Optimisation and characterisation of biodiesel from biodegradation of organic wastes by black soldier fly larvae
<p>This research aimed to optimise and characterise environmental friendly biodiesel produced through biodegradation of organic wastes by black soldier fly (Hermetia illucens) larvae. This research is divided into four main studies, namely characterisation of organic wastes, cultivatio...
Saved in:
Main Author: | |
---|---|
Format: | thesis |
Language: | eng |
Published: |
2020
|
Subjects: | |
Online Access: | https://ir.upsi.edu.my/detailsg.php?det=8835 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ir.upsi.edu.my:8835 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Pendidikan Sultan Idris |
collection |
UPSI Digital Repository |
language |
eng |
topic |
|
spellingShingle |
Syukriyah Ishak Optimisation and characterisation of biodiesel from biodegradation of organic wastes by black soldier fly larvae |
description |
<p>This research aimed to optimise and characterise environmental friendly biodiesel produced through biodegradation of organic wastes by black soldier fly (Hermetia illucens) larvae. This research is divided into four main studies, namely characterisation of organic wastes, cultivation of insect larvae, characterisation of insect larval lipid and determination of the properties of insect larval biodiesel. The organic wastes used for cultivation of insect larvae were food kitchen waste (FKW), soya residue (SR) and mixed waste (MW). The main scientific instruments used in this study were Fourier transform infrared (FTIR) spectrometer, nuclear magnetic resonance (NMR) spectrometer and gas chromatography-flame ionisation detector (GC-FID). For organic wastes and insect larvae characterisation, several analyses such as content of moisture, protein, carbohydrate, ash and fat, pH value and crude fiber were carried out. The extraction of larval lipid was conducted using Soxhlet method and underwent a two-step transesterification process to produce biodiesel. The highest yield of biodiesel (95.80%) was from black soldier fly larval lipid as a result of fed by FKW followed by SR (90.26%) and MW (90.25%). FTIR and NMR analyses confirmed the successful transformation of larval lipid to biodiesel by the appearance of the fatty acid methyl ester (FAME) functional groups in the spectra. While, GC-FID analysis showed the FAME composition of biodiesel comprised of both saturated (lauric acid, myristic acid, palmitic acid, capric acid and stearic acid) and unsaturated (oleic acid, palmitoleic acid and linoleic acid) FAME. The produced insect larval biodiesel met the value recommended by American Society for Test and the Materials (ASTM) D6751 and European (EN) 14214 standards. In conclusion, black soldier fly larvae were able to convert organic wastes studied to biodiesel. In implication, the insect larvae can be potentially applied as a low-cost biodiesel feedstock for reducing the operational cost of biodiesel production.</p> |
format |
thesis |
qualification_name |
|
qualification_level |
Doctorate |
author |
Syukriyah Ishak |
author_facet |
Syukriyah Ishak |
author_sort |
Syukriyah Ishak |
title |
Optimisation and characterisation of biodiesel from biodegradation of organic wastes by black soldier fly larvae |
title_short |
Optimisation and characterisation of biodiesel from biodegradation of organic wastes by black soldier fly larvae |
title_full |
Optimisation and characterisation of biodiesel from biodegradation of organic wastes by black soldier fly larvae |
title_fullStr |
Optimisation and characterisation of biodiesel from biodegradation of organic wastes by black soldier fly larvae |
title_full_unstemmed |
Optimisation and characterisation of biodiesel from biodegradation of organic wastes by black soldier fly larvae |
title_sort |
optimisation and characterisation of biodiesel from biodegradation of organic wastes by black soldier fly larvae |
granting_institution |
Universiti Pendidikan Sultan Idris |
granting_department |
Fakulti Sains dan Matematik |
publishDate |
2020 |
url |
https://ir.upsi.edu.my/detailsg.php?det=8835 |
_version_ |
1776104571005829120 |
spelling |
oai:ir.upsi.edu.my:88352023-04-04 Optimisation and characterisation of biodiesel from biodegradation of organic wastes by black soldier fly larvae 2020 Syukriyah Ishak <p>This research aimed to optimise and characterise environmental friendly biodiesel produced through biodegradation of organic wastes by black soldier fly (Hermetia illucens) larvae. This research is divided into four main studies, namely characterisation of organic wastes, cultivation of insect larvae, characterisation of insect larval lipid and determination of the properties of insect larval biodiesel. The organic wastes used for cultivation of insect larvae were food kitchen waste (FKW), soya residue (SR) and mixed waste (MW). The main scientific instruments used in this study were Fourier transform infrared (FTIR) spectrometer, nuclear magnetic resonance (NMR) spectrometer and gas chromatography-flame ionisation detector (GC-FID). For organic wastes and insect larvae characterisation, several analyses such as content of moisture, protein, carbohydrate, ash and fat, pH value and crude fiber were carried out. The extraction of larval lipid was conducted using Soxhlet method and underwent a two-step transesterification process to produce biodiesel. The highest yield of biodiesel (95.80%) was from black soldier fly larval lipid as a result of fed by FKW followed by SR (90.26%) and MW (90.25%). FTIR and NMR analyses confirmed the successful transformation of larval lipid to biodiesel by the appearance of the fatty acid methyl ester (FAME) functional groups in the spectra. While, GC-FID analysis showed the FAME composition of biodiesel comprised of both saturated (lauric acid, myristic acid, palmitic acid, capric acid and stearic acid) and unsaturated (oleic acid, palmitoleic acid and linoleic acid) FAME. The produced insect larval biodiesel met the value recommended by American Society for Test and the Materials (ASTM) D6751 and European (EN) 14214 standards. In conclusion, black soldier fly larvae were able to convert organic wastes studied to biodiesel. In implication, the insect larvae can be potentially applied as a low-cost biodiesel feedstock for reducing the operational cost of biodiesel production.</p> 2020 thesis https://ir.upsi.edu.my/detailsg.php?det=8835 https://ir.upsi.edu.my/detailsg.php?det=8835 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31-49.</p><p>Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. (2012). Current biodiesel production technologies: a comparative review. Energy Conversion Management, 63, 138-148.</p><p>Abduh, M. Y., Jamilah, M., Istiandari P., M., Manurung, S., & Manurung, R. (2017). Bioconversion of rubber seeds to produce protein and oil-rich biomass using black soldier fly larvae assisted microbes. Journal of Entomology and Zoology Studies, 5(4), 591-597.</p><p>Abduh, M. Y., Manurung, R., Faustina, A., Affanda, E., & Siregar, I. R. H. (2017). Bioconversion of Pandanus tectorius using black soldier fly larvae for the production of edible oil and protein-rich biomass. Journal of Entomology and Zoology Studies, 5(1), 803-809.</p><p>Abduh, M. Y., Nadia, M. H., Manurung, R., & Putra, R. E. (2018). Factors affecting the bioconversion of Philippine tung seed by black soldier fly larvae for the production of protein and oil-rich biomass. Journal of Asia-Pacific Entomology, 21(3), 836-842.</p><p>Abdullah, A. Z., Razali, N., & Lee, K. T. (2009). Optimization of mesoporous K/SBA-15 catalyzed transesterification of palm oil using response surface methodology. Fuel Processing Technology, 90 (78), 958-964.</p><p>Abdullah, S. H. Y. S., Hanapi, N. H. M., Azid, A., Umar, R., Juahir, H., Khatoon, H., & Endut, A. (2017). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renewable and Sustainable Energy Reviews, 70, 1040-1051.