(14), 17979. https://doi.org/10.1364/OL.30.001797</p><p>Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 61(2), 569582. https://doi.org/10.1016/S0006-3495(92)81860-X</p><p>Ashkin, A. (1997). Optical trapping and manipulation of neutral particles, 94(May), 48534860.</p><p>Aziz, W. N. S. W., Ayop, S. K., & Riyanto, S. (2015). The potential of optical tweezer (OT) for viscoelastivity measurement of nanocellulose solution. Jurnal Teknologi, 74(8), 4548. https://doi.org/10.11113/jt.v74.4722</p><p>Baek, J.-H., Hwang, S., & Lee, Y.-G. (2007). Trap stiffness in optical tweezers. Asian Symposium for Precision Engineering and Nanotechnology, 685, 1100.</p><p>Conteduca, D., Dell"Olio, F., Ciminelli, C., Krauss, T. F., & Armenise, M. N. (2016). Design of a high-performance optical tweezer for nanoparticle trapping. Applied Physics A: Materials Science and Processing, 122(4), 16. https://doi.org/10.1007/s00339-016-9894-0</p><p>Dasgupta, R., Ahlawat, S., & Gupta, P. K. (2007). Trapping of micron-sized objects at a liquid-air interface. Journal of Optics A: Pure and Applied Optics, 9(8), S189S195. https://doi.org/10.1088/1464-4258/9/8/S11</p><p>Deufel, C., & Wang, M. D. (2006). Detection of forces and displacements along the axial direction in an optical trap. Biophysical Journal, 90(2), 657667. https://doi.org/10.1529/biophysj.105.065458</p><p>Dholakia, K., & Lee, W. M. (2008). Optical Trapping Takes Shape: The Use of Structured Light Fields. Advances in Atomic, Molecular and Optical Physics, 56(8), 261337. https://doi.org/10.1016/S1049-250X(08)00015-3</p><p>Dienerowitz, M., Mazilu, M., & Dholakia, K. (2008). Optical manipulation of nanoparticles: a review. Journal of Nanophotonics, 2(September), 132. https://doi.org/10.1117/1.2992045</p><p>Drobczynski, S., Du-Szachniewicz, K., Symonowicz, K., Glogocka, D. (2013). Spectral analysis by a video camera in a holographic optical tweezers setup. Optica Applicata, 43(4), 739746. https://doi.org/10.5277/oa130410</p><p>Girot, A., Dann, N., Wger, A., Bickel, T., Ren, F., Loudet, J. C., & Pouligny, B. (2016). Motion of Optically Heated Spheres at the Water-Air Interface. Langmuir, 32(11), 26872697. https://doi.org/10.1021/acs.langmuir.6b00181</p><p>Gow, J. (2000). A Revolution in optical manipulation. Security Dialogue, 31(3), 293 306. https://doi.org/10.2307/20047487</p><p>Hamid, M. Y., & Ayop, S. K. (2011). LabVIEW-Based Software for Optical Stiffness Determination Using Boltzmann Statistics, Equipartition Theorem and Power Spectral Density Methods. Advanced Science Letters, 4(2), 400407. https://doi.org/10.1166/asl.2011.1261</p><p>Hamid, M. Y., Ayop, S. K., Wan Aziz, W. N. S., & Munajat, Y. (2016). Spatial Distribution of an Optically Trapped Bead in Water. Buletin Optik, 2, 18.</p><p>Hamid, Y., Ayop, S. K., Wan Aziz, W. N. S., & Munajat, Y. (2016). Spatial Distribution of an Optically Trapped Bead in Water. Buletin Optik 2016, 2016(2), 2936. https://doi.org/10.15011/jasma.33.330211</p><p>Hong, M. I. N. H. Z., Ang, Z. I. I. W., & I, Y. I. N. E. I. L. (2017). Oscillations of absorbing particles at the water-air interface induced by laser tweezers, 25(3), 2481 2488. https://doi.org/10.1364/OE.25.002481</p><p>Horst, A. Van Der, & Forde, N. R. (2010). Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth. Optics Express, 18(8), 76707677. https://doi.org/10.1364/OE.18.007670</p><p>Instruments, N., & Gmbh, G. (1994). Graphical object-oriented programming with LabVIEW, 352, 438441.</p><p>Je., J., Petr, J., &Zem, P. (2007). Axial optical trap stiffness influenced by retro-reflected beam, 9, 251255. https://doi.org/10.1088/1464-4258/9/8/S19</p><p>Jesacher, A., Frhapter, S., Maurer, C., Bernet, S., & Ritsch-Marte, M. (2006). Holographic optical tweezers for object manipulations at an air-liquid surface. Optics Express, 14(13), 63426352. https://doi.org/10.1364/OE.14.006342</p><p>Jiao, G., & Zhang, R. (2013). Modeling of micropipette aspiration and optical tweezers stretching of erythrocytes with or without Malaria parasite. Theoretical & Applied Mechanics Letters, 3(3), 6166. https://doi.org/10.1063/2.1303401</p><p>Letters, O. (2014). Optimal beam diameter for optical tweezers, (March). https://doi.org/10.1364/OL.35.001494</p><p>Liu, Y., Chang, K., & Li, W. (2010). Model reference adaptive control for a piezopositioning system, 34, 6269. https://doi.org/10.1016/j.precisioneng.2009.03.006</p><p>Mas, J., Farr, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding optical trapping phenomena: A simulation for undergraduates. IEEE Transactions on Education, 54(1), 133140. https://doi.org/10.1109/TE.2010.2047107</p><p>Mat Yeng, M. S., Ayop, S. K., & Hamid, M. Y. (2017). The Determination of Laser Spot Size of an Optical Tweezers by Stuck Bead Method. Journal of Science and Technology, 9(3), 7074.