Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application

<p>The aim of this study was to fabricate zinc oxide (ZnO) and aluminium (Al) doped</p><p>ZnO nanorods (NRs) nanowires (NWs) graphene oxide (GO) and reduced GO (rGO) for ultraviolet (UV)</p><p>photoconductive sensor and photocatal...

Full description

Saved in:
Bibliographic Details
Main Author: Mohammed, Ali Abdul Ameer
Format: thesis
Language:eng
Published: 2019
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=9162
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:9162
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic
spellingShingle
Mohammed, Ali Abdul Ameer
Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application
description <p>The aim of this study was to fabricate zinc oxide (ZnO) and aluminium (Al) doped</p><p>ZnO nanorods (NRs) nanowires (NWs) graphene oxide (GO) and reduced GO (rGO) for ultraviolet (UV)</p><p>photoconductive sensor and photocatalytic applications. The method used to synthesize GO was</p><p>electrochemical exfoliation assisted by custom- made triple-tails sodium 1, 4-bis</p><p>(neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4- dioxobutane-2-silphonate (TC14) and commercially</p><p>available single-tail sodium dodecyl sulphate (SDS) surfactants. Then, to produce rGO the</p><p>exfoliated GO was reduced via reduction process by adding hydrazine hydrate. The ZnO and AlZnO NRs</p><p>and NWs were synthesized via sol-gel immersion method. The hybridized ZnO and AlZnO NRs and NWs</p><p>samples with SDS-GO, SDS-rGO, TC14-GO and TC14-rGO were done by spray coating method. The</p><p>ZnO/GO-based samples were characterized using scanning electron microscopy, energy dispersive</p><p>X-ray, high resolution transmission electron microscopy, X-ray diffraction, micro-Raman, UV-visible</p><p>(UV- Vis) spectroscopy and four-point probes measurement. The UV photocurrent measurement</p><p>system and UV-Vis spectroscopy were then used to analyse the UV photoconductive sensor and</p><p>photocatalytic performances respectively. The finding show that the highest sensitivity and</p><p>responsivity of UV photoconductive sensor at around 47.3 and 345.7 mA/W were observed in AlZnO</p><p>NWs/TC14-GO (24 hours) sample. Meanwhile 90 g of sand/ZnO NRs/TC14-GO with reaction time of 48</p><p>hours exhibited the highest photocatalytic efficiency of 100% removal of 5ppm of methylene blue</p><p>(MB). The improvement of both UV photoconductive sensor and photocatalytic performances were</p><p>believed due to the existence of GO that help to lower the recombination rate of electrons-holes by</p><p>trapping the electron within the GO sheets. In conclusion, the AlZnO NWs/TC14-GO (24 hours)</p><p>nanocomposites demonstrate a good material for UV photoconductive sensor application. The sand/ZnO</p><p>NRs/TC14-GO is a great potential material for photocatalytic application. The implication of this</p><p>study is a novel, green and economical approach for UV photoconductive sensor and photocatalytic</p><p>application by using AlZnO NWs/TC14-</p><p>GO (24 hours) and sand/ZnO NRs/TC14-GO, respectively.</p><p></p>
format thesis
qualification_name
qualification_level Doctorate
author Mohammed, Ali Abdul Ameer
author_facet Mohammed, Ali Abdul Ameer
author_sort Mohammed, Ali Abdul Ameer
title Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application
title_short Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application
title_full Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application
title_fullStr Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application
title_full_unstemmed Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application
title_sort fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2019
url https://ir.upsi.edu.my/detailsg.php?det=9162
_version_ 1776104596767244288
spelling oai:ir.upsi.edu.my:91622023-07-10 Fabrication of zinc oxide graphene oxide nanocomposite for ultraviolet photoconductive sensor and photocatalytic application 2019 Mohammed, Ali Abdul Ameer <p>The aim of this study was to fabricate zinc oxide (ZnO) and aluminium (Al) doped</p><p>ZnO nanorods (NRs) nanowires (NWs) graphene oxide (GO) and reduced GO (rGO) for ultraviolet (UV)</p><p>photoconductive sensor and photocatalytic applications. The method used to synthesize GO was</p><p>electrochemical exfoliation assisted by custom- made triple-tails sodium 1, 4-bis</p><p>(neopentyloxy)-3-(neopentyloxycarbonyl)-1, 4- dioxobutane-2-silphonate (TC14) and commercially</p><p>available single-tail sodium dodecyl sulphate (SDS) surfactants. Then, to produce rGO the</p><p>exfoliated GO was reduced via reduction process by adding hydrazine hydrate. The ZnO and AlZnO NRs</p><p>and NWs were synthesized via sol-gel immersion method. The hybridized ZnO and AlZnO NRs and NWs</p><p>samples with SDS-GO, SDS-rGO, TC14-GO and TC14-rGO were done by spray coating method. The</p><p>ZnO/GO-based samples were characterized using scanning electron microscopy, energy dispersive</p><p>X-ray, high resolution transmission electron microscopy, X-ray diffraction, micro-Raman, UV-visible</p><p>(UV- Vis) spectroscopy and four-point probes measurement. The UV photocurrent measurement</p><p>system and UV-Vis spectroscopy were then used to analyse the UV photoconductive sensor and</p><p>photocatalytic performances respectively. The finding show that the highest sensitivity and</p><p>responsivity of UV photoconductive sensor at around 47.3 and 345.7 mA/W were observed in AlZnO</p><p>NWs/TC14-GO (24 hours) sample. Meanwhile 90 g of sand/ZnO NRs/TC14-GO with reaction time of 48</p><p>hours exhibited the highest photocatalytic efficiency of 100% removal of 5ppm of methylene blue</p><p>(MB). The improvement of both UV photoconductive sensor and photocatalytic performances were</p><p>believed due to the existence of GO that help to lower the recombination rate of electrons-holes by</p><p>trapping the electron within the GO sheets. In conclusion, the AlZnO NWs/TC14-GO (24 hours)</p><p>nanocomposites demonstrate a good material for UV photoconductive sensor application. The sand/ZnO</p><p>NRs/TC14-GO is a great potential material for photocatalytic application. The implication of this</p><p>study is a novel, green and economical approach for UV photoconductive sensor and photocatalytic</p><p>application by using AlZnO NWs/TC14-</p><p>GO (24 hours) and sand/ZnO NRs/TC14-GO, respectively.</p><p></p> 2019 thesis https://ir.upsi.edu.my/detailsg.php?det=9162 https://ir.upsi.edu.my/detailsg.php?det=9162 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>A.A.Ameer, Suriani, A.R.Jabur, N. Hashim, Fatiatun, & K.Zaid. (2019). The</p><p>Fabrication of Zinc Oxide Nanorods and Nanowires by Sol-Gel Immersion Methods. IOP Conf. Series:</p><p>Journal of Physics, 1170(1), 012005.</p><p></p><p>Abd, Engku, Ghapur Engku, W A Dhafina, S Hasiah, and N A N Ali. (2012). Effect of the ZnO Rods</p><p>Growth Time to the Conductivity Of ZnO Thin Film Combined with N Dye. In Advanced Materials</p><p>Research, 390(12), 328690.</p><p></p><p>Abdulgafour, H. I., Z. Hassan, N. H. Al-Hardan, and F. K. Yam. (2010). Growth of High-Quality ZnO</p><p>Nanowires without a Catalyst. Physica B: Condensed Matter 405(19), 42164218.</p><p></p><p>Abdulrahman, A. F., S. M. Ahmed, and M. A. Almessiere. (2017). Effect of the Growth Time on the</p><p>Optical Properties of ZnO Nanorods Grown by Low Temperature Method. Digest Journal of Nanomaterials</p><p>and Biostructures 12(4), 10011009.</p><p></p><p>Acik, Muge, and Yves J Chabal. (2012).A Review on Reducing Graphene Oxide for Band Gap</p><p>Engineering. Journal of Materials Science Research, 2(1), 101112.</p><p></p><p>Aguilar-bolados, H, J Brasero, M A Lopez-manchado, and M Yazdani-pedram. (2014). High Performance</p><p>Natural Rubber/Thermally Reduced Graphite Oxide Nanocomposites by Latex Technology. Composites Part</p><p>B Engineering 67(12), 449454.</p><p></p><p>Ahmad, M., E. Ahmed, Yuewei Zhang, N. R. Khalid, Jianfeng Xu, M. Ullah, and Zhanglian Hong. (2013).</p><p>Preparation of Highly Efficient Al-Doped ZnO Photocatalyst by Combustion Synthesis. Current Applied</p><p>Physics, 13(4), 697 704.