</p><p>Abdul-Manan, A., A. F. N., Baharuddin, A., & Chang, L. W. (2015). Ex-post critical evaluations of energy policies in Malaysia from 1970 to 2010; A historical institutionalism perspective. Energies, 8, 1936-1957.</p><p>Acheampong, A. O. (2018). Economic growth, CO2 emission and energy consumption: what causes what and where? Energy Economics, 74, 677-692.</p><p>Adewale, P., Dumont, M. J., & Ngadi, M. (2015). Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renewable and Sustainable Energy Reviews, 45, 574-588.</p><p>Ahmad, J., Yusup, S., Bokhari, A., & Kamil, R. N. M. (2014). Study of fuel properties of rubber seed oil based biodiesel. Energy Conversion Management, 78, 266275.</p><p>Ahmed, W., Nazar, M. F., Ali, S. D., Rana, U. A., & Khan, S. U. (2015). Detailed investigation of optimized alkali catalyzed transesterification of Jatropha oil for biodiesel production. Journal of Energy Chemistry, 24(3), 331-336.</p><p>Ainie, K., Siew, W. L., Tan, Y. A., Noraini, I., Mohtar, Y., Tang, T. S., Nuzul, A. I. (2005). MPOB test methods, a compendium of test on palm oil products, palm kernel products, fatty acid, food related products and others. Malaysia: Malaysia Palm Oil Board (MPOB).</p><p>Ajala, E. O., Aberuagba, F., Olaniyan, A. M., Ajala, M. A., & Sunmonu, M. O. (2017). Optimization of a two stage process for biodiesel production from shea butter using response surface methodology. Egyptian Journal of Petroleum, 26, 943-955.</p><p>Alptekin, E. & Canakci, M. (2011). Optimization of transesterification for methyl ester production from chicken fat. Fuel, 90(8), 26302638.</p><p>Altaie, M. A. H., Janius, R. B., Rashid, U., Yap, Y. H. T, Yunus, R., & Zakaria, R. (2015). Cold flow and fuel properties of methyl oleate and palm oil methyl ester blends. Fuel. 160, 238-244.</p><p>Ambat, I., Srivastava, V., & Sillanp, M. (2018). Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable and Sustainable Energy Reviews, 90, 356-369.</p><p>Andreo-Martnez, P., Garca-Martnez, N., Durn-de;-Amor, M. del M., & Quesada-Medina, J. (2018). Advances on kinetics and thermodynamics of non-catalytic supercritical methanol transesterification of some vegetable oils to biodiesel. Energy Conversion and Management, 173, 187-196.</p><p>Angerbauer, C., Siebenhofer, M. M., Mittelbach, M., & Guebitz, G. M. (2008). Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 99(8), 30513056.</p><p>Anuar, M. R. & Abdullah, A. Z. (2016). Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Renewable and Sustainable Energy Reviews, 58, 208-223.</p><p>Aransiola, E. F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F., & Ikhu-Omoregbe, D. I. O. (2014). A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy, 61, 276-297.</p><p>Arao, B. Q., Nunes, R. C. D. R., de Moura, C. V. R., de Moura, E. M., Cit A. M. D. G. L., & dos Santos Jior, J. R. (2010). Synthesis and characterization of beef tallow biodiesel. Energy Fuels, 24(8), 4476-4480.</p><p>Arminen, H. & Menegaki, A. N. (2019). Corruption, climate and the energyenvironment-growth nexus. Energy Economics, 80, 621-634.</p><p>Ashnani, M. H. M., Johari, A., Hashim, H., & Hasani, E. (2014). A source of renewable energy in Malaysia, why biodiesel? Renewable and Sustainable Energy Reviews, 35, 244-257.</p><p>ASTM International. (2010). ASTM D93-19: standard test method for flash point by Pensky-Martens closed cup tester. West Conshohocken, PA: American Society for Testing and Materials.</p><p>ASTM International. (2016). ASTM D2709: standard test method for water and sediment in middle distillate fuels by centrifuge. West Conshohocken, PA: American Society for Testing and Materials.</p><p>ASTM International. (2017). ASTM D2500: standard test method for cloud point of petroleum products and liquid fuels. West Conshohocken, PA: American Society for Testing and Materials.</p><p>ASTM International. (2018). ASTM D664: standard test method for acid number of petroleum products by potentiometric titration. West Conshohocken, PA: American Society for Testing and Materials.</p><p>ASTM International. (2019). ASTM D445: standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). West Conshohocken, PA: American Society for Testing and Materials.</p><p>Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070-2093.</p><p>Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2012). Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews, 16 (5), 3275-3285.</p><p>Avhad, M. R. & Marchetti, J. M. (2015). A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews, 50, 696-718.</p><p>Barragan-Fonseca, K. B., Dicke, M., & van Loon, J. J. A. (2017). Nutritional value of the black soldier fly (Hermetia illucens L. ) and its suitability as animal feed-A review. Journal of Insects as Food and Feed, 3(2), 105-120.</p><p>Baskar, G. & Aiswarya, R. (2016). Trends in catalytic production of biodiesel from various feedstocks. Renewable and Sustainable Energy Reviews, 57, 496504.</p><p>Basri, N. A., Ramli, A. T., & Aliyu, A. S. (2015). Malaysia energy strategy towards sustainability: A panoramic overview of the benefits and challenges. Renewable and Sustainable Energy Reviews, 42, 10941105.</p><p>Begum, R. A., Sohag, K., Abdullah, S. M. S., & Jaafar, M. (2015). CO2 emissions, energy consumption, economic and population growth in Malaysia. Renewable and Sustainable Energy Reviews, 41, 594601.</p><p>Berchmans, H. J. & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99(6), 17161721.</p><p>Berman, P., Leshem, A., Etziony, O., Levi, O., Parmet, Y., Saunders, M. & Wiesman, Z. (2013). Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel. Biotechnology for Biofuels, 6, 55.</p><p>Bhuiya, M. M. K., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Azad, A. K. (2016). Prospects of 2nd generation biodiesel as a sustainable fuel-Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renewable and Sustainable Energy Reviews, 55, 1109-1128.</p><p>Borges, M. E. & Daz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839-2849.</p><p>Borugadda, V. B. & Goud. V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763-4784.</p><p>Bovera, F., Piccolo, G., Gasco, L., Marono, S., Loponte, R., Vassalotti, G., Mastellone, V., Lombardi, P., Attia, Y. A., & Nizza, A. (2015). Yellow mealworm larvae (Tenebrio molitor, L.) as possible alternative to soybean meal in broiler diets. British Poultry Science, 56(5), 569-575.</p><p>Cabral, M. R. P., dos Santos, S. A. L., Stropa, J. M., da Silva, R. C. de L., Cardoso, C. A. L., de Oliveira, L. C. S., Scharf, D. R., Simionatto, E. L., Santiago, E. F., & Simionatta, E. (2016). Chemical composition and thermal properties of methyl and ethyl esters prepared from Aleurites moluccanus (L.) Willd (Euphorbiaceae) nut oil. Industrial Crops and Products. 85, 109-116.</p><p>Cabus, S., Bogaerts, K., Van Mechelen, J., Smet, M., & Goderis, B. (2013). Monotrophic polymorphism in ester-based phase change materials from fatty acids and 1,4-butanedio. Crystal Growth & Design, 13, 3438-3446.</p><p>Cai, Z. Z., Wang, Y., Teng, Y. L., Chong, K. M., Wang, J. W., Zhang, J. W., & Yang, D. P. (2015). A two-step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Processing Technology, 137, 186-193.</p><p>Caligiani, A., Marseglia, A., Leni, G., Baldassarre, S., Maistrello, L., Dossena, A., & Sforza, S. (2018). Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Research International, 105, 812820.</p><p>Cammack, J. A. & Tomberlin, J. K. (2017). The impact of diet protein and carbohydrate on select life-history traits of the Black soldier fly Hermetia illucens (L.) (diptera: stratiomyidae).Insects, 8, 56.</p><p>Canakci, M. & Sanli, H. (2008). Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology & Biotechnology, 35(5), 431441.</p><p>Canakci, M., Ozsezen, A. N., Arcaklioglu. E., & Erdil, A. (2009). Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Expert Systems with Applications, 36(5), 92689280.