</p><p>Michihata, M., Hayashi, T., & Takaya, Y. (2009). Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam, 48(32), 61436151.</p><p>Mlenbroich, M. C., McAlinden, N., & Wright, A. J. (2013). Adaptive optics in an optical trapping system for enhanced lateral trap stiffness at depth. Journal of Optics (United Kingdom), 15(7). https://doi.org/10.1088/2040-8978/15/7/075305</p><p>Necipoglu, S., Cebeci, S. A., Basdogan, C., Has, Y. E., & Guvenc, L. (2011). Repetitive control of an XYZ piezo-stage for faster nano-scanning: Numerical simulations and experiments. Mechatronics, 21(6), 10981107. https://doi.org/10.1016/j.mechatronics.2011.06.004</p><p>Neuman, K. C., Abbondanzieri, E. A., & Block, S. M. (2005). Measurement of the effective focal shift in an optical trap. Optics Letters, 30(11), 1318. https://doi.org/10.1364/OL.30.001318</p><p>Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific Instruments, 75(9), 27872809. https://doi.org/10.1063/1.1785844</p><p>Nor, W., Wan, S., Kadri, S., Yunus, M., & Munajat, Y. (2016). Simple Determination of the Stiffness of an Optical Trap Using Video Microscopy and Particle Tracking. Buletin Optik 2016, 1(2), 16.</p><p>Perz, P., Malujda, I., Wilczynski, D., & Tarkowski, P. (2017). Methods of Controlling a Hybrid Positioning System Using LabVIEW. Procedia Engineering, 177, 339346. https://doi.org/10.1016/j.proeng.2017.02.235</p><p>Snchez-Alvarez, A., Luna-Moreno, D., Hernndez-Morales, J. A., Zaragoza-Zambrano,</p><p>J. O., & Castillo-Guerrero, D. H. (2018). Control of Stepper Motor Rotary Stages applied to optical sensing technique using LabView. Optik, 164, 6571. https://doi.org/10.1016/j.ijleo.2018.02.115</p><p>Sugiyama, T., Adachi, T., & Masuhara, H. (2007). Crystallization of Glycine by Photon Pressure of a Focused CW Laser Beam. Chemistry Letters, 36(12), 14801481. https://doi.org/10.1246/cl.2007.1480</p><p>Tiernan, P. (2010). Enhancing the learning experience of undergraduate technology students with LabVIEWTM software. Computers and Education, 55(4), 15791588. https://doi.org/10.1016/j.compedu.2010.07.001</p><p>Vermeulen, K. C., Wuite, G. J. L., Stienen, G. J. M., & Schmidt, C. F. (2006). Optical trap stiffness in the presence and absence of spherical aberrations. Applied Optics, 45(8), 18121819. https://doi.org/10.1364/AO.45.001812</p><p>Wagner, C., Armenta, S., & Lendl, B. (2010). Developing automated analytical methods for scientific environments using LabVIEW. Talanta, 80(3), 10811087. https://doi.org/10.1016/j.talanta.2009.08.018</p><p>Wan Aziz, W. N. S., Ayop, S. K., Hamid, M. Y., & Munajat, Y. (2016). Simple Determination of the Stiffness of an Optical Trap Using Video Microscopy and Particle Tracking. Buletin Optik, 2, 16.</p><p>Wurlitzer, S., Lautz, C., Liley, M., & Duschl, C. (2007). Micromanipulation of Langmuir-Monolayers with Optical Tweezers, 182187.</p><p>Xu, Q., & Wong, P. K. (2011). Hysteresis modeling and compensation of a piezostage using least squares support vector machines. Mechatronics, 21(7), 12391251. https://doi.org/10.1016/j.mechatronics.2011.08.006</p><p>Yeng, M. S. M., Ayop, S. K., & Mustapa, I. R. (2018). Depth -Dependent Optical Stiffness Toward Water -Air Interface. International Journal of Engineering and Technology, 7, 8084.</p><p>Zhong, M., Wang, X., Zhou, J., Wang, Z., & Li, Y. (2014). Optimal beam diameter for lateral optical forces on microspheres at a water-air interface. Chin. Opt. Lett., 12(1), 011403-. https://doi.org/10.3788/COL201412.011403.Optical</p><p>Zhong, M., Wang, Z., & Li, Y. (2017). Laser-accelerated self-assembly of colloidal particles at the water air interface. Chinese Optics Letters, 15(5), 15. https://doi.org/10.3788/COL201715.051401.Colloidal</p><p></p>