</p><p></p><p>Ahmad, Rafiq, Min-sang Ahn, and Yoon-bong Hahn. (2017). ZnO Nanorods Array Based Field-Effect</p><p>Transistor Biosensor for Phosphate Detection. Journal of Colloid And Interface Science, 498(7),</p><p>29297.</p><p></p><p>Ahn, Cheol Hyoun, Won Suk Han, Bo Hyun Kong, and Hyung Koun Cho. (2009). Ga-Doped ZnO Nanorod</p><p>Arrays Grown by Thermal Evaporation and Their Electrical Behavior. Nanotechnology, 20(1), 015601.</p><p></p><p>Al-Hardan, N. H., Azman Jalar, M. A. Abdul Hamid, Lim Kar Keng, N. M. Ahmed, and R. Shamsudin.</p><p>(2014). A Wide-Band UV Photodiode Based on N-ZnO/p-Si Heterojunctions. Sensors and Actuators, A:</p><p>Physical, 207(12), 6166.</p><p></p><p>Alam, M J, and D C Cameron. (2014). Preparation and Properties of Transparent Conductive</p><p>Aluminum-Doped Zinc Oxide Thin Films by Sol Gel Process Journal of Vacuum Science & Technology A:</p><p>Vacuum, Surfaces, and Films, 19</p><p>(4), 1642-1646.</p><p></p><p>Alam, Syed Nasimul, Nidhi Sharma, and Lailesh Kumar. (2017). Synthesis of Graphene Oxide (GO) by</p><p>Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide ( rGO ).</p><p>Scientific Research Publishing, 6(1), 1-18.</p><p></p><p>Albini, Angelo, and Maurizio Fagnoni. (2008). 1908: Giacomo Ciamician and the Concept of Green</p><p>Chemistry. ChemSusChem, 1(12), 6366.</p><p></p><p>Alchaar, Rodolphe, Houssin Makhlouf, Nadine Abboud, Sophie Tingry, Radhouane Chtourou, Matthieu</p><p>Weber, and Mikhael Bechelany. (2017). Enhanced UV Photosensing Properties of ZnO Nanowires Prepared</p><p>by Electrodeposition and Atomic Layer Deposition. Journal of Solid State Electrochemistry, 21(10),</p><p>2877- 2886.</p><p></p><p>Ali, Ghusoon M., and P. Chakrabarti. (2010). ZnO-Based Interdigitated MSM and MISIM Ultraviolet</p><p>Photodetectors. Journal of Physics D: Applied Physics, 43 (41), 415103.</p><p></p><p>Ali A A Mohammed. Suriani & Akram R Jabur. (2018). The Enhancement Of UV Sensor Response By Zinc</p><p>Oxide Nanorods/Reduced Graphene Oxide Bilayer Nanocomposites Film The Enhancement Of UV Sensor</p><p>Response By Zinc Oxide Nanorods/Reduced Graphene Oxide Bilayer Nanocomposites Film. IOP Conf.</p><p>Series: Journal of Physics, 1003(5), 012070.</p><p></p><p>Alzoubi, Tariq, Hamzeh Qutaish, Esra Al-shawwa, and Sameh Hamzawy. (2018). Enhanced UV-Light</p><p>Detection Based on ZnO Nanowires/Graphene Oxide Hybrid Using Cost-Effective Low Temperature</p><p>Hydrothermal Process. Optical Materials, 77(1), 22632.</p><p></p><p>Ambrosi, Adriano, and Martin Pumera. (2016). Electrochemically Exfoliated Graphene and</p><p>Graphene Oxide for Energy Storage and Electrochemistry Applications. Chemistry - A European</p><p>Journal, 22(1), 15359.</p><p></p><p>Ameen, Sadia, M. Shaheer Akhtar, Minwu Song, and Hyung Shik Shin. (2012). Vertically Aligned ZnO</p><p>Nanorods on Hot Filament Chemical Vapor Deposition Grown Graphene Oxide Thin Film Substrate: Solar</p><p>Energy Conversion. ACS Applied Materials and Interfaces, 4(8), 440512.</p><p></p><p>Anas Boussaa, S., A. Kheloufi, N. Boutarek Zaourar, and F. Kerkar. (2016). Valorization of Algerian</p><p>Sand for Photovoltaic Application. Acta Physica Polonica A, 130(1), 13337.</p><p></p><p>Antony, Albin, P. Poornesh, I. V. Kityk, G. Myronchuk, Ganesh Sanjeev, Vikash Chandra Petwal, Vijay</p><p>Pal Verma, and Jishnu Dwivedi. (2019). A Study of 8 MeV E-Beam on Localized Defect States in ZnO</p><p>Nanostructures and Its Role on Photoluminescence and Third Harmonic Generation. Journal of</p><p>Luminescence, 207(11), 32132.</p><p></p><p>Aprilia, A., H. Fernando, A. Bahtiar, L. Safriani, and R. Hidayat. (2018). Influences of Al Dopant</p><p>Atoms to the Structure and Morphology of Al Doped ZnO Nanorod Thin Film. Journal of Physics:</p><p>Conference Series, 1080(1), 18.</p><p></p><p>Arias, L. M.Franco, A. Arias Duran, D. Cardona, E. Camps, M. E. Gmez, and G. Zambrano. (2015).</p><p>Effect of Annealing Treatment on the Photocatalytic Activity of TiO Thin Films Deposited by Dc</p><p>Reactive Magnetron Sputtering. IOP Conf. Series: Journal of Physics, 614(1), 012008.</p><p></p><p>Aslam, Sehrish, Tanveer Hussain Bokhari, Tauseef Anwar, Usman Khan, Adeela Nairan, and Karim Khan.</p><p>(2019). Graphene Oxide Coated Graphene Foam Based Chemical Sensor. Materials Letters, 235(9),</p><p>6670.</p><p></p><p>Azimirad, R., A. Khayatian, M. Almasi Kashi, and S. Safa. (2014). Electrical Investigation and</p><p>Ultraviolet Detection of ZnO Nanorods Encapsulated with ZnO and Fe-Doped ZnO Layer. Journal of</p><p>Sol-Gel Science and Technology, 71 (3), 54048.</p><p></p><p>Azmina, M S, R Nor, H A Rafaie, N S A Razak, S F A Sani, and Z Osman. (2017). Enhanced</p><p>Photocatalytic Activity of ZnO Nanoparticles Grown on Porous Silica Microparticles. Applied</p><p>Nanoscience, 7(8), 88592.</p><p></p><p>B.C.Brodie. 2018. On the Atomic Weight of Graphite. The Royal Society, 149(1859), 24959.</p><p></p><p>Bahadur, Harish, Senior Member, A K Srivastava, and Sudhir Chandra. (2008). Effect of Sol Strength</p><p>on Growth , Faceting and Orientation of Sol-Gel Derived ZnO Nanostructures. IEEE Sensors Journal,</p><p>8(6), 83136.</p><p></p><p>Bai, Suo, Qi Xu, Long Gu, Fei Ma, Yong Qin, and Zhong Lin Wang. (2012). Single Crystalline Lead</p><p>Zirconate Titanate (PZT) Nano/micro-Wire Based Self- Powered UV Sensor. Nano Energy, 1(6), 78995.</p><p></p><p>Bai, Xiaojuan, Li Wang, Ruilong Zong, Yanhui Lv, Yiqing Sun, and Yongfa Zhu. (2013). Performance</p><p>Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene</p><p>Hybridization. Langmuir, 29 (9), 3097 3105.</p><p></p><p>Balaguera-Gelves, Marcia del R., Oscar J. Perales-Prez, Surinder P. Singh, Jos A. Jimnez, Joaqun A.</p><p>Aparicio-Bolaos, & Samuel P. Hernndez-Rivera. (2013). Improved Low-Temperature Aqueous Synthesis of</p><p>ZnO Nanorods and Their Use in SERS Detection of 4-ABT and RDX. Materials Sciences and Applications,</p><p>4 (1), 2938.</p><p></p><p>Balandin, Alexander A, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng</p><p>Miao, & Chun Ning Lau. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano</p><p>letters, 8(3), 902-907.</p><p></p><p>Balcha, Abebe, Om Prakash Yadav, & Tania Dey. (2016). Photocatalytic Degradation of Methylene</p><p>Blue Dye by Zinc Oxide Nanoparticles Obtained from Precipitation and Sol-Gel Methods.</p><p>Environmental Science and Pollution Research 23(24), 2548593.</p><p></p><p>Bao, Jiming, Ilan Shalish, Zhihua Su, Ron Gurwitz, Federico Capasso, Xiaowei Wang, & Zhifeng Ren.</p><p>(2011). Photoinduced Oxygen Release and Persistent Photoconductivity in ZnO Nanowires. Nanoscale</p><p>Research Letters, 6(404), 17.</p><p></p><p>Barroso-bujans, F, S Cerveny, R Verdejo, & J J Val. (2010). Permanent Adsorption of Organic</p><p>Solvents in Graphite Oxide and Its Effect on the Thermal Exfoliation. Carbon, 48 (4), 10791087.</p><p></p><p>Basak, D., G. Amin, B. Mallik, G. K. Paul, & S. K. Sen. (2003). Photoconductive UV Detectors on</p><p>Sol-Gel-Synthesized ZnO Films. Journal of Crystal Growth, 256 (12), 7377.</p><p></p><p>Bayram, K, & Didem Omay. (2014). Materials Science in Semiconductor Processing In-Situ Deposition</p><p>of Zinc Oxide Nanowires onto UV-Cured Chitin Derivatives and Their Antibacterial Properties.</p><p>Materials Science in Semiconductor Processing, 20(12), 3540.</p><p></p><p>Becker, John, Krishna Reddy Raghupathi, Jordan St. Pierre, Dan Zhao, & Ranjit T. Koodali. 2011.</p><p>Tuning of the Crystallite and Particle Sizes of ZnO Nanocrystalline Materials in</p><p>Solvothermal Synthesis and Their Photocatalytic Activity for Dye Degradation. Journal of Physical</p><p>Chemistry C, 115(28), 1384413850.</p><p></p><p>Berg, Hermann. (2008). Johann Wilhelm Ritter - The Founder of Scientific Electrochemistry. Review</p><p>of Polarography, 54(2), 99103.</p><p></p><p>Bhatt, Vishwa, Manjeet Kumar, Joondong Kim, Hak Jun Chung, & Ju Hyung Yun. (2019). Persistent</p><p>Photoconductivity in Al-Doped ZnO Photoconductors under Air, Nitrogen and Oxygen Ambiance: Role of</p><p>Oxygen Vacancies Induced DX Centers. Ceramics International, 45(7), 8561-8570.</p><p></p><p>Bhunia, A K, P K Jha, D Rout, & S Saha. (2016). Morphological Properties and Raman Spectroscopy of</p><p>ZnO Nanorods. Journal of Physical Sciences, 21(12), 23500352.