</p><p>Caruso, D., Devic, E., Subamia, I. W., Talamond, P., & Baras, E. (2014). Technical handbook of domestication and production of diptera Black soldier fly (BSF) Hermetia illucens, stratiomyidae, IPB Press,Kampus IPB Taman Kencana Bogor, Indonesia.</p><p>Carvalho, A. K. F., da Conceio, L. R. V., Silva, J. P. V., Perez, V. H., & de Castro, H. F. (2017). Biodiesel production from Mucor circinelloides using ethanol and heteropolyacid in one and two-step transesterification. Fuel, 202, 503 511.</p><p>Chai, M., Tu, Q., Lu, M., & Yang, Y. J. (2014). Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology, 125, 106-113.</p><p>Chakraborty, R., Chatterjee, S., Mukhopadhyay, P., & Barman, S. (2016). Progresses in waste biomass derived catalyst for production of biodiesel and bioethanol: A review. Procedia Environmental Sciences, 35, 546-554.</p><p>Chakraborty, R., Gupta, A. K., & Chowdhury, R. (2014). Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment. Renewable and Sustainable Energy Reviews, 29, 120-134.</p><p>Chen, G. Q. & Wu, X. F. (2017). Energy overview for globalized world economy: Source, supply chain and sink. Renewable and Sustainable Energy Reviews, 69, 735-749.</p><p>Cheng, J. Y. K, Chiu, S. L. H., & Lo, I. M. C. (2017). Eeffects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly conversion. Waste Management, 67, 315-323.</p><p>Chia, S. Y., Tanga, C. M., Osuga, I. M., Alaru, A. O., Mwangi, D. M., Githinji, M., Subramaniam, S., Fiaboe, K. K., Ekesi, S., van Loon, J. J. A., & Dicke, M. (2019). Effect of dietary replacement of fishmeal by insect meal on growth performance , blood profiles and economics of growing pigs in Kenya. Animals, 9, 705.</p><p>Chisti, Y., (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294306.</p><p>Cickov, H., Newton, G. L., Lacy, R. C., & Koznek, M. (2015). The use of fly larvae for organic waste treatment. Waste Management, 35, 6880.</p><p>Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Borghi, M. D. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48, 1146 1151.</p><p>Cutrignelli, M. I., Messina, M., Tulli, F., Randazzo, B., Olivotto, I., Gasco, L., Loponte, R., & Bovera, F. (2018). Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Research in Veterinary Science, 117, 209-215.</p><p>Datta, A., & Mandal, B. K. (2016). A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renewable and Sustainable Energy Reviews, 57, 799-821.</p><p>Davidowitz, G., DAmico, L., & Nijhout, H. (2004). The effects of environmental variation on a mechanism that controls insect body size. Evolution & Development, 5(2), 188-197.</p><p>Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31, 466-487.</p><p>Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50, 14-34.</p><p>Dharma, S., Masjuki, H. H., Ong, H. C., Sebayang, A. H., Silitonga, A. S., Kusumo, F., & Mahlia, T. M. I. (2016). Optimization of biodiesel production process for mixed Jatropha curca-Ceiba pentandra biodiesel using response surface methodology. Energy Conversion and Management, 115, 178-190.</p><p>Diaz-Felix, W., Riley, M. R., Zimmt, W., Kazz, M. (2009). Pretreatment of yellow grease for efficient production of fatty acid methyl esters. Biomass and Bioenergy, 33(4), 558-563.</p><p>Diener, S., Zurbrgg, C., & Tockner, K. (2009). Conversion of organic material by black soldier larvae: Establishing optimal feeding rates. Waste Management & Research, 27(6), 603-10.</p><p>Dortmans, B. M. A, Diener, S., Verstappen, B. M., & Zurbrgg, C. (2017). Black soldier fly biowaste processing-a step-by-step guide. Swiss Federal Institute of Aquatic Science and Technology, Dendorf, Switzerland.</p><p>Douglas, A. E. (2007). Symbiotic microorganisms: untapped resources for insect pest control. Trends in Biotechnology, 25(8), 338342.</p><p>Eevera, T., Rajendran, K. & Saradha, S. (2009). Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renewable Energy, 34(3), 762765.</p><p>Elango, R. K., Sathiasivan, K., Muthukumaran, C., Thangavelu, V., Rajesh, M., & Tamilarasan, K. (2019). Transesterification of castor oil for biodiesel production: Process optimization and characterization. Microchemical Journal, 145, 1162-1168.</p><p>Encinar, J. M., Snchez, N., Martnez, G., & Garca, L. (2011). Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology, 102(23), 10907-10914.</p><p>Endalew, A. K., Kiros, Y., & Zanzi, R. (2011). Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass and Bioenergy, 35(9), 3787-3809.</p><p>Energy Commision. (2014). Peninsular Malaysia Electricity Supply Industry Outlook 2014, 73. Retrieved from http://www.st.gov.my/</p><p>Erwin, T. L. (2004). The Biodiversity Question. How Many Species of Terrestrial Arthropods Are There? In Forest Canopies: Second Edition, Elsevier:259269.</p><p>European Standard. (2016). EN 14112: fat and oil derivatives-fatty acid methyl esters (FAME) -determination of oxidation stability (accelerated oxidation test). European Committee for Standardization (CEN), Brussels.</p><p>Farobie, O., Leow, Z. Y. M., Samanmulya, T., & Matsumura, Y. (2016). New insight in biodiesel production using supercritical 1-propanol. Energy Conversion Management, 124, 212-218.</p><p>Fasina, O. & Littlefield, B., (2012). TG-FTIR analysis of pecan shelss thermal decomposition. Fuel Processing Technology, 102, 61-66.</p><p>Fazeli, A., Bakhtvar, F., Jahanshaloo, L., Che Sidik, N. A., & Bayat, A. E. (2016). review. Aenergy: toconversion waste solid municipal onstands.Malaysia Renewable and Sustainable Energy Reviews, 58, 10071016.</p><p>Fernandez-Lopez, M., Avalos-Ramirez, A., Valverde, J. L., & Sanchez-Silva, L. (2016). Pyrolysis of biomass for biofuel production. Green Fuels Technology, Springer, Cham, 467-483.</p><p>Foottit, R. G. & Adler, P. H. (2009). Insect biodiversity: Science and society. Chichester, UK: Wiley Blackwell.</p><p>Fowles, T. M. & Nansen, C. (2019). Insect-based bionconversion: Value from food waste. In: Nrvnen E., Mesiranta N., Mattila M., Heikkinen A. (eds) Food Waste Management. Palgrave Macmillan, Cham.</p><p>Fregolente, P. B. L, Fregolente, L. V., & Maciel, M. R. W. (2012). Water content in biodiesel, diesel and biodiesel-diesel blends. Journal of Chemical Engineering Data, 57(6), 1817-1821.</p><p>Fukuda, H., Kond, A. & Noda, H. (2001). Biodiesel fuel production by transesterification. Journal Bioscience Bioengineering, 92(5), 405-406.</p><p>Gan, P. Y & Li, Z. (2008). An econometric study on long-term energy outlook and the implications of renewable energy utilization in Malaysia. Energy Policy, 36, 890899.</p><p>Garca-Martn, J. F., Als-lvarez, F. J., Lez-Barrera, M. del C., Martn-Domnguez, I., & lvarez-Mateos, P. (2019). Cetane number prediction of waste cooking oil-derived biodiesel prior to transesterification reaction using near infrared spectroscopy. Fuel, 240, 1015.</p><p>Gerpen, J. V. (2005). Biodiesel processing and production. Fuel Processing Technology, 86, 1097-1107.</p><p>Ghadge, S. V. & Raheman, H. (2006). Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresource Technology, 97(3), 379384.</p><p>Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., & Omid, M. (2016). A review of macroalgae production with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews, 42, 473-481.</p><p>Ghazali, W. N. M. W., Mamat, R., Masjuki, H. H., & Najafi, G. (2015). Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renewable and Sustainable Energy Reviews, 51, 585-602.</p><p>Ghosh, S., Banerjee, S. & Das, D. (2017). Process intensification of biodiesel production from Chlorella sp. MJ 11/11 by single step transesterification. Algal Research, 27, 12-20.</p><p>Gicquel, R. & Gicquel, M. (2013). Introduction to Global Energy Issues (second). CRC Press, Taylor & Francis Group.</p><p>Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy n the global energy transformation. Energy Strategy Reviews, 24, 38-50.</p><p>Gold, M., Tomberlin, J. K., Diener, S., Zurbrg, C., & Mathys, A. (2018). Decomposition of biowaste macronutrients, microbes, and chemical in black soldier fly larval treatment: A review. Waste Management, 82, 302-318.</p><p>Gozgor, G., Lau, C. K., M. & Lu, Z. (2018). Energy consumption and economic growth: New evidence from the OECD countries. Energy, 153, 27-34.</p><p>Guerrero, L. A, Maas, G. & Hogland, W. (2013). Solid waste management challenges for cities in developing countries. Waste Management, 33, 220-232.</p><p>Gui, M. M., Lee, K. T., & Bhatia, S. (2008). Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 33(11), 1646-1653.</p><p>Guo, M., Song, W., & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712-725.</p><p>Hafiidz, A., Fauzi, M., Aishah, N., & Amin, S. (2013). Optimization of oleic acid esterification catalyzed by ionic liquid for green biodiesel synthesis. Energy Conversion Management, 76, 818-827.</p><p>Hajjari, M., Tabatabaei, M., Aghbashlo, M., & Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72, 445-464.</p><p>Hamze, H., Akia, M. & Yazdani, F. (2015). Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Safety and Environmental Protection, 94, 110.</p><p>Hannan, M. A., Begum, R. A., Andolrasol, M. G., Hossain Lipu, M. S., Mohamed, A., & Rashid, M. M. (2018). Review of baseline studies on energy policies ad indicators in Malaysia for future sustainable energy development. Renewable and Sustainable Energy Reviews, 94, 551-564.</p><p>Hasni, K., Ilham, Z., Dharma, S., & Varman, M. (2017). Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology. Energy Conversion and Management, 149, 392-400.</p><p>Helm, B. R, Rinehart, J. P., Yocum, G. D., Greenlee, K. J., & Bowsher, J. H. (2017). Metamorphosis is induced by food ansence rather than critical weight in the solitary bee, Osmia lignari, Proceeding of the National Academy of Sciences, 114(41), 10924-10929.</p><p>Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., & Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90(12), 1502-1514.</p><p>Heng, S. Y., Asako, Y., Suwa, T., Tan, L. K., Sharifmuddin, N. B., & Kamadinata, J. O. (2019). Performance of a small-scale solar cogeneration system in the equatorial zone of Malaysia. Energy Conversion and Management, 184, 127138.</p><p>Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1-22.</p><p>Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16, 143-169.</p><p>Hook, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change-A review. Energy Policy, 52, 797-809.</p><p>Hu, J. R., Wang, G. X., Mo, W. Y., Huang, Y. H., Li, G. L., Li, Y., Sun, Y. P., & Zhao, H. X. (2018). Effects of fish meal replacment by black soldier fly (Hermetia illucens L.) larvae meal on growth performance, body composition, plasma biochemical indexes and tissue structure of juvenile Lateolabrax japonicus. Chinese Journal of Animal Nutrition, 30(2), 613-623.</p><p>Idowu, I., Pedrola, M. O., Wylie, S., Teng, K. H., Kot, P., Phipps, D., & Shaw, A. (2019). Improving biodiesel yield of animal waste fats by combination of a pre-treatment technique and microwave technology. Renewable Energy, 142, 535-542.</p><p>International Organization for Standardization. (1998). EN ISO 3675: crude petroleum and liquid petroleum products laboratory determination of density hydrometer method. European Committee for Standardization (CEN), Brussels.</p><p>International Organization for Standardization. (2017). EN ISO 5165: petroleum products -determination of the ignition quality of diesel fuels cetane engine method. European Committee for Standardization (CEN), Brussels.</p><p>IPCC (2018): Summary for policymakers. In : Global warming of 1.5 .. An IPCC report on the impacts of global warming of 1.5 . above pre-imdustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the treat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, 32.</p><p>Irmawati, R., Shafizah, I., Nur Sharina, A., Abbastabar Ahangar, H., & Taufiq-Yap Y. H. (2014). Transesterification of palm oil by using silica loaded ppotassium carbonate (K2CO3/SiO2) catalysts to produce fatty acid methyl esters (FAME). Energy and Power, 4(1), 7-15.</p><p>Islam, MD. T., Huda, N., & Rahman, S. (2019). Current energy mix and technoeconomic analysis of concentrating solar power (CSP) technologies in Malaysia. Renewable Energy, 140, 789-806.</p><p>Issariyakul, T. & Dalai, A. K. (2014). Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews, 31, 446-471.</p><p>Jagadale, S. S. & Jugulkar, L. M. (2012). Production and analysis of chemical properties of chicken fat based biodiesel and its various blends. International Journal of Engineering Research and Development Indexing, 1(7), 347.</p><p>Jain, S. & Sharma, M. P. (2011). Thermal stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews, 15, 438-448.</p><p>Jain, S. & Sharma, M. P. (2012). Application of thermogravimetric analysis for thermal stability of Jatropha curcas biodiesel. Fuel, 93, 252-257.</p><p>Janssen, R. H., Canelli, G., Sanders, M. G., Bakx, E. J., Lakemond, C. M. M., Fogliano, V., & Vincken, J. P. (2019). Iron-polyphenol complexes cause blackening upon grinding Hermetia illucens (black soldier fly) larvae. Scientific Reports, 9, 2967.</p><p>Jeong, G. T., Yang, H. S., & Park, D. H. (2009). Optimization of transesterification of animal fat ester using response surface methodology. Bioresource Technology, 100(1), 2530.</p><p>Ji, X. & Long, X. (2016). A review of the ecological and socioeconomic effects of biofuel and energy policy recommendation. Renewable and Sustainable Energy Reviews, 61, 41-52.</p><p>Johansson, D. J. A. & Azar, C. (2007). A scenario based analysis of land competition between food and bioenergy production in the US. Climatic Change, 82(34), 267291.</p><p>Kakati, J. & Gogoi, T. K., (2016). Biodiesel production from Kutkura (Meyna spinosa Roxb. Ex.) fruit seed oil: Its characterization and engine performance evaluation with 10 % and 20 % blends. Energy Conversion Management, 121, 152161.</p><p>Kamel, D. A., Farag, H. A., Amin, N. K., Zatout, A. A. & Ali, R. M., (2018). Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: Optimization and mechanism. Industrial Crops and Products, 111, 407-413.</p><p>Kara, K., Ouanji, F., Lotfi, E. M., Mahi, M. E., Kacimi, M., & Ziyad M. (2017). Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egyption Journal of Petroleum, 27(2), 249-255.</p><p>Karmakar, A., Karmakar, S. & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 101, 7201-7210.</p><p>Keera, S. T., El Sabagh, S. M. & Taman, A. R. (2018). Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum, 27(4), 979-984.</p><p>Khan, M. A., Yusup, S., & Ahmad, M. M. (2010). Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis. Biomass and Energy, 34, 1751-1756.</p><p>Kirubakaran, M. & Selvan, V. A. M. (2018a). A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews, 82, 390-401.</p><p>Kirubakaran, M. & Selvan, V. A. M. (2018b). Eggshell as heterogeneous catalyst for synthesis of biodiesel from high free fatty acid chicken fat and its working characteristics on a CI engine. Journal of Environmental Chemical Engineering, 6(4), 4490-4503.</p><p>Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86, 1059-1070.</p><p>Knothe, G. & Razon, L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58, 36-59.</p><p>Kourimsk, L. & Admkov, A. (2016). Nutritional and sensory quality of edible insects. NSF Journal, 4, 22-26.</p><p>Kudre, T. G., Bhaskar, N., & Sakhare, P. Z. (2017). Optimization and characterization of biodiesel production from rohu (Labeo rohita) processing waste. Renewable Energy, 113, 14081418.</p><p>Kumar, A. & Sharma, S. (2011). Potential non-edible oil resources as biodiesel feedstock: An Indian perspective. Renewable and Sustainable Energy Reviews, 15(4), 1791-1800.</p><p>Kumar, S., Negi, S., Mandpe, A., Singh, R. V., & Hussain, A. (2018). Rapid composting techniques in Indian context and utilization of black soldier fly to enhanced decomposition of biodegradable wastes-A comprehensive review. Journal of Environmental management, 227, 189-199.</p><p>Laforgia, D. & Ardito, V. (1994). Biodiesel fueled IDI engines: Performances, emission and heat release investigation. Bioresources Technology, 51(1), 5359.