</p><p></p><p>Bindu, P., & Sabu Thomas. (2014). Estimation of Lattice Strain in ZnO Nanoparticles:</p><p>X-Ray Peak Profile Analysis. Journal of Theoretical and Applied Physics, 8(4), 12334.</p><p></p><p>Bo, Zheng, Xiaorui Shuai, Shun Mao, Huachao Yang, Jiajing Qian, Junhong Chen, Jianhua Yan, & Kefa</p><p>Cen. (2014). Green Preparation of Reduced Graphene Oxide for Sensing and Energy Storage</p><p>Applications. Scientific reports, 4(2014), 4684.</p><p></p><p>Boon, Chin, Law Yong, & Abdul Wahab. (2018). A Review of ZnO Nanoparticles as Solar Photocatalysts</p><p>: Synthesis , Mechanisms and Applications. Renewable and Sustainable Energy Reviews 81(3), 53651.</p><p></p><p>Boruah, Purna K., Sabine Szunerits, Rabah Boukherroub, & Manash R. Das. (2018). Magnetic</p><p>Fe3O4@V2O5/rGO Nanocomposite as a Recyclable Photocatalyst for Dye Molecules Degradation under</p><p>Direct Sunlight Irradiation. Chemosphere 191(2018), 50313.</p><p></p><p>Bragg, W H, & W L Bragg. (1913). The Reflection of X-rays by Crystals. (II.). Proceedings of the</p><p>Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,</p><p>89(610), 246-248.</p><p></p><p>Brauer, G. (1963). Handbook of Preparative Inorganic Chemistry. Academic Press New York London.</p><p>Vol. 1.</p><p></p><p>C.M.Firdaus, M. S.B. Shah Rizam, M. Rusop, & S. Rahmatul Hidayah. (2012). Characterization of ZnO</p><p>and ZnO:TiO thin Films Prepared by Sol-Gel Spray- Spin Coating Technique. Procedia Engineering,</p><p>41(2012), 136773.</p><p></p><p>Caglar, Mujdat, Saliha Ilican, Yasemin Caglar, & Fahrettin Yakuphanoglu. (2009). Applied Surface</p><p>Science Electrical Conductivity and Optical Properties of ZnO Nanostructured Thin Film. Applied</p><p>Surface Science, 255(8), 4491-4496.</p><p></p><p>Caputo, D., G. de Cesare, A. Nascetti, & M. Tucci. (2006). Innovative Window Layer for Amorphous</p><p>Silicon/amorphous Silicon Carbide UV Sensor. Journal of Non- Crystalline Solids, 352(920),</p><p>181821.</p><p></p><p>Chang, S. P., S. J. Chang, Y. Z. Chiou, C. Y. Lu, T. K. Lin, Y. C. Lin, C. F. Kuo, &</p><p>H. M. Chang. (2007). ZnO Photoconductive Sensors Epitaxially Grown on Sapphire Substrates. Sensors</p><p>and Actuators, A: Physical, 140(1), 6064.</p><p></p><p>Chang, Yoon-seok. (2015). Partitioning Behavior of Heavy Metals and Persistent Organic Pollutants</p><p>among FetoMaternal Bloods and Tissues. Environmental science & technology, 49(12), 7411-7422.</p><p></p><p>Charpentier, C., P. Prodhomme, I. Maurin, M. Chaigneau, & P. Roca i Cabarrocas. (2011). X-Ray</p><p>Diffraction and Raman Spectroscopy for a Better Understanding of ZnO:Al Growth Process. EPJ</p><p>Photovoltaics, 2(2011), 25002.</p><p></p><p>Chauhan, Pankaj Singh, Rishi Kant, Ashutosh Rai, Ankur Gupta, & Shantanu Bhattacharya. (2019).</p><p>Facile Synthesis of ZnO/GO Nanoflowers over Si Substrate for Improved Photocatalytic Decolorization</p><p>of MB Dye and Industrial Wastewater under Solar Irradiation. Materials Science in</p><p>Semiconductor Processing, 89(6), 617.</p><p></p><p>Chem, J Mater. (2 2). Crystal Composite via Thermal Treatment . The Royal Society of Chemistry,</p><p>22(2012) 38253831.</p><p></p><p>Chen, C Y, C A Lin, M J Chen, G R Lin, & J H He. (2009). ZnO/AlO Coreshell Nanorod</p><p>Arrays:Growth, Structural Characterization, and Luminescent Properties. Nanotechnology, 20(18),</p><p>185605.</p><p></p><p>Chen, Changsong. (2018). UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO</p><p>Nanowires Composite for Photoresponse Enhancement in UV Photodetectors. Nanomaterials, 8(1), 26.</p><p></p><p>Chen, Hongyu, Kewei Liu, Linfeng Hu, Ahmed A. Al-Ghamdi, & Xiaosheng Fang. (2015). New Concept</p><p>Ultraviolet Photodetectors. Materials Today, 18(9), 493</p><p>502.</p><p></p><p>Chen, K J, F Y Hung, S J Chang, & S J Young. (2009). Optoelectronic Characteristics of UV</p><p>Photodetector Based on ZnO Nanowire Thin Films. Journal of Alloys and Compounds, 479(24), 67477.</p><p></p><p>Chen, Ming-Wei, Cheng-Ying Chen, Der-Hsien Lien, Yong Ding, & Jr-Hau He. (2010). Photoconductive</p><p>Enhancement of Single ZnO Nanowire through Localized Schottky Effects. Optics Express, 18(14),</p><p>14836.</p><p></p><p>Chen, P. K., G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, & J. J. Wu. (2013). Hydrothermal</p><p>Synthesis of Coral-like Au/ZnO Catalyst and Photocatalytic Degradation of Orange II Dye. Materials</p><p>Research Bulletin, 48 (6), 23752382.</p><p></p><p>Chen, Xu, Daping He, Hui Wu, Xiaofeng Zhao, Jian Zhang, Kun Cheng, Peng Wu, & Shichun Mu. (2015).</p><p>Platinized Graphene/ceramics Nano-Sandwiched Architectures and Electrodes with Outstanding</p><p>Performance for PEM Fuel Cells. Scientific Reports, 5 (11), 110.</p><p></p><p>Chen, Yao, & Yanwei Ma. (2010). High Performance Supercapacitors Based on Reduced Graphene Oxide in</p><p>Aqueous and Ionic Liquid Electrolytes. Carbon, 49 (2), 573580.</p><p></p><p>Cheng, Jiping, Yunjin Zhang, & Ruyan Guo. (2008). ZnO Microtube Ultraviolet Detectors. Journal of</p><p>Crystal Growth, 310(1), 5761.</p><p></p><p>Choi, Kyeongmuk, Taeho Kang, & Seong-geun Oh. (2012). Preparation of Disk Shaped ZnO Particles</p><p>Using Surfactant and Their PL Properties. Materials Letters, 75, 240243.</p><p></p><p>Choon, Jeung, Sung Ho, Jong Hun, Se Hong, Ki Buem, Yongho Seo, Young-soo Seo, & Naesung Lee.</p><p>(2011). Spectroscopic Studies and Electrical Properties of Transparent Conductive Films Fabricated</p><p>by Using Surfactant-Stabilized Single- Walled Carbon Nanotube Suspensions. Carbon, 49(13), 430113.</p><p></p><p>Chua, Chun Kiang, & Martin Pumera. (2014). Chem Soc Rev Chemical Reduction of Graphene Oxide :A</p><p>Synthetic Chemistry Viewpoint. Chemical Society Reviews, 43(1), 291-312.</p><p></p><p>Colonna, S, O Monticelli, J Gomez, C Novara, G Saracco, & A Fina. (2016). Effect of Morphology and</p><p>Defectiveness of Graphene-Related Materials on the Electrical and Thermal Conductivity of Their</p><p></p><p>Polymer Nanocomposites. Polymer, 102 (2016), 292300.</p><p></p><p>Compton, Owen C, & Sonbinh T Nguyen. (2010). Graphene Oxide , Highly Reduced Graphene Oxide , and</p><p>Graphene : Versatile Building Blocks for Carbon-Based Materials. Small, 6(6), 71123.</p><p></p><p>Cooper, Adam J, & Ian Kinloch. (2015). How to get between the Sheets: A Review of Recent Works on</p><p>the Electrochemical Exfoliation of Graphene Materials from Bulk Graphite. Nanoscale, 7(16):</p><p>6944-6956.</p><p></p><p>Damen, T C, S P S Porto, and B Tell. 966. Raman Effect in Zinc Oxide. J. Phys. Chem. Solids Mitra</p><p>and J. I. Bryant, Bull. Am. Phys. Soc 142 (10): 10851333.</p><p></p><p>Daneshvar, N, D Salari, and A R Khataee. (2004). Photocatalytic Degradation of AZO Dye Acid Red 14</p><p>in Water on ZnO as an Alternative Catalyst to TiO. A: chemistry, 162(2-3), 317-322.</p><p></p><p>Dehghanzad, Behzad, Mir Karim, Razavi Aghjeh, Omid Rafeie, Akram Tavakoli, & Amin Jameie Oskooie.</p><p>(2016). Synthesis and Characterization of Graphene and Functionalized Graphene Via Chemical and</p><p>Thermal Treatment Methods. RSC Advances, 6(1), 357885.</p><p></p><p>Desai, A. V., & M. A. Haque. (2007). Mechanical Properties of ZnO Nanowires.</p><p>Sensors and Actuators, A: Physical 134 (1), 169176.</p><p></p><p>Devaraj, Ramasamy, Krishnamoorthy Karthikeyan, & Kadarkaraithangam Jeyasubramanian. (2013).</p><p>Synthesis and properties of ZnO nanorods by modified pechini process. Applied Nanoscience, 3(1),</p><p>3740.</p><p></p><p>Dhahril, R, & K Omril. (2010). Optical, Electrical and Sensing Properties of ZnO Anoparticles</p><p>Synthesized by Sol-Gel Technique. In 2014 IEEE 9th Nanotechnology Materials and Devices</p><p>Conference (NMDC), 2(2010), 100- 103.</p><p></p><p>Di, Alessandro, Maria Cantarella, Giuseppe Nicotra, & Vittorio Privitera. (2016). Applied</p><p>Catalysis B : Environmental Low Temperature Atomic Layer Deposition of ZnO:Applications in</p><p>Photocatalysis. Applied Catalysis B, Environmental, 196(5), 6876.</p><p></p><p>Ding, Jijun, Minqiang Wang, Jianping Deng, Weiyin Gao, Zhi Yang, & Chenxin Ran. (2013). A</p><p>Comparison Study between ZnO Nanorods Coated with Graphene Oxide and Reduced Graphene Oxide.