</p><p>Lalander, C, Diener, S. Zurbrgg, C., & Vinners, B. (2019). Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). Journal of Cleaner Production, 208, 211-219.</p><p>Lapuerta, M., Rodrguez-Fernndez, J., & de Mora, E. F. (2009). Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy, 37(11), 43374344.</p><p>Leong, S. Y., Kutty, S. R. M., Malakahmad, A., & Tan, C. K. (2016). Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Management, 47, 84-90.</p><p>Li, H., Niu, S. L., Lu, C. M., & Cheng, S. Q. (2015). Comparative evaluation of thermal degradation for biodiesel derived from various feedstocks through transesterification. Energy, 98, 81-88.</p><p>Li, J., Liu, J., Sun, X., & Liu, Y. (2018). The mathematical prediction model for the oxidative stability of vegetables oil by the main fatty acids composition and thermogravimetric analysis. Food Science and Technology, 96, 51-57.</p><p>Li, Q., Zhen, L., Hou, Y., Yang, S., & Yu, Z. (2011b). Insect fat, a promising resource for biodiesel. Journal of Petroleum & Environmental Biotechnology, S2(1), 24.</p><p>Li, Q., Zheng, L., Cai, H., Garza, E., Yu, Z., & Shengde, Z. (2011a). From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel, 90, 15451548.</p><p>Li, Q., Zheng, L., Qiu, N., Cai, H., Tomberlin, J. K., & Yu, Z. (2011c). Bioconversion of dairy manure by black soldier fly(Diptera : Stratiomyidae) for biodiesel and sugar production. Waste Management, 31(6), 13161320.</p><p>Li, W., Li, Q., Zheng, L., Wang, Y., Zhang, J.,Yu, Z., & Zhang, Y. (2015). Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresource Technology, 194, 276282.</p><p>Li, Z., Yang, D., Huang, M., Hu, X., Shen, J., Zhao, Z., & Chen, J. (2012). Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource. Applied Energy, 94, 349-354.</p><p>Lin, C. Y., Lin, H. A., & Hung, L. B. (2009). Fuel structure and properties of biodiesel produced by the peroxidation process. Fuel.85(12-13), 1743-1749.</p><p>Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88(4), 10201031.</p><p>Lin, L., Ying, D., Chaitep, S., & Vittayapadung, S. (2009). Biodiesel production from crude rice bran oil and properties as fuel. Applied Energy, 86, 216-221.</p><p>Lin, R., Zhu, Y., & Tavlarides, L. L. (2013). Mechanism and kinetic of thermal decompostion of biodiesel fuel. Fuel, 106, 593-604.</p><p>Ling, J., Nip, S., Cheok, W. L., de Toledo, R. A., & Shim, H. (2014). Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresource Technology, 173, 132 139.</p><p>Ma, F. & Hanna, M. A. (1999). Biodiesel production: A review. Bioresource Technology, 70(1), 1-15.</p><p>Ma, Y., Gao, Z., Wang Q., & Liu, Y. (2018). Biodiesels from a microbial oil: Opportunity and challenges. Bioresource Technology, 263, 631-641.</p><p>Ma, Y., Wang, Q., Sun, X., Wu, C., & Gao, Z. (2017). Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renewable Energy, 107, 522530.</p><p>Mahmudul, H. M., Hagos, F. Y., Mamat, R., Adam, A. A., Ishak, W. F. W., & Alenezi, R. (2017). Production, characterization and performance of biodiesel as an alternative fuel in diesel engines A review. Renewable and Sustainable Energy Reviews, 72, 497-509.</p><p>Makkar, H. P. S., Tran, G., Heuz, V., & Ankers, P. (2014). State of the art on use of insects as animal feed. Animal Feed Science and Technology, 197, 133.</p><p>Mandolesi De Arao, C. D., De Andrade, C. C., De Souza E Silva, E., & Dupas, F. A. (2013). Biodiesel production from used cooking oil: A review. Renewable and Sustainable Energy Reviews, 27, 445452.</p><p>Mansir, N., Yap, Y. H. T., Rashid, U., & Lokman, I. M. (2016). Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Conversion and Management 141, 171-182.</p><p>Manurung, R., Abduh, M. Y., Nadia, M. H., Wardhani, K. S., & Lambangsari, K. (2016). Valorization of Reutealis Trisperma seed from papua for the production of non-edible oil and protein-rich biomass. International Proceeding Chemical, Biological and Environmental Engineering, 93, 17-23.</p><p>Manzano-agugliaro, F., Sanchez-Muros, M. J., Barroso, F. G., Martnez-Snchez A., Rojo, S., & Prez-Bn, C. (2012). Insects for biodiesel production. Renewable and Sustainable Energy Reviews, 16, 37443754.</p><p>Marchetti, J. M. ., Miguel, V. U., & Errazu, A. F. (2007). Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews, 11, 13001311.</p><p>Marchetti, J. M., & Errazu, A. F. (2008). Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass and Bioenergy, 32, 892-895.</p><p>Marulanda, V. F., Anitescu, G., & Tavlarides, L. L. (2010). Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks. The Journal of Supercritical Fluids, 54(1), 5360.</p><p>Mat Yasin, M. H., Mamat, R., Najafi, G., Ali, O. M., Yusop, A. F., & Ali, M. H. (2017). Potential of palm oi as new feedstock oil for global alternative fuel: A review. Renewable and Sustainable Energy Reviews, 79, 1034-1049.</p><p>Mathimani, T., Uma, L., & Prabaharan, D. (2015). Homogenous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid -An efficient biodiesel yield and its characterization. Renewable Energy, 81, 523533.</p><p>Mazanov, S. V., Gabitova, A. R., Miftahova, L. H., Usmanov, R. A., Gumerov, F. M., Zaripov, Z. I., Vasilv, V. A., & Karalyn, E. A. (2016). Preparing biodiesel fuel in supercritical fluid conditions with heterogeneous catalysts. Russian Journal of Physical Chemistry b, 10, 1099-1107.</p><p>Mazurek, B., Chmiel, M., & Gecka. B. (2017). Fatty acids analysis using gas chromatography-mass spectrometer detector (GC/MSD) method validation based on berry seed extract samples. Food Analytical Methods, 10, 2868-2880.</p><p>Mekhilef, S., Barimani, M., Safari, A., & Salam, Z. (2014). Malaysias renewable energy policies and programs wth green aspects. Renewable and Sustainable Energy Reviews, 40, 497-504.</p><p>Mekhilef, S., Siga, S., & Saidur, R. (2011). A review on palm oil biodiesel as a source of renewable fuel. Renewable and Sustainable Energy Reviews, 15, 1937 1949.</p><p>Mertenat, A., Diener, S. & Zurbrgg, C. (2019). Black soldier fly biowaste treatment assessment of global warming potential. Waste Management, 84, 173-181.</p><p>Miao, X. & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841846.</p><p>Mo, M., Masjuki, H. H., Kalam, M. A., Rahman, S. M. A., & Mahmudul, H. M. (2015). Energy scenario and biofuel policies and targets in ASEAN countries. Renewable and Sustainable Energy Reviews, 46, 5161.</p><p>Mofijur, M., Masjuki, H. H., Kalam, M. A., & Atabani, A. E. (2013b). Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy, 55, 879887.</p><p>Mofijur, M., Masjuki, H. H., Kalam, M. A., Atabani, A. E., Shahabuddin, M., Palash, S. M., & Hazrat, M. A. (2013a). Effect of biodiesel from various feedstocks on combustion characteristics engine durability and materials compatibility: A review. Renewable and Sustainable Energy Reviews, 28, 441-455.</p><p>Mogondu, E. W., Mokaya, M., Ototo, A., Nyakeya, K., & Nyamora, J. (2016). Growth performance of milkfish (Chanos chanos Forsskal) fed on formulated an non-formulated diets made form locally avaliable ingredients in South Cost region, Kenya. International Journal of Fisheries and Aquatic Studies, 4(1), 288-293.</p><p>Mohd Noor, C. W., Noor, M. M., & Mamat, R. (2018). Biodiesel as alternative fuel for marine diesel engine applications: review. Renewable and Sustainable Energy Reviews, 94, 127-143.</p><p>Mohd Noor, S. N., Wong, C. Y., Lim, J. W., Hussin, M. I. A. M., Uemura, Y., Lam,</p><p>M. K., Ramli, A., Bashir, M. J. K., & Tham, L. (2017). Optimization of self-fermented period of waste coconut endosperm destined to feed black soldier fly larvae in enhancing the lipid and protein yields. Renewable Energy, 111, 646-654.</p><p>Moser, B. R. & Vaughn, S. F. (2012). Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass and Bioenergy, 37, 3141.</p><p>Musa, I. A. (2016). The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum, 25, 21-31.</p><p>Myers, H. M., Tomberlin, J. K., Lambert, B. D., & Kattes, D. (2008). Development of black soldier fly (diptera: stratiomyidae) larvae fed dairy manure. Environmental Entomology, 37 (1), 11-15.