</p><p>Journal of Alloys and Compounds, 582(1), 29-32.</p><p></p><p>Dong, Jing-Jing, Chun-Yang Zhen, Hui-Ying Hao, Jie Xing, Zi-Li Zhang, Zhi-Yuan Zheng, and</p><p>Xing-Wang Zhang. (2013). Controllable Synthesis of ZnO Nanostructures on the Si Substrate by</p><p>a Hydrothermal Route. Nanoscale Research Letters, 8(1), 378.</p><p></p><p>Zhao, Q. X., Klason, P., & Willander, M. (2007). Growth of ZnO nanostructures by vaporliquidsolid</p><p>method. Applied Physics A, 88(1), 27-30.</p><p></p><p>Elena, Maria, Alessandro Di, Domenico A Cristaldi, Maria Cantarella, Giuliana Impellizzeri, &</p><p>Vittorio Privitera. (2017). ZnO Nanorods Grown on Ultrathin ZnO Seed Layers : Application in Water</p><p>Treatment. Journal of Photochemistry & Photobiology, A: Chemistry, 332(2017), 497504.</p><p></p><p>Eskandari, M, & V Ahmadi. (2015). Electrochimica Acta Treatment Effects of ZnO and Al:ZnO</p><p>Photoanodes on Short-Circuit Photocurrent and Open-Circuit Photovoltage of Quantum Dot Sensitized</p><p>Solar Cell Using Ag Nanoparticles. Electrochimica Acta, 165(2015), 23946.</p><p></p><p>Liu, J., Yang, H., Zhen, S. G., Poh, C. K., Chaurasia, A., Luo, J.,& Shen, Z. (2013). A green</p><p>approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of</p><p>pencil core. Rsc Advances, 3(29), 11745-11750.</p><p></p><p>Fatiatun. (2018). Fabrication of Graphene Oxide/Zinc Oxide Nanocomposite Through Spraying Method</p><p>for Solar Cell Application. UPSI, Physics</p><p></p><p>Ferrari, A. C., J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, et al.</p><p>(2006). Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18), 14.</p><p></p><p>Fouda, A N, A B El Basaty, and E A Eid. (2016). Photo-Response of Functionalized Self-Assembled</p><p>Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination. Nanoscale Research Letters, 11(1),</p><p>13.</p><p></p><p>Fournier, Carrie, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, &</p><p>A. K. Pradhan. (2008). Effects of Substrate Temperature on the Optical and Electrical Properties of</p><p>Al:ZnO Films. Semiconductor Science and Technology, 23(8), 85019.</p><p></p><p>Fu, Weiwei, Yanwei Wang, Huijuan Zhang, Miaomiao He, Ling Fang, Xiaohui Yang, Zhengyong Huang, Jian</p><p>Li, Xiao Gu, & Yu Wang. (2019). Epitaxial Growth of Graphene on V8C7 Nanomeshs for Highly Efficient</p><p>and Stable Hydrogen Evolution Reaction. Journal of Catalysis, 369(2019), 4753.</p><p></p><p>Fu, Xue-wen, Zhi-min Liao, Yang-bo Zhou, Han-chun Wu, Ya-qing Bie, & Jun Xu. (2012). Graphene/ZnO</p><p>Nanowire/Graphene Vertical Structure Based Fast- Response Ultraviolet Photodetector. Applied</p><p>Physics Letters, 223114(5), 25.</p><p></p><p>Fujishima, Akira, and Kenichi Honda. (1972). Electrochemical Photolysis of Water at a Semiconductor</p><p>Electrode. Nature, 238(5358), 3738.</p><p></p><p>Gao, Rongfa, Zhihua Ying, Weiqin Sheng, & Peng Zheng. (2018). Gas Sensors Based on ZnO/silk Fibroin</p><p>Film for Nitrogen Dioxide Detection under UV Light at Room Temperature. Materials Letters, 229(7),</p><p>21012.</p><p></p><p>Gedamu, Dawit, Ingo Paulowicz, Sren Kaps, Oleg Lupan, Sebastian Wille, Galina Haidarschin,</p><p>Yogendra Kumar Mishra, & Rainer Adelung. (2014). Rapid Fabrication Technique for Interpenetrated</p><p>ZnO Nanotetrapod Networks for Fast UV Sensors. Advanced materials, 26(10), 1541-1550.</p><p></p><p>Gong, Bo, Tielin Shi, Guanglan Liao, Xiaoping Li, Jie Huang, Temgyuan Zhou, & Zirong Tang. (2017).</p><p>UV Irradiation Assisted Growth of ZnO Nanowires on Optical Fiber Surface. Applied Surface Science,</p><p>406(6), 294300.</p><p></p><p>Graf, Davy, & Klaus Ensslin. (2008). Spatially Resolved Raman Spectroscopy of Single- and Few-Layer</p><p>Graphene. Nano letters, 7(2), 238-242.</p><p></p><p>Grigorovici, R, & A Vancu. (1966). Optical Properties and Electronic Structure of Amorphous</p><p>Germanium. Physica Status Solidi (b), 15(2), 627-637.</p><p></p><p>Gu, Yu-Zhu, Hong-Liang Lu, Yuan Zhang, Peng-Fei Wang, Shi-Jin Ding, & David Wei Zhang. (2015).</p><p>Effects of ZnO Seed Layer Annealing Temperature on the Properties of N-ZnO NWs/AlO/p-Si</p><p>Heterojunction. Optics Express, 23(19), 24456.</p><p></p><p>Guo, M. Y., M. K. Fung, F. Fang, X. Y. Chen, A. M C Ng, A. B. Djurii, & W. K. Chan. (2011). ZnO</p><p>and TiO 1D Nanostructures for Photocatalytic Applications. Journal of Alloys and Compounds,</p><p>509(4), 13281332.</p><p></p><p>Guo, Min, Peng Diao, & Shengmin Cai. (2005). Hydrothermal Growth of Well- Aligned ZnO Nanorod</p><p>Arrays:Dependence of Morphology and Alignment Ordering upon Preparing Conditions. Journal of Solid</p><p>State Chemistry, 178(6), 1864-1873.</p><p></p><p>Gupta, V. K., and Suhas. (2009). Application of Low-Cost Adsorbents for Dye Removal - A Review.</p><p>Journal of Environmental Management, 90(8), 2313 2342.</p><p></p><p>Haddad, Mohammadine El, Abdelmajid Regti, Rachid Slimani, & Sad Lazar. (2014). Assessment of the</p><p>Biosorption Kinetic and Thermodynamic for the Removal of Safranin Dye from Aqueous Solutions Using</p><p>Calcined Mussel Shells. Journal of Industrial and Engineering Chemistry, 20(2), 71724.</p><p></p><p>Hamid, Sharifah Bee Abdul, Swe Jyan Teh, & Chin Wei Lai. (2017). Photocatalytic Water Oxidation on</p><p>ZnO: A Review. Catalysts, 7(3), 93.</p><p></p><p>Han, Jingbin, Fengru Fan, Chen Xu, Shisheng Lin, Min Wei, Xue Duan, & Zhong Lin Wang. (2010). ZnO</p><p>Nanotube-Based Dye-Sensitized Solar Cell and Its Application in Self-Powered Devices.</p><p>Nanotechnology, 21(40), 405203.</p><p></p><p>Han, Yu, Caizhen Gao, Huarui Zhu, Shuwen Chen, Qianwen Jiang, Tao Li, Magnus Willander, Xia Cao, &</p><p>Ning Wang. (2015). Piezotronic Effect Enhanced Nanowire Sensing of HO Released by Cells. Nano</p><p>Energy 13(4), 40513.</p><p></p><p>Hasin, Panitat, Mario a Alpuche-aviles, & Yiying Wu. (2010). Electrocatalytic Activity of Graphene</p><p>Multilayers toward I-/I3-:Effect of Preparation Conditions and Polyelectrolyte Modification.</p><p>Journal of Physical Chemistry C, 114(37), 1585761.</p><p></p><p>Hasnidawani, J N, H N Azlina, H Norita, N N Bonnia, S Ratim, & E S Ali. (2016). Synthesis of ZnO</p><p>Nanostructures Using Sol-Gel Method. Procedia Chemistry 19(3), 211216.</p><p></p><p>Hayes, William Ignatius, Paul Joseph, Muhammad Zeeshan Mughal, & Pagona Papakonstantinou. (2014).</p><p>Production of Reduced Graphene Oxide via Hydrothermal Reduction in an Aqueous Sulphuric Acid</p><p>Suspension and Its Electrochemical Behaviour. Journal of Solid State Electrochemistry, 19(2), 361</p><p>380.</p><p></p><p>Hernandez-como, N, G Rivas-montes, F J Hernandez-cuevas, & I Mejia. (2015). Materials Science in</p><p>Semiconductor Processing Ultraviolet Photodetectors Based on Low Temperature Processed</p><p>ZnO/PEDOT:PSS Schottky Barrier Diodes. Materials Science in Semiconductor Processing, 37(9), 14-18.</p><p></p><p>Hessein, Amr, Feiju Wang, Hirokazu Masai, Kazunari Matsuda, & Ahmed Abd El- moneim. (2017).</p><p>One-Step Fabrication of Copper Sulfide Nanoparticles Decorated on Graphene Sheets as Highly</p><p>Stable and Efficient Counter Electrode for CdS-Sensitized Solar Cells. Japanese Journal of Applied</p><p>Physics, 55(11): 112301.</p><p></p><p>Holi, Araa Mebdir, Zulkarnain Zainal, Zainal Abidin Talib, Hong-ngee Lim, Chi-chin Yap, Sook-keng</p><p>Chang, & Asmaa Kadim Ayal. (2016). Effect of Hydrothermal Growth Time on ZnO Nanorod Arrays</p><p>Photoelectrode Performance. Optik- International Journal for Light and Electron Optics 127(23),</p><p>11111-11118.</p><p></p><p>Hong, Hoang-si, and Gwiy-sang Chung. (2014). Sensors and Actuators B:Chemical Controllable Growth</p><p>of Oriented ZnO Nanorods Using Ga-Doped Seed Layers and Surface Acoustic Wave Humidity Sensor.</p><p>Sensors & Actuators:B. Chemical 195(5), 44651.</p><p></p><p>Hong, Li-Yang, & Heh-Nan Lin. (2015). Fabrication of Single Titanium Oxide Nanodot Ultraviolet</p><p>Sensors by Atomic Force Microscopy Nanolithography. Sensors and Actuators A: Physical 232(8),</p><p>9498.</p><p></p><p>Hong, Ruijin, Hongji Qi, Jianbing Huang, Hongbo He, Zhengxiu Fan, and Jianda Shao. (2005).</p><p>Influence of Oxygen Partial Pressure on the Structure and Photoluminescence of Direct Current</p><p>Reactive Magnetron Sputtering ZnO Thin Films. Thin Solid Films, 473(1), 58-62.