</p><p>Nagai, K. & Seko, T. (2000). Trends of motor fuel quality in Japan. Japanese Society of Automotive Engineers review, 21, 457-462.</p><p>Nautiyal, P., Subramanian, K. A., & Dastidar, M. G. (2014). Production and characterization of biodiesel from algae. Fuel Processing Technology, 120, 79-88.</p><p>Nguyen, H. C., Liang, S. H. , Doan, T. T., Su, C. H., & Yang, P. C. (2017). Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Conversion and Management, 145, 335342.</p><p>Nguyen, H. C., Liang, S. H., Li, S. Y., Su, C. H., Chien, C. C., Chen, Y. J., & Huong, D. T. M. (2018b). Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 85, 1165-169.</p><p>Nguyen, H. C., Liang, S. H., Chen, S. S., Su, C. H., Lin, J. H., & Chien, C. C. (2018a). Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization using response surface methodology. Energy Conversion and Management, 158, 168-175.</p><p>Nguyen, K. H. & Kakinaka, M. (2019). Renewable energy consumptio, carbon emission, and development stages: Some evidence from panel cointegration analysis. Renewable Energy. 132, 1049-1057.</p><p>Nguyen, T. T., Tomberlin, J. K., & Vanlaerhove, S. (2013). Influence of resources on Hermetia illucens (diptera: stratiomyidae) larval development. Journal of Medical Entomology, 50(4), 898-906.</p><p>Nguyen, T. T., Tomberlin, J. K., & Vanlaerhove, S. (2015). Ability of black soldier fly (diptera: stratiomyidae) larvae to recyle food waste. Environmental Entomology, 44(2), 406-410.</p><p>Nijhout, H. F., Riddiford, L. M., Mirth, C., Shingleton, A. W., Suzuki, Y., & Callier, V. (2014). The development control of size of insects. Wiley InterdisciplinaryReviews: Developmental Biology, 3(1), 113-134.</p><p>Niu, Y., Zheng, D., Yao, B., Cai, Z., Zhao. Z., Wua, S., Cong, P., & Yang, D. (2017). A novel bioconversion for value-added products from food waste using Musca domestica. Waste Management, 61, 455460.</p><p>Nongbe, M. C., Ekou, T., Ekou, L., Benjamin, Y. K., Le Grognec, E & Felpin, F-X. (2017). Biodiesel production from palm oil using sulfonated graphene catalyst. Renewable Energy, 106, 135-141.</p><p>Noor, C. W. M., Noor, M. M., & Mamat, R. (2018). Biodiesel as alternative fuel for marine diesel engine applications: A review. Renewable and Sustainable Energy Reviews, 94, 127-142.</p><p>Nurfitri, I., Maniam, G. P., Hindrya, N., Yusoff, N. H. M., & Ganesan, S. (2013). Potential of feedstock and catalysts from waste in biodiesel preparation: A review. Energy Conversion Management, 74, 395-402.</p><p>OECD/Food and Agriculture Organization of the United Nations, (2015). OECDFAO Agricultural Outlook. OECD Publishing, Paris.</p><p>Oh, T. H., Hasanuzzaman, Md., Selvaraj, J., Teo, S. C., & Chua, S. C. (2018). Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth-An update. Renewable and Sustainable Energy Reviews, 81, 3021-3031.</p><p>Oliveira, D. T. d., Vasconcelos, C. T., Feitosa, A. M. T., Aboim, J. B., Oliveira, A. N. d., Xavier, L. P., Santos, A. S., Gonalves, E. C., Filho, G. N. d. R., & Nascimento, L. A. S. d. (2018). Lipid profile analysis of three new Amazonian cyanobacteria as potential sources of biodiesel. Fuel, 234, 785-788.</p><p>Omar, W. N. N. W. & Amin, N. A.S. (2011). Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology. Biomass and Bioenergy, 35(3), 13291338.</p><p>Omidvarborna, H., Kumar, A. & Kim, D. S. (2016a). A laboratory investigation on the effects of unsaturated bonds and chain lengths of different biodiesel feedstocks on carbon dioxide, carbonmonoxide, and methane emissions under low-temperature combustion. Journal of Environemental Chemical Engineering, 4, 4769-4775.</p><p>Omidvarborna, H., Kumar, A. & Kim, D. S. (2016b). Artificial neural network (ANN) prediction of NOx emission from EGR and non-EGR engines running on soybean biodiesel fuel (B5) during cold idle mode. Environmental Progress & Sustainability Energy, 35, 1537-1544.</p><p>Onukwuli, D. O., Emembolu, L. N., Ude, C. N., Aliozo, S. O. & Menkiti, M. C. (2016). Optimization of biodiesel production from refined cotton seed oil and its characterization. Egyptian Journal of Petroleum, 26(1), 103-110.</p><p>Oonincx, D. G. A. B., van Huis, A., & van Loon, J. J. A. (2015a). Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. Journal of Insects for Food and Feed, 1, 131-139.</p><p>Oonincx, D. G. A. B., van Broekhoven S., van Huis, A., & van Loon, J. J. A. (2015b). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLOS ONE, 10(12), e0144601.</p><p>Papargyropoulou, E., Lozano, R., Steinberger, J., Wright, N., & Ujang, Z. (2014). The food waste hierarchy as a framework for the management of good surplus and food waste. Journal of Cleaner Production, 76, 106-115.</p><p>Patel, A., Arora, N., Mehani, J., Pruthi, V., & Pruthi, P. A. (2017). Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production. Renewable and sustainable energy reviews, 77, 604-616.</p><p>Patel, A., Sindhu, D. K., Arora, N., Singh, R. P., Pruthi, V., & Pruthi, P. A. (2015). Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresource Technology, 197, 9198.</p><p>Patil, P. D., Reddy, H., Muppaneni, T., & Deng, S. (2017). Biodiesel fuel production from algal lipids using supercritical methyl acetate (glycerin-free) technology. Fuel, 195, 201-207.</p><p>Patterson, H. B. W. (2011). Quality and control, Hydrogenation of Fats and Oils (Secon Edition), AOCS Press.</p><p>Pelegrini, B. L., Sudati, E. A., Re, F., Moreira, A. L., Ferreira, I. C. P., Sampaio, A. R., Kimura, N. M., & Lima, M. M. de S. (2017). Thermal and rheological properties of soapberry Sapindus saponaria L. (Sapindaceae) oil biodiesel and its blends with petrodiesel. Fuel, 199, 627-640.</p><p>Phan, A. N. & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(1718), 34903496.</p><p>Photaworn, S., Tongurai, C., & Kungsanunt, S. (2017). Process development of two-step esterification plus catalyst solution recycling on waste vegetable oil possessing high free fatty acid. Chemical Engineering & Processing: Process Intensification. 118, 1-8.</p><p>Pinzi, S., Leiva-Candia, D., Lopez-Garcia, I., Redel-Macias, M. D., & Dorado, M. P. (2013). Review: latest trends in feedstocks for biodiesel production. Biofuels Bioproducts and Biorefining, 8(1), 126143.</p><p>Pleissner, D. (2018). Recycling and reuse of food waste. Opinion in Green and Sustainable Chemistry, 13, 3943.</p><p>Pramanik, K. (2003). Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable Energy, 28(2), 239248.</p><p>Puhan, S., Vedaraman, N., Ram, B. V. B., Sankarnarayanan, G., & Jeychandran, K. (2005). Mahua oil (Madhuca Indica seed oil) methyl ester as biodieselpreparation and emission characteristics. Biomass and Bioenergy, 28(1), 87 93.</p><p>Pullen, J. & Saeed, K. (2014). Experimental study of the factors affecting the oxidation stability of biodiesel FAME fuels. Fuel Processing Technology, 125, 223-235.</p><p>Rahman, Md. A. & Nahar, K. (2016). Production and characterization of algal biodiesel from spirulina maxima. Global Journal of Researches in Enginering: A Mechanical and Mechanics Engineering. 16(1). Retrieved from https://engineeringresearch.org/ index.php/GJRE/article/view/1428</p><p>Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84(4), 335340.</p><p>Reyman, D., Bermejo, A. S., Uceda, I. R., & Gamero, M. R. (2014). A new method to monitor transesterification in biodiesel production by ultrasonication. Environmental Chemistry Letters, 12, 235-240.</p><p>Royon, D., Daz, M., Ellenrieder, G. & Locatelli, S. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98(3), 648653.</p><p>Saad, W. & Taleb, A. (2018). The causal relationsip beyween renewable eergy consumption and economic growth: evidence from Europe. Clean Technologies and Environmental Policy, 20, 127-136.</p><p>Sabo, M. L., Mariun, N., Hizam, H, Radzi, M. A. M., & Zakaria, A. (2019). Spatial energy predictions from large-scale photovoltaic power plants located in optimal sites and connected to a smart grid in Peninsular Malaysia. Renewable and Sustainable Energy Reviews, 66, 79-94.