</p><p></p><p>Hong, Wenjing, Yuxi Xu, Gewu Lu, Chun Li, & Gaoquan Shi. (2008). Transparent Graphene/PEDOTPSS</p><p>Composite Films as Counter Electrodes of Dye- Sensitized Solar Cells. Electrochemistry</p><p>Communications, 10(10), 1555-1558.</p><p></p><p>Hou, Jungang, Zheng Wang, Shuqiang Jiao, & Hongmin Zhu. (2011). 3D BiTiO/TiO</p><p>hierarchical Heterostructure:Synthesis and Enhanced Visible- Light Photocatalytic Activities.</p><p>Journal of Hazardous Materials 192(3), 1772 1779.</p><p></p><p>Hou, Xianming, Lixia Wang, Feng Li, Guofang He, & Liqing Li. (2015). Controlled Loading of Gold</p><p>Nanoparticles on ZnO Nanorods and Their High Photocatalytic Activity. Materials Letters, 159(11),</p><p>502505.</p><p></p><p>Hsu, Chih-Hsiung, & Dong-Hwang Chen. (2010). Synthesis and Conductivity Enhancement of Al-Doped ZnO</p><p>Nanorod Array Thin Films. Nanotechnology 21 (28), 285603.</p><p></p><p>Huang, Guozhong, Peipei Zhang, & Zhiming Bai. (2019). Self-Powered UVvisible Photodetectors Based</p><p>on ZnO/graphene/CdS/electrolyte Heterojunctions. Journal of Alloys and Compounds, 776(3),</p><p>346352.</p><p></p><p>Huang, K., Y. H. Li, S. Lin, C. Liang, H. Wang, C. X. Ye, Y. J. Wang, et al. (2014). A Facile Route</p><p>to Reduced Graphene Oxide-Zinc Oxide Nanorod Composites with Enhanced Photocatalytic Activity.</p><p>Powder Technology, 257(5), 113119.</p><p></p><p>Huang, X H, X H Xia, Y F Yuan, & F Zhou. 2011. Electrochimica Acta Porous ZnO Nanosheets Grown on</p><p>Copper Substrates as Anodes for Lithium Ion Batteries. Electrochimica Acta 56(14), 49604965.</p><p></p><p>Hullavarad, S. S., Hullavarad, N. V., Karulkar, P. C., Luykx, A., & Valdivia, P. (2007). Ultra</p><p>Violet Sensors Based on Nanostructured ZnO Spheres in Network of Nanowires : A Novel Approach.</p><p>Journal of Alloys and Compounds 479 (1), 161167.</p><p></p><p>Hullavarad, Shiva, Nilima Hullavarad, David Look, & Bruce Claflin. (2009). Persistent</p><p>Photoconductivity Studies in Nanostructured ZnO UV Sensors. Nanoscale Research Letters, 4(12),</p><p>14211427.</p><p></p><p>Hummers & Offeman. (1957). Preparation of Graphitic Oxide. Journal of the American Chemical</p><p>Society, 208(1937), 1937.</p><p></p><p>Hung, Chu Manh, Dang Thi Thanh Le, & Nguyen Van Hieu. (2017). On-Chip Growth of Semiconductor Metal</p><p>Oxide Nanowires for Gas Sensors:A Review. Journal of Science: Advanced Materials and Devices, 2(3),</p><p>26385.</p><p></p><p>Iqbal, Younas, M K Mustafa, & N L Muhammad Rosdi. (2016). Effect of Orientation and Configuration</p><p>of ZnO Nanorods on Electrical Conductivity Prepared through Hydrothermal Method on Suspended</p><p>Substrate. Journal of Science and Technology, 8(2), 1417.</p><p></p><p>Jagadale, Supriya B., Vithoba L. Patil, Sharadrao A. Vanalakar, Pramod S. Patil, & Harish P.</p><p>Deshmukh. (2018). Preparation, Characterization of 1D ZnO Nanorods and Their Gas Sensing</p><p>Properties. Ceramics International 44(3), 33333340.</p><p></p><p>Jang, Eue Soon, Jung Hee Won, Seong Ju Hwang, & Jin Ho Choy. (2006). Fine Tuning of the Face</p><p>Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity. Advanced Materials, 18(24),</p><p>33093312.</p><p></p><p>Jayabal, P., S. Gayathri, V. Sasirekha, J. Mayandi, & V. Ramakrishnan. (2014). Preparation and</p><p>Characterization of ZnO/Graphene Nanocomposite for Improved Photovoltaic Performance. Journal of</p><p>Nanoparticle Research, 16(11), 2640.</p><p></p><p>Jeong, Huisu, Ki Seok Kim, Yong Hwan Kim, Hyun Jeong, Hui Song, Kwang Ho Lee, Mun Seok Jeong, Deli</p><p>Wang, & Gun Young Jung. (2011). A Crossbar-Type High Sensitivity Ultraviolet Photodetector Array</p><p>Based on a One Hole-One Nanorod Configuration via Nanoimprint Lithography. Nanotechnology, 22(27),</p><p>275310.</p><p></p><p>Jiao, Kejia, Dangwen Zhang, & Yunfa Chen. (2014). Efficient and cost-effective graphene on silicon</p><p>solar cells prepared by spray coating. RSC Advances, 4(98), 55300-55304.</p><p>Jimnez-Gonzlez, A.E., Jose A. Soto Urueta, & R. Surez-Parra. (1998). Optical and Electrical</p><p>Characteristics of Aluminum-Doped ZnO Thin Films Prepared by Solgel Technique. Journal of Crystal</p><p>Growth 192(34), 430438.</p><p></p><p>Jin, Z. C., I. Hamberg, & C. G. Granqvist. (1988). Optical Properties of Sputter- Deposited ZnO:Al</p><p>Thin Films. Journal of Applied Physics, 64(10), 51175131.</p><p></p><p>Jose, Juan. (2011). The Synthesis of Graphene Sheets with Controlled Thickness and Order Using</p><p>Surfactant-Assisted Electrochemical Processes. Carbon, 50(1), 142- 152.</p><p></p><p>Ju, Dianxing, Hongyan Xu, Jun Zhang, Jing Guo & Bingqiang Cao. (2014). Direct Hydrothermal Growth</p><p>of ZnO Nanosheets on Electrode for Ethanol Sensing. Sensors and Actuators, B:Chemical, 201(10),</p><p>444451.</p><p></p><p>Kakaei, Karim, & Kobra Hasanpour. (2014). Synthesis of Graphene Oxide Nanosheets by </p><p>Electrochemical Exfoliation of Graphite in Cetyltrimethylammonium Bromide and Its</p><p>Application for Oxygen Reduction. Journal of Materials Chemistry A, 2(37), 15428-15436.</p><p></p><p>Kar, J. P., S. N. Das, J. H. Choi, Y. A. Lee, T. Y. Lee, & J. M. Myoung. (2009).</p><p>Fabrication of UV Detectors Based on ZnO Nanowires Using Silicon Microchannel. Journal of</p><p>Crystal Growth, 311(12), 33053309.</p><p></p><p>Karak, Ercan. (2017). Structural and Optical Properties of ZnO Nanorods Prepared by Spray Pyrolysis</p><p>Method. Energy, 140(12), 92-97.</p><p></p><p>Kaur, Gurpreet, Anirban Mitra, & K. L. Yadav. (2015). Pulsed Laser Deposited Al- Doped ZnO Thin</p><p>Films for Optical Applications. Progress in Natural Science: Materials International, 25(1), 1221.</p><p></p><p>Khai, Tran Van, Tran Dai Lam, Le Van Thu, & Hyoun Woo Kim. (2015). A Two- Step Method for the</p><p>Preparation of Highly Conductive Graphene Film and Its Gas-Sensing Property. Materials Sciences and</p><p>Applications, 6(11), 963977.</p><p></p><p>Khamkhom, P, M Horprathum, S Pokai, P Eiamchai, S Tuscharoen, V Pattantsetakul, S Limwichean, N</p><p>Nuntawong, P Limnonthakul, & J Kaewkhao. 2017. ScienceDirect Preparation of Vertically Aligned</p><p>ZnO Nanorods on AZO Thin Film by Hydrothermal Method. Materials Today: Proceedings 4(5), 62006204.</p><p></p><p>Khan, Mohammad Mansoob, Syed Farooq Adil, & Abdullah Al-Mayouf. (2015). Metal Oxides as</p><p>Photocatalysts. Journal of Saudi Chemical Society 19(5), 462 464.</p><p></p><p>Khan, Rizwan, Periyayya Uthirakumar, Tae Hwan Kim, & In-Hwan Lee. (2019). Enhanced Photocurrent</p><p>Performance of Partially Decorated Au Nanoparticles on ZnO Nanorods Based UV Photodetector.</p><p>Materials Research Bulletin, 3(17), 22.</p><p></p><p>Khayatian, A, V Asgari, A Ramazani, S F Akhtarianfar, & M Almasi. (2017). Diameter-Controlled</p><p>Synthesis of ZnO Nanorods on Fe-Doped ZnO Seed Layer and Enhanced Photodetection Performance.</p><p>Materials Research Bulletin, 94(10), 77-84.</p><p></p><p>Khun, Kimleang, Sami Elhag, Zafar Hussain, Volodymyr Khranovskyy, Omer Nur, & Magnus Willander.</p><p>(2015). Supramolecules-Assisted ZnO Nanostructures Growth and Their UV Photodetector</p><p>Application. Solid State Sciences, 4(3), 14 18.</p><p></p><p>Khusaimi, Z, S Amizam, M.H.Mamat, M Z Sahdan, M K Ahmad, M Rusop, S Amizam, et al. (2010).</p><p>Controlled Growth of Zinc Oxide Nanorods by Aqueous- Solution Method. Synthesis and Reactivity in</p><p>Inorganic, Metal-Organic, and Nano-Metal Chemistry, 40(3), 190-194.</p><p></p><p>Kim, Daeil, Gunchul Shin, Jangyeol Yoon, Dongseok Jang, Seung-Jung Lee, Goangseup Zi, & Jeong Sook</p><p>Ha. (2013). High Performance Stretchable UV Sensor Arrays of SnO Nanowires. Nanotechnology,</p><p>24(31), 315502.</p><p></p><p>Kim, H, & A Pique. (2005). Effect of Aluminum Doping on Zinc Oxide Thin Films Grown by Pulsed Laser</p><p>Deposition for Organic Light-Emitting Devices. Thin solid films, 377(12), 798-802.</p><p></p><p>Kim, Kang-Pil, Daeic Chang, Sang Kyoo Lim, Soo-Keun Lee, Hong-Kun Lyu, & Dae-Kue Hwang. (2011).</p><p>Thermal Annealing Effects on the Dynamic Photoresponse Properties of Al-Doped ZnO Nanowires</p><p>Network. Current Applied Physics, 11(6), 13111314.