</p><p>Sahar, Sadaf, S., Iqbal, J., Ullah, I., Bhatti, H . N., Nouren, S., Ur-Rehman, H., Nisar, J. & Iqbal, M. (2018). Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustainable Cities and Society, 41, 220-226.</p><p>Sahoo, P. K. & Das, L. M. (2009). Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel, 88(9), 15881594.</p><p>Sajid, Z., Khan, F., & Zhang, Y. (2016). Process simulation and life cycle analysis of biodiesel production. Renewable Energy, 85, 945952.</p><p>Sakthivel, R., Ramesh, K., Purnachandran, R., & Shameer, P. M. (2018). A review on the properties, performance and emission aspects of the third generation biodiesel. Renewable and sustainable energy reviews, 82, 2970-2992.</p><p>Salimon, J. Omar, T. A., & Salih, N. (2017). An accurate and reliable method for identification and quantification of fatty acids and trans fatty acids in food fat samples using gas chromatography. Arabian Journal of Chemistry, 10, S1875S1882.</p><p>Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S. & Savastano, D. (2017). Environmental impact of food waste bioconversion by insects: Application of life cycle assessment to process using Hermetia illucens. Journal of Cleaner Production, 140, 890-905.</p><p>Saluja, R. K., Kumar, V. & Sham, R. (2016). Stability of biodiesel-A review. Renewable and sustainable energy reviews, 62, 866-881.</p><p>Salvi, B. L & Panwar, N. L. (2012). Biodiesel resources and production technologies-A review. Renewable and sustainable energy reviews, 16(6), 36803689.</p><p>Snchez, ., Maceiras, R., Cancela, ., & Prez, A. (2013). Culture aspects of Isochrysis galbana for biodiesel production. Applied Energy, 101, 192197.</p><p>Satyanarayana, P. A., Ravi, K. O., Swarna, U., & Sridevi, V. (2018). A comparative study on characterization of used cooking oil and mustard oil for biodiesel production: Engine performance. Material Todays: Proceedings 5, 18187-18201.</p><p>Satyarthi, J. K., Srinivas, D., & Ratnasamy, P. (2009). Estimation of free fatty acid content in oils, fats, and biodiesel by 1H NMR spectroscopy. Energy & Fuels, 23, 2273-2277.</p><p>Sawangkeaw, R. & Ngamprasertsith, S. (2013). A review of lipid biomasses as feedstock for biofuels production. Renewable and sustainable energy reviews, 25, 97-108.</p><p>Shahbaz, M., Zakaria, M., Shahzad, S. J. H., & Mahalik, M. K. (2018). The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach. Energy Economics, 71, 282-301.</p><p>Shahid, E. M. & Jamal Y. (2011). Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews, 15, 4732 4745.</p><p>Shan, R., Lu, L., Shi, Y., Yuan, H., & Shi, J. (2018). Catalysts from renewable resources for biodiesel production. Energy Conversion Management, 178, 277-289.</p><p>Sharma, Y. C. & Singh, B. (2010b). An ideal feedstock, kusum (Schleichera triguga) for preparation of biodiesel: Optimization of parameters. Fuel, 89, 1470-1474.</p><p>Sharma, Y. C., Singh, B., & Korstad, J. (2010a). Application of an efficient nonconventional heterogeneous catalyst for biodiesel synthesis from Pongamia pinnata oil. Energy Fuels, 24, 3223-3231.</p><p>Sharvini, S. R., Noor, Z. Z., Chong, C. S., Stringer, L. C., & Yusuf, R. O. (2018). Energy consumption trends and their linkages with renewable energy policies in East and Southeast Asian countries: challenges and opportunities. Sustainable Environment Research, 28, 257-266.</p><p>Sheppard, D. C. , Newton, L., Thompson, S. A., & Savage, S. (1994). A value added manure management system using the black soldier fly. Bioresource Technology, 50(3), 275-279.</p><p>Sheppard, D. C., Tomberlin, J. K., Joyce, J. A., Kiser, B. C., & Sumner, S. M. (2002). Rearing methods for the black soldier fly (diptera: stratiomyidae). Journal of Medical Entomology, 39, 695-698.</p><p>Shingleton, A. W. (2011). Evolution and the regulation of growth and body size. Mecanisms of Life History Evolution, ds flatt T, Heyland A (Oxford Uni Press, New York), 1st ed, 43-55.</p><p>Shumaker, J. L., Crofcheck, C., Tackett, S. A., Santillan-Jimenez, E., & Crocker, M. (2007). Biodiesel production from soybean oil using calcined Li-Al layered double hydroxide catalysts. Catalysis Letters, 115(12), 5661.</p><p>Singh, S. P. & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel : A review. Renewable and sustainable energy reviews, 14(1), 200216.</p><p>Sinha, S., Agarwal, A. K., & Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conversion and Management, 49(5), 1248-1257.</p><p>Soliman, J. L., Lopez, N. S. A., & Biona J. B. M. M. (2018). Assessing sustainability of long-term energy supply using desirability functions. Energy Procedia, 158, 3723-3728.</p><p>Souza, S. P., Seabra, J. E. A. & Nogueira, L. A. H. (2017). Feedstocks for biodiesel production: Brazilian and global perspectives. Biofuels, 9(4), 455-478.</p><p>Srilatha, K., Lingaiah, N., Devi, B. L. A. P., Prasad, R. B. N., Venkateswar, S. & Prasad, P. S. S. (2009). Esterification of free fatty acids for biodiesel production over heteropoly tungstate supported on niobia catalysts. Applied Catalysis A: General, 365, 2833.</p><p>Srivastava, A. & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and sustainable energy reviews, 4, 111-133.</p><p>Subramaniam, R., Dufreche, S., Zappi, M., & Bajpai, R. (2010). Microbial lipids from renewable resources: production and characterization. Journal of Industrial Microbiology & Biotechnology, 37, 12711287.</p><p>Sulaiman, S., Abdul Aziz, A. R.. & Aroua, M. K. (2013). Reactive extraction of solid coconut waste to produce biodiesel. Journal of the Taiwan Institute Chemical Engineers, 44(2), 233238.</p><p>Sundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smars, S., Insam, H., Romantschuk, M., & Jsson, H. (2013). Effects of pH and microbial composition on odour in food waste composting. Waste Management, 33, 204211.</p><p>Sunita, G., Devassy, B. M. , Vinu, A., Sawant, D. P., Balasubramanian, V. V. & Halligudi, S. B. (2008). Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catalysis Communications, 9(5), 696702.</p><p>Suranovic, S. (2013). Fossil fuel addiction and the implications for climate change policy. Global Environmental Change, 23(3), 598608.</p><p>Surendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R., & Khanal, S. K. (2016). Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy, 98, 197-202.</p><p>Suwito, S. Dragone, G., Sulistyo, H., Murachman, B. Purnwono, S., & Teixera, J., (2012). Optimization of pretreatment of Jatropha oil with high free fatty acids for biodiesel production. Frontiers of Chemical Science and Engineering, 6(2), 210-215.</p><p>Suzuki, K., Tsuji, N., Shirai, Y., Hassan, M. A., & Osaki, M., (2017). Evaluation of biomass energy potential towards achieving sustainability in biomass energy utilization in Sabah, Malaysia. Biomass and Bioenergy, 97, 149-154.</p><p>Talebian-Kiakalaieh, A., Amin, N. A. S., Zarei, A., & Noshadi, I. (2013). Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model. Applied Energy, 102, 283-292.</p><p>Tahira, F., Hussain, S. T., Ali, S. D., Iqbal, Z., & Ahmad, W. (2012). Homogeneous catalysis of high free fatty acid waste cooking oil to fatty acid methyl esters (biodiesel). International Journal of Energy and Power, 1, 31-36.</p><p>Tang, K. H. D. (2019). Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Science of the Total Environment, 650, 1858-1871.</p><p>Tang, Z. E., Lim, S., Pang, Y. L., Ong, H. C., & Lee, K. T. (2018). Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review. Renewable and Sustainable Energy Reviews, 92, 235-253.</p><p>Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., & Khan, M. A. (2011). Identification, FTIR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology, 92, 336-341.</p><p>Tarmudi, Z., Abdullah, M. L., & Tap, A. O. M. (2009). An overview of municipal solid wastes generation in Malaysia. Jurnal Teknologi, 51, 115.</p><p>Tashtoush, G. M., Al-Widyan, M. I. & Al-Jarrah, M. M. (2004). Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel. Energy Conversion and Management, 45, 2697-2711.</p><p>Tat, M. E. (2011). Cetane number effect on the energetic and exergetic efficiency of a diesel engine fuelled with biodiesel. Fuel Processing Technology, 92(7), 13111321.</p><p>Tinder, A. C., Puckett, R. T., Turner, N. D., Cammarck, J. A., & Tomberlin, J. K. (2017). Bioconversion of sorghum and cowpea by black soldier fly (Hermetia illucens (L.)) larvae for alterative protein production. Journal of Insects as Food and Feed, 3, 121-130.</p><p>Tyson, K. S. (2006). Biodiesel handling and use guidelines (third edition). U.S Department of Energy, 169.</p><p>Trumbo, J. L. & Tonn, B. E. (2016). Biofuels: A sustainable choice for the United States energy future? Technological Forecasting & Social Change, 104,147 161.</p><p>Tsimidou, M., Blekas, G., & Boskou, D. (2003). Olive oil, The Encylopedia of Food Science and Nutrition (Second Edition), Academic Press.</p><p>Ullah, Z., Khan, A. S., Muhammad, N., Ullah, R., Alqahtani, A. S., Shah, S. N., Ghanem, O. B., Bustam, M. A., & Man, Z. (2018). A review on ionic liquids as perspective catalysts in transesterification of different feedstock oil into biodiesel. Journal of Molecular Liquids, 266, 673-686. U.S. Energy Information Administration (2011) International energy outlook 2011. Center for Strategic and International Studies (484). https://www.csis.org/events/eias-international-energy-outlook-2011. U.S. Energy Information Administration (2015) Annual energy outlook 2015: Office of integrated and international energy analysis 1:1244. Retrieved from https://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf.</p><p>United States Environmental Protection Agency, USEPA website. Accessed on 20 March 2019</p><p>Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., & Knothe, G. (2004). Biodiesel production. Biodiesel Production Technology August 2002January 2004, NREL/SR-510-36244.</p><p>Verma, P., Dwivedi, G. & Sharma, M. P. (2016a). Comprehensive analysis on potential factors of ethanol in Karanja biodiesel production and its kinetic studies. Fuel, 188, 586-594.</p><p>Verma, P., Sharma, M. P., & Dwivedi, G. (2016b). Prospects of bio-based alcohols for karanja biodiesel production: An optimisation study by response surface methodology. Fuel 183,185-194.</p><p>Vicente, G., Martnez, M. & Aracil, J. (2004). Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresource Technology, 92(3), 297305.</p><p>VijayaVenkataRaman, S., Iniyan, S., & Goic, R. (2012). A review of climate change, mitigation and adaptation. Renewable and Sustainable Energy Reviews, 16, 878-897.</p><p>Wang, C., Qian, L., Wang, W., Wang, T., Deng, Z., Yang, F., Xiong, J., & Feng, W. (2017). Exploring the potential of lipids from black soldier fly : New paradigm for biodiesel production (I). Renewable Energy, 111C, 749-756.</p><p>Wang, G., Peng, K., Hu, J., Yi, C., Chen, X., Wu, H., & Huang, Y. (2019b). Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meals as al alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture, 507, 144-154.</p><p>Wang, Q., Kwan, M., Zhou, K., Fan, J., Wang, Y., & Zhan, D. (2019a). Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries. Energy Policy, 128, 284-295.</p><p>Weisz, P. B., Haag, W. O., & Rodewald, P. G. (1979). Catalytic production of high-grade fuel (gasoline) from biomass compounds by shape-selective catalysis. Science, 206(4414), 5758.</p><p>Wong, C. H., Rosli, S. S., Uemura, Y., Ho, Y. C., Leejeerajumnean, A., Kiatkittipong, W., Cheng, C. K., Lam, M. K., & Lim, J. W. (2019). Potential protein and bioidesle sources from Black soldier fly larvae: Insight of larval harvesting instar and fermented feeding medium. Energies, 12(8), 1570.</p><p>Wong, Y. C., Tan, Y. P., Taufiq-Yap, Y. H., & Ramli, T. (2015). An optimization study for transesterification of palm oil using response surface methodology (RSM). Sains Malaysiana, 44(2), 281-290.</p><p>World Energy Balance. (2017). International Energy Agency. Retrieved from https://webstore.iea.org/world-energy-balances-2017-overview</p><p>World Energy Balance. (2018). International Energy Agency. Retrieved from https://webstore.iea.org/world-energy-balances-2018</p><p>World Health Organization, WHO. (2018). Air pollution. Retrieved from http://www.who.int/ airpollution/en/</p><p>Wu, Q., Qiang, T. C., Zeng, G., Zhang, H., Huang, Y., & Wang, Y. (2017). Sustainable and renewable energy from biomass wastes in palm oil industry: A case study in Malaysia. International Journal of Hydrogen Energy, 42, 2387123877.</p><p>Wu, S., Cai, Z., Niu, Y, Zheng, D., He, G, Wang, Y., & Yang, D. (2017) A renewable lipid source for biolubricant feedstock oil from housefly (Musca domestica) larvae. Renewable Energy, 113, 546-55.</p><p>Xia, C., Zhang, J., Zhang, W., & Hu, B. (2011). A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnology for Biofuels, 4,15.</p><p>Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z., & Sopian, K. (2013). Overview of the production of biodiesel from Waste cooking oil. Renewable and Sustainable Energy Reviews, 18, 184-193.</p><p>Yaakob, Z., Narayanan, B. N., Padikkaparambil, S., Unni K., S., & Akbar P., M. (2014). A review on the oxidation stability of biodiesel. Renewable and Sustainable Energy Reviews, 35, 136153.</p><p>Yang, S., Li, Q., Gao, Y., Zheng, L., & Liu, Z. (2014). Biodiesel production from swine manure via house fly larvae (Musca domestica L.). Renewable Energy, 66, 222227.</p><p>Yang, S., & Liu, Z., (2014). Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production. Applied Energy, 113, 385391.</p><p>Yatish, K. V., Lalithamba, H. S., Suresh, R., Arun, S. B., & Kumar, P. V. (2016). Optimization of scum oil biodiesel production by using response surface methodology. Process Safety and Environmental Protection, 102, 667-672.</p><p>Yurchenko, S., Sats, A., Poikalainen, V., & Karus, A. (2016). Method for determination of fatty acids in bovine colostrum using GC-FID. Food Chemistry, 212, 117-122.</p><p>Yusuf, N. N. A. N., Kamarudin, S. K., & Yaakub, Z. (2011). Overview on the current trends in biodiesel production. Energy Conversion Management, 52, 2741 2751.</p><p>Yuvarani, M., Kubendran, D., Aathika, A. R. S., Karthik, P., Premkumar, M. P., Karthikeyan, V., & Sivanesan, S. (2017). Extraction and characterization of oil from macroalgae Cladophora glomerata. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(39), 2133-2139.</p><p>Zabeti, M., Daud, W. M. A. W., & Aroua, M. K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 90(6), 770777.</p><p>Zafar, M. W., Shahbaz, M., Hou, F., & Sinha, A. (2018). Nonrenewable to renewable energy and its impact on economic growth: The role of research & development expenditures in Asia-Pacific Economic Cooperation Countries. Journal of Cleaner Production, 212, 1166-1178.</p><p>Zahir, E., Saeed, R., Hameed, M. A., & Yousuf, A. (2017). Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier Transform-Infrared (FT-IR) Spectroscopy. Arabian Journal of Chemistry, 10, S3870-S3876.</p><p>Zhang, Y., Dub, M. A., McLean, D. D., & Kates, M., (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89(1), 1-16.</p><p>Zheng, L., Hou, Y., Li, W., Yang, S, Li, Q., & Yu, Z. (2013). Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Applied Energy, 101, 618621.</p><p>Zheng, L., Hou, Y., Li, W., Yang, S, Li, Q., & Yu, Z. (2012). Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy, 47, 225-229.</p><p>Zheng, L., Li, Q., Zhang, J., & Yu, Z. (2012). Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renewable Energy, 41, 75-79.</p><p>Zi-zhe, C., De-po, Y., Sheng-qing, W., Yong,W., Reaney, M. J. T., Zhi-min, Z., Long-ping, Z., Guo, S., Yi, N., Dong, Z., Hui-ran, N., & Wen-zhe, Y. (2017). Conversion of poultry manure to biodiesel, a practical method of producing fatty acid methyl esters via housefly (Musca domestica L.) larval lipid. Fuel, 210, 463471.</p> |