</p><p></p><p>Kim, Keun Soo, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn,</p><p>Philip Kim, Jae-Young Choi, & Byung Hee Hong. (2009). Large-Scale Pattern Growth of Graphene Films</p><p>for Stretchable Transparent Electrodes. Nature, 457(7230), 706710.</p><p></p><p>Kim, Kyung Ho, Tomoyuki Umakoshi, Yoshio Abe, Midori Kawamura, & Takayuki Kiba. (2016).</p><p>Morphological Properties of Al-Doped ZnO Nano/microstructures. Superlattices and Microstructures,</p><p>91(1), 188192.</p><p></p><p>Kim, Kyung Ho, Kazuomi Utashiro, Yoshio Abe, & Midori Kawamura. (2014). Structural Properties of</p><p>Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in</p><p>Dye-Sensitized Solar Cells. Materials, 7(4), 2522-2533.</p><p></p><p>Kim, Yong Jae, Yung Ho Kahng, Nara Kim, Jong-hoon Lee, Yun-hwa Hwang, Min Lee, Sung Mook Choi, Won</p><p>Bae Kim, & Kwanghee Lee. (2015). Impact of Synthesis Routes on the Chemical, Optical, and</p><p>Electrical Properties of Graphene Oxides and Its Derivatives. Current Applied Physics, 15(11),</p><p>1435- 1444.</p><p></p><p>Kim, Young Sung, Weon Pil Tai, & Su Jeong Shu. (2005). Effect of Preheating Temperature on</p><p>Structural and Optical Properties of ZnO Thin Films by Sol-Gel Process. Thin Solid Films, 491(12),</p><p>153160.</p><p></p><p>Kind, H, H Yan, B Messer, M Law, and P Yang. 2 2. Nanowire Ultraviolet Photodetectors and Optical</p><p>Switches. Adv. Mater. 14 (2): 15860.</p><p></p><p>Kingma, K. J., & R. J. Hemley. (1994). Raman Spectroscopic Study of Microcrystalline</p><p>Silica. American Mineralogist, 79(34), 269273.</p><p></p><p>Kochuveedu, Saji Thomas, Yoon Hee Jang, & Dong Ha Kim. (2013). A Study on the Mechanism for the</p><p>Interaction of Light with Noble Metal-Metal Oxide Semiconductor Nanostructures for Various</p><p>Photophysical Applications. Chemical Society Reviews, 42(21), 8467.</p><p></p><p>Kong, Jieying, Lin Li, Zheng Yang, Jianlin Liu, Jieying Kong, Lin Li, Zheng Yang, & Jianlin Liu.</p><p>(2014). Ultraviolet Light Emissions in MgZnO/ZnO Double Heterojunction Diodes by Molecular Beam</p><p>Epitaxy. American Vacuum Society, 10(2010), 14.</p><p></p><p>Kose, H, S Karaal, A O Aydin, & H Akbulut. (2015). A Facile Synthesis of Zinc Oxide/multiwalled</p><p>Carbon Nanotube Nanocomposite Lithium Ion Battery Anodes by Sol-Gel Method. Journal of Power</p><p>Sources, 295(11), 235245.</p><p></p><p>Kumar, Ravi, Vinay Sharma, & Bijoy Kumar Kuanr. (2018). Effect of Annealing on Electrical</p><p>Properties of Zinc Oxide/Graphene Oxide Nanocomposite. Advanced Science Letters, 24(2), 881884.</p><p></p><p>Kuo, Shou Yi, Wei Chun Chen, Fang I. Lai, Chin Pao Cheng, Hao Chung Kuo, Shing Chung Wang, & Wen</p><p>Feng Hsieh. (2006). Effects of Doping Concentration and Annealing Temperature on Properties of</p><p>Highly-Oriented Al-Doped ZnO Films. Journal of Crystal Growth, 287(1), 7884.</p><p></p><p>L.B.Valdes. (1952). Resistivity Measurements on Germanium Transistors.</p><p>Proceedings of the IRE, 29(2), 14291434.</p><p></p><p>Lajvardi, M, M E Ghazi, M Izadifard, H Eshghi, & I Hadi. (2018). Effect of Seed Layer Thickness on</p><p>Optoelectronic Properties of Zno-Nrs/P-Si Photodiodes. Optik, 160(5), 234-242.</p><p></p><p>Lee, Byoung Hoon, Jong-hoon Lee, Yung Ho Kahng, Nara Kim, Yong Jae Kim, Jongjin Lee, Takhee Lee, &</p><p>Kwanghee Lee. (2014). Graphene-Conducting Polymer Hybrid Transparent Electrodes for Efficient</p><p>Organic Optoelectronic Devices. Advanced Functional Materials, 24(13), 1847-1856.</p><p></p><p>Lee, Changgu. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer</p><p>Graphene. science, 321(5887), 385-388.</p><p></p><p>Lee, Hee Kwan, Myung Sub Kim, & Jae Su Yu. (2011). Effect of AZO Seed Layer on Electrochemical</p><p>Growth and Optical Properties of ZnO Nanorod Arrays on ITO Glass. Nanotechnology, 22(44), 445602.</p><p></p><p>Lee, Jae Woong, Kyeong Ju Moon, Moon Ho Ham, & Jae Min Myoung. (2008). Dielectrophoretic Assembly</p><p>of GaN Nanowires for UV Sensor Applications. Solid State Communications, 148(56), 194198.</p><p></p><p>Lee, Joon Hwan, Chia-Yun Chou, Zhenxing Bi, Chen-Fong Tsai, and Haiyan Wang. (2009).</p><p>Growth-Controlled Surface Roughness in Al-Doped ZnO as Transparent Conducting Oxide.</p><p>Nanotechnology, 20(39), 395704.</p><p></p><p>Lee, Woong, Min-chang Jeong, & Jae-min Myoung. (2004). Catalyst-Free Growth of ZnO Nanowires by</p><p>Metal-Organic Chemical Vapour Deposition (MOCVD) and Thermal Evaporation. Acta Materialia, 52(13),</p><p>3949-3957.</p><p></p><p>Li, Benxia, Tongxuan Liu, Yanfen Wang, & Zhoufeng Wang. (2012). ZnO/graphene- Oxide Nanocomposite</p><p>with Remarkably Enhanced Visible-Light-Driven Photocatalytic Performance. Journal of Colloid and</p><p>Interface Science, 377(1), 114121.</p><p></p><p>Li, Chunping, Yuzhen Lv, Lin Guo, Huibin Xu, Xicheng Ai, & Jianping Zhang. (2007). Raman and</p><p>Excitonic Photoluminescence Characterizations of ZnO Star- Shaped Nanocrystals. Journal of</p><p>Luminescence, 123(4), 415417.</p><p></p><p>Li, Hai Guo, Gang Wu, Hong Zheng Chen, & Mang Wang. (2011). Polymer/ZnO Hybrid Materials for</p><p>near-UV Sensors with Wavelength Selective Response. Sensors and Actuators, B: Chemical, 160(1),</p><p>11361140.</p><p></p><p>Li, Jianjiang, Jingjiao Zhang, Liang Fang, Junling Wang, Mingrong Shen, and Xiaodong Su. (2015).</p><p>Enhanced Visible Light Photocatalytic Properties of TiO Thin Films on the Textured</p><p>Multicrystalline Silicon Wafers. Journal of Materials Chemistry A: Materials for Energy and</p><p>Sustainability, 3(4), 4903 4908.</p><p></p><p>Li, Ping, Hui Liu, Yan Feng Zhang, Yu Wei, & Xin Kui Wang. (2007). Synthesis of Flower-like ZnO</p><p>Microstructures via a Simple Solution Route. Materials Chemistry and Physics, 106(1), 6369.</p><p></p><p>Li, Qiuguo, HAO Chen, & Sheng Chu. (2017). Mg-Alloyed ZnO Nanocombs for Self-Gating Photodetectors.</p><p>Optics Express, 25(5), 5091.</p><p></p><p>Li, Yinhua, Jian Gong, Gaohong He, & Yulin Deng. (2012). Enhancement of Photoresponse and</p><p>UV-Assisted Gas Sensing with Au Decorated ZnO Nanofibers. Materials Chemistry and Physics,</p><p>134(23), 11721178.</p><p></p><p>Li, Zhuoqun, Feng Gong, Gang Zhou, & Zhong-sheng Wang. (2013). NiS/Reduced Graphene Oxide</p><p>Nanocomposites for E Ffi Cient Dye- Sensitized Solar Cells. The Journal of Physical Chemistry C,</p><p>117(13), 6561-6566.</p><p></p><p>Liang, Yimai, Na Guo, Linlin Li, Ruiqing Li, Guijuan Ji, & Shucai Gan. (2016). Facile Synthesis of</p><p>Ag/ZnO Micro-Flowers and Their Improved Ultraviolet and Visible Light Photocatalytic Activity. New</p><p>J. Chem, 40(2), 15871594.</p><p></p><p>Lim, Z. H., Z. X. Chia, M. Kevin, A. S W Wong, & G. W. Ho. (2010). A Facile Approach towards ZnO</p><p>Nanorods Conductive Textile for Room Temperature Multifunctional Sensors. Sensors and Actuators,</p><p>B:Chemical, 151(1), 121126.</p><p></p><p>Lin, Hailing, Lin Wei, Cuncun Wu, Yanxue Chen, Shishen Yan, Liangmo Mei, & Jun Jiao. (2016).</p><p>High-Performance Self-Powered Photodetectors Based on ZnO/ZnS Core-Shell Nanorod Arrays. Nanoscale</p><p>Research Letters, 11(1), 420.</p><p></p><p>Linsebigler, Amy L, Guangquan Lu, & John T Yates. (1995). Photocatalysis on TiO Surfaces</p><p>Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758.</p><p></p><p>Liu, Deshuai, Hui Jun Li, Jinrao Gao, Shuang Zhao, Yuankun Zhu, Ping Wang, Ding Wang, Aiying Chen,</p><p>Xianying Wang, & Junhe Yang. (2018). High-Performance Ultraviolet Photodetector Based on Graphene</p><p>Quantum Dots Decorated ZnO Nanorods/GaN Film Isotype Heterojunctions. Nanoscale Research Letters,</p><p>13 (1), 261.</p><p></p><p>Liu, Hongtao, Lei Zhang, Yunlong Guo, Cheng Cheng, Lianjiang Yang, Lang Jiang, Gui Yu, Wenping Hu,</p><p>Yunqi Liu, & Daoben Zhu. (2013). Reduction of Graphene Oxide to Highly Conductive Graphene by</p><p>Lawessons Reagent and Its Electrical Applications. Journal of Materials Chemistry C, 1(18),</p><p>31043109.</p><p></p><p>Liu, Jinbin, Songhe Fu, Bin Yuan, Yulin Li, & Zhaoxiang Deng. (2010). Toward a Universal Adhesive</p><p>Nanosheet for the Assembly of Multiple Nanoparticles Based on a Protein-Induced</p><p>Reduction/Decoration of Graphene. Chemical Society, 132(21), 7279-7281.</p><p></p><p>Liu, Jinbin, Mengxiao Yu, Chen Zhou, Shengyang Yang, Xuhui Ning, & Jie Zheng. (2013). Passive</p><p>Tumor Targeting of Renal-Clearable Luminescent Gold</p><p></p><p>Nanoparticles: Long Tumor Retention and Fast Normal Tissue Clearance.</p><p>Journal of the American Chemical Society, 135(13), 49784981.</p><p></p><p>Liu, Xinjuan, Likun Pan, Qingfei Zhao, Tian Lv, Guang Zhu, Taiqiang Chen, & Ting Lu. (2012).</p><p>UV-Assisted Photocatalytic Synthesis of ZnOReduced Graphene Oxide Composites with Enhanced</p><p>Photocatalytic Activity in Reduction of Cr ( VI ). Chemical Engineering Journal, 183(2), 238243.</p><p></p><p>Liu, Yanjun, Li Sun, Jiagen Wu, Ting Fang, Ran Cai, & Ang Wei. (2015). Preparation and</p><p>Photocatalytic Activity of ZnO/FeO Nanotube Composites. Materials Science and Engineering:B,</p><p>194(4), 913.</p><p></p><p>Look, D. C. (2001). Recent Advances in ZnO Materials and Devices. Materials Science and Engineering</p><p>B:Solid-State Materials for Advanced Technology, 80 (13), 383387.</p><p></p><p>Lotus, A. F., Y. C. Kang, J. I. Walker, R. D. Ramsier, & G. G. Chase. (2010). Effect of Aluminum</p><p>Oxide Doping on the Structural, Electrical, and Optical Properties of Zinc Oxide (AOZO) Nanofibers</p><p>Synthesized by Electrospinning. Materials Science and Engineering B:Solid-State Materials for</p><p>Advanced Technology, 166 (1), 6166.</p><p></p><p>Low, C T J. (2012). Electrochemical Approaches to the Production of Graphene Flakes and Their</p><p>Potential Applications. Carbon, 54(4), 121.</p><p></p><p>Low, Foo Wah, Chin Wei Lai, and Sharifah Bee Abd Hamid. (2015). Easy Preparation of Ultrathin</p><p>Reduced Graphene Oxide Sheets at a High Stirring Speed. Ceramics International, 41(4), 57985806.</p><p></p><p>Lu, Qiaoqi, Xinhua Pan, Weihao Wang, Yusong Zhou, & Zhizhen Ye. (2018). Ultraviolet Photodetector</p><p>Based on Nanostructured ZnO-Reduced Graphene Oxide Composite. Applied Physics A, 124(11), 733.</p><p></p><p>Luka, G, L Nittler, E Lusakowska, and P Smertenko. (2017). Electrical Properties of Zinc Oxide</p><p>Tetracene Heterostructures with Different N-Type ZnO Fi Lms. Organic Electronics, 45(6), 240246.</p><p></p><p>Luo, J., S. Y. Ma, A. M. Sun, L. Cheng, G. J. Yang, T. Wang, W. Q. Li, X. B. Li, Y.</p><p>Z. Mao, & D. J. Gz. (2014). Ethanol Sensing Enhancement by Optimizing ZnO Nanostructure: From 1D</p><p>Nanorods to 3D Nanoflower. Materials Letters, 137(12), 1720.</p><p></p><p>Luo, Lei, Yanfeng Zhang, Samuel S. Mao, & Liwei Lin. (2006). Fabrication and Characterization of</p><p>ZnO Nanowires Based UV Photodiodes. Sensors and Actuators, A: Physical, 127(2), 2016.</p><p></p><p>Lupan, O., T. Pauport, L. Chow, B. Viana, F. Pell, L. K. Ono, B. Roldan Cuenya, &</p><p>H. Heinrich. (2010). Effects of Annealing on Properties of ZnO Thin Films Prepared by</p><p>Electrochemical Deposition in Chloride Medium. Applied Surface Science, 256(6), 18951907.</p><p></p><p>Lv, Tian, Likun Pan, Xinjuan Liu, Ting Lu, Guang Zhu, & Zhuo Sun. (2011). Enhanced Photocatalytic</p><p>Degradation of Methylene Blue by ZnO-Reduced Graphene Oxide Composite Synthesized via</p><p>Microwave-Assisted Reaction. Journal of Alloys and Compounds, 509(41), 1008610091.</p><p></p><p>M.F. Malek. (2017). Fabrication and Characterisation of Nanostructured Zinc Oxide Thin Films</p><p>Incorporated with Nanorod Arrays-Based Solar Cells. UiTM.</p><p></p><p>M.F. Malek, M.H.Mamat, Mohd Zainizan Sahdan, Musa Mohamed Zahidi, Zuraida Khusaimi, & Mohamad Rusop</p><p>Mahmood. (2013). Influence of Various Sol Concentrations on Stress/strain and Properties of ZnO</p><p>Thin Films Synthesised by Sol-Gel Technique. Thin Solid Films, 527(1), 102109.</p><p></p><p>M.F. Malek, Mohd Zainizan Sahdan, M.H.Mamat, M Z Musa, Z Khusaimi, S S Husairi, N D Sin, & M Rusop.</p><p>(2013). Applied Surface Science A Novel Fabrication of MEH-PPV/Al:ZnO Nanorod Arrays Based</p><p>Ordered Bulk Heterojunction Hybrid Solar Cells. Applied Surface Science, 275(6), 7583.</p><p></p><p>M.F.Malek, M.H.Mamat, M. Z. Musa, Z. Khusaimi, M. Z. Sahdan, A. B. Suriani, A. Ishak, I. Saurdi, S.</p><p>A. Rahman, & M. Rusop. (2014). Thermal Annealing- Induced Formation of ZnO Nanoparticles:</p><p>Minimum Strain and Stress Ameliorate Preferred c-Axis Orientation and Crystal-Growth Properties.</p><p>Journal of Alloys and Compounds, 610(5), 575588.</p><p></p><p>M.F.Malek, M H Mamat, Z Khusaimi, M Z Sahdan, M Z Musa, A R Zainun, A B Suriani, N D Sin, S B Abd</p><p>Hamid, & M Rusop. (2014). Sonicated SolGel Preparation of Nanoparticulate ZnO Thin Films with</p><p>Various Deposition Speeds:The Highly Preferred c-Axis (002) Orientation Enhances the Final</p><p>Properties. Journal of Alloys and Compounds, 582,(8), 1221.</p><p></p><p>M.H.Mamat. (2013). Fabrication and Characterization Aligned Zinc Oxide Nanorod Array-Based</p><p>Ultraviolet Photoconductive Sensors. UiTM.</p><p></p><p>M.H.Mamat, Sin, N D, I Saurdi, N N Hafizah, M F Malek, M N Asiah, Z Khusaimi, Z Habibah, N</p><p>Nafarizal, & M Rusop. (2014). Performance of Ultraviolet Photoconductive Sensor Based on</p><p>Aluminium-Doped Zinc Oxide Nanorod- Nanoflake Network Thin Film Using Aluminium Contacts. Advanced</p><p>Materials Research, 832 (11), 298302.</p><p></p><p>M.H.Mamat, M.H.Hafizah, & M Rusop. (2013). Fabrication of Thin , Dense and Small-Diameter Zinc</p><p>Oxide Nanorod Array-Based Ultraviolet Photoconductive Sensors with High Sensitivity by</p><p>Catalyst-Free Radio Frequency Magnetron Sputtering. Materials Letters, 93(2013), 21518.</p><p></p><p>M.H.Mamat, Mohd Izzudin, Che Khalin, Nik Noor, Hafizah Nik, Zuraida Khusaimi, Nor Diyana Sin,</p><p>Shafinaz Sobihana Shariffudin, Musa Mohamed Zahidi, and Mohamad Rusop Mahmood. (2012). Effects of</p><p>Annealing Environments on the Solution-Grown , Aligned Aluminium-Doped Zinc Oxide</p><p>Nanorod-Array-Based Ultraviolet Photoconductive Sensor. Journal of Nanomaterials, 2012(8), 15.</p><p></p><p>M.H.Mamat, Mohamad Hafiz, Zuraida Khusaimi, Musa Mohamed Zahidi, & Mohamad Rusop Mahmood. (2012).</p><p>ZnO Nanorod Arrays Synthesised Using Ultrasonic-Assisted Sol-Gel and Immersion Methods for</p><p>Ultraviolet Photoconductive Sensor Applications, IntechOpen, 9(6), 93-118</p><p></p><p>M.H.Mamat, Z. Khusaimi, M. Z. Musa, M. F. Malek, & M. Rusop. (2011). Fabrication of Ultraviolet</p><p>Photoconductive Sensor Using a Novel Aluminium- Doped Zinc Oxide Nanorod-Nanoflake Network Thin</p><p>Film Prepared via Ultrasonic-Assisted Sol-Gel and Immersion Methods. Sensors and Actuators, A:</p><p>Physical, 171(2), 241247.</p><p></p><p>M.H.Mamat, Zuraida Khusaimi, Musa Mohamed Zahidi, Suriani Abu Bakar, Yosri Mohd Siran, Syahril</p><p>Anuar Md Rejab, Ahmad Jaril Asis, Shawaluddin Tahiruddin, Saifollah Abdullah, & Mohamad Rusop</p><p>Mahmood. (2011). Controllable Growth of Vertically Aligned Aluminum-Doped Zinc Oxide Nanorod</p><p>Arrays by Sonicated Sol-Gel Immersion Method Depending on Precursor Solution Volumes. Japanese</p><p>Journal of Applied Physics, 50(6), 1015.</p><p></p><p>M.H.Mamat, Zuraida Khusaimi, Musa Mohamed Zahidi, & Mohamad Rusop Mahmood. (2011). Performance of</p><p>an Ultraviolet Photoconductive Sensor Using Well-Aligned Aluminium-Doped Zinc-Oxide Nanorod Arrays</p><p>Annealed in an Air and Oxygen Environment. Japanese Journal of Applied Physics, 50(6S), 06GF05.</p><p></p><p>M.H.Mamat, M. Z. Sahdan, Z. Khusaimi, A. Zain Ahmed, S. Abdullah, & M. Rusop. (2010). Influence of</p><p>Doping Concentrations on the Aluminum Doped Zinc Oxide Thin Films Properties for Ultraviolet</p><p>Photoconductive Sensor Applications. Optical Materials, 32(6), 696699.</p><p></p><p>Mahdavi, Reza, & S Siamak Ashraf Talesh. (2017). Sol-Gel Synthesis Structural and Enhanced</p><p>Photocatalytic Performance of Al Doped ZnO Nanoparticles. Advanced Powder Technology, 28(5),</p><p>1418-1425.</p><p></p><p>Mahendraprabhu, Kamaraj, Arumugam Selva Sharma, & Perumal Elumalai. (2019). CO Sensing Performances</p><p>of YSZ-Based Sensor Attached with Sol-Gel Derived ZnO Nanospheres. Sensors and Actuators,</p><p>B:Chemical, 283(2), 84247.</p><p></p><p>Manthina, Venkata, Juan Pablo, Correa Baena, Guangliang Liu, & Alexander G Agrios. (2 2). ZnOTiO</p><p>Nanocomposite Films for High Light Harvesting E Ffi Ciency and Fast Electron Transport in</p><p>Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 45(116), 2386423870.</p><p></p><p>Marie, Mohammed, Sanghamitra Mandal, & Omar Manasreh. (2015). An Electrochemical Glucose</p><p>Sensor Based on Zinc Oxide Nanorods. Sensors, 15(8), 18714-18723.</p><p>Marin, Oscar, Mnica Tirado, Nicols Budini, Edgar Mosquera, & Carlos Figueroa. (2016). Materials</p><p>Science in Semiconductor Processing Photoluminescence from c -Axis Oriented ZnO Fi Lms Synthesized</p><p>by Sol-Gel with Diethanolamine as Chelating Agent. Materials Science in Semiconductor Processing</p><p>56(8): 5965.</p><p></p><p>Mauro, Alessandro Di, Massimo Zimbone, Mario Scuderi, Giuseppe Nicotra, & Maria Elena Fragal.</p><p>(2015). Effect of Pt Nanoparticles on the Photocatalytic Activity of ZnO Nanofibers. Nanoscale</p><p>Research Letters, 10(1), 484-491.</p><p></p><p>Mohamed, Azmi, Kieran Trickett, Swee Yee Chin, Stephen Cummings, Masanobu Sagisaka, Laura Hudson,</p><p>Sandrine Nave,. (2010). Universal Surfactant for Water, Oils and CO. Langmuir, 26(17),</p><p>13861-13866.</p><p></p><p>Mohanty, Nihar, & Vikas Berry. (2008). Resolution Biodevice and DNA Transistor:Interfacing</p><p>Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett, 8(12), 4469-4476.</p><p></p><p>Monroy, E, F Omn s, & F Calle. (2003). Wide-Bandgap Semiconductor Ultraviolet Photodetectors.</p><p>Semiconductor Science and Technology, 18(4), R33R51.</p><p></p><p>Montenegro, D N, V Hortelano, & O Mart. (2013). Non-Radiative Recombination Centres in</p><p>Catalyst-Free ZnO Nanorods Grown by Atmospheric-Metal Organic Chemical. Journal of Physics</p><p>D:Applied Physics, 46(23), 235302.</p><p></p><p>Moura, A P De, R C Lima, M L Moreira, D P Volanti, J W M Espinosa, M O Orlandi, P S Pizani, J A</p><p>Varela, & E Longo. (2010). ZnO Architectures Synthesized by a Microwave-Assisted Hydrothermal</p><p>Method and Their Photoluminescence Properties. Solid State Ionics, 181(1516), 775780.</p><p></p><p>Musat, V., M. Mazilu, N. Tigau, P. Alexandru, A. Dinescu, & M. Purica. (2016). Effect of Doping</p><p>Concentration and Temperature on the Morphology, Crystallinity and Electrical Conductivity of</p><p>Al:ZnO Nanostructured Films Grown from Aqueous Solution. Thin Solid Films, 617(7), 120125.</p><p></p><p>Mustafa, M. K., Y. Iqbal, U. Majeed, and M. Z. Sahdan. (2 7). Effect of Precursors Concentration</p><p>on Structure and Morphology of ZnO Nanorods Synthesized through Hydrothermal Method on Gold</p><p>Surface. AIP Conference Proceedings, 1788(3), 30120.</p><p></p><p>Nafees, Muhammad, & Salamat Ali. (2012). Synthesis of ZnO/Al:ZnO Nanomaterial:Structural</p><p>and Band Gapvariation in ZnO Nanomaterial by Al Doping. Applied Nanoscience, 3(1), 49-55.</p><p></p><p>Narasimhan, K. L., Pai, S. P., Palkar, V. R., & Pinto, R. (1997). High quality zinc oxide films by</p><p>pulsed laser ablation. Thin Solid Films, 295(2), 104106.</p><p></p><p>Nanakkal, A. R., & L. K. Alexander. (2017). Photocatalytic Activity of Graphene/ZnO</p><p>Nanocomposite Fabricated by Two-Step Electrochemical Route. Journal of Chemical Sciences, 129(1),</p><p>95102.</p><p></p><p>Chang, H., Sun, Z., Ho, K. Y. F., Tao, X., Yan, F., Kwok, W. M., & Zheng, Z. (2011). A highly</p><p>sensitive ultraviolet sensor based on a facile in situ solution- grown ZnO nanorod/graphene</p><p>heterostructure. Nanoscale, 3(1), 258-264.</p><p></p><p>Nenavathu, Bhavani P., Syam Kandula, & Swati Verma. (2018). Visible-Light-Driven Photocatalytic</p><p>Degradation of Safranin-T Dye Using Functionalized Graphene Oxide Nanosheet (FGS)/ZnO</p><p>Nanocomposites. RSC Advances, 8(35), 19659 19667.</p><p></p><p>Ng, Sing Muk, Derrick Sing Nguong Wong, Jane Hui Chiun Phung, & Hong Siang Chua. (2013). Integrated</p><p>Miniature Fluorescent Probe to Leverage the Sensing Potential of ZnO Quantum Dots for the Detection</p><p>of Copper (II) Ions. Talanta, 116(7), 514519.</p><p></p><p>Ni, Zhenhua, Yingying Wang, Ting Yu, & Zexiang Shen. (2008). Raman Spectroscopy and Imaging of</p><p>Graphene. Nano Research, 1(4), 273291.</p><p></p><p>Nipane, S. V., P. V. Korake, & G. S. Gokavi. (2015). Graphene-Zinc Oxide Nanorod Nanocomposite as</p><p>Photocatalyst for Enhanced Degradation of Dyes under UV Light Irradiation. Ceramics International,</p><p>41(13), 4549-4557.</p><p></p><p>Nishihara, Tokihiro, Jifang Xu, & I Introduction. (1993). Control of Preferred Orientation for ZnO</p><p>X Films : Control of Self-Texture. Journal of Crystal Growth, 130(1-2), 269-279.</p><p></p><p>Nishiyabu, Ryuhei, Shiho Ushikubo, Yuka Kamiya, & Yuji Kubo. (2014). A Boronate Hydrogel Film</p><p>Containing Organized Two-Component Dyes as a Multicolor Fluorescent Sensor for Heavy Metal Ions in</p><p>Water. Journal of Materials Chemistry A, 2(38), 1584615852.</p><p></p><p>Noothongkaew, Suttinart, Orathai Thumthan, & Ki Seok An. (2018). UV- Photodetectors Based</p><p>on CuO/ZnO Nanocomposites. Materials Letters, 233(9), 318323.</p><p></p><p>Novoselov, K.S., A.K. Geim, S.V. Morozov, D Jiang, Y Zhang, S.V. Dubonos, I.V. Grigorieva, & A. A</p><p>Firsov. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(10), 666669.</p><p></p><p>Nurhafizah, M.D. (2017). Synthesis of Graphene Oxide via Electrochemical Exfoliation Method Using</p><p>Triple-Tails Surfactant as Electrode Materials Application. UPSI.</p><p></p><p>Sim Lan Ching, Leong Kah Hon, Ibrahim Shaliza & Saravanan Pichiah. (2014). Graphene oxide and Ag</p><p>engulfed TiO2 nanotube arrays for enhanced electron mobility and visible light-driven</p><p>photocatalytic performance. Journal of Materials Chemistry, 2(1), 53155322.</p><p></p><p>Opoku, Francis, Krishna Kuben Govender, Cornelia Gertina Catharina Elizabeth Van Sittert, & Penny</p><p>Poomani Govender. (2017). Understanding the Mechanism of Enhanced Charge Separation and Visible</p><p>Light Photocatalytic Activity of Modified Wurtzite ZnO with Nanoclusters of ZnS and Graphene Oxide:</p><p>From a Hybrid Density Functional Study. New Journal of Chemistry, 41(16), 8140 8155.</p><p></p><p>Otiti, Tom. (2014). Review of Zinc Oxide Thin Films. College of Computing and Information Science</p><p>Makerere.1-78</p><p></p><p>zgr, ., V. Avrutin, & H. Morko. (2013). Zinc Oxide Materials and Devices Grown by MBE.</p><p>Molecular Beam Epitaxy, 369-416</p><p></p><p>Pal, Dipayan, Aakash Mathur, Ajaib Singh, Jaya Singhal, Amartya Sengupta, Surjendu Dutta, Stefan</p><p>Zollner, & Sudeshna Chattopadhyay. (2017). Tunable Optical Properties in Atomic Layer Deposition</p><p>Grown ZnO Thin Films. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 35(1),</p><p>01B108.</p><p></p><p>Papageorgiou, Dimitrios G, Ian A Kinloch, & Robert J Young. (2017). Progress in Materials Science</p><p>Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Progress in Materials Science,</p><p>90(10), 75127.</p><p></p><p>Pawar, R. C., J. S. Shaikh, S. S. Suryavanshi, & P. S. Patil. (2012). Growth of ZnO Nanodisk,</p><p>Nanospindles and Nanoflowers for Gas Sensor:PH Dependency. Current Applied Physics, 12(3), 778783.</p><p></p><p>Pei, Songfeng, & Hui-ming Cheng. (2011). The Reduction of Graphene Oxide.</p><p>Carbon, 50(9), 32103228.</p><p></p><p>Pham, Viet Hung, Tran Viet Cuong, Seung Hyun Hur, Eun Woo Shin, Jae Seong Kim, Jin Suk Chung, & Eui</p><p>Jung Kim. (2010). Fast and Simple Fabrication of a Large Transparent Chemically-Converted Graphene</p><p>Film by Spray-Coating. Carbon, 48(7), 19451951.</p><p></p><p>Polsongkram, D., P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf,</p><p>S. Park, & A. Schulte. (2008). Effect of Synthesis Conditions on the Growth of ZnO Nanorods via</p><p>Hydrothermal Method. Physica B:Condensed Matter, 403 (1920), 37133717.</p><p></p><p>Qiu, Feng, Guangjian He, Mingyang Hao, & Guizhen Zhang. (2018). Enhancing the Mechanical and</p><p>Electrical Properties of Poly(vinyl Chloride)-Based Conductive Nanocomposites by Zinc Oxide</p><p>Nanorods. Materials, 11(11), 115.</p><p></p><p>Rajamanickam, D., & M. Shanthi. (2016). Photocatalytic Degradation of an Organic Pollutant by Zinc</p><p>OxideSolar Process. Arabian Journal of Chemistry, 9(5), S1858-S1868.</p><p></p><p>Rajeshwar, K., M. E. Osugi, W. Chanmanee, C. R. Chenthamarakshan, M. V.B. Zanoni, P.</p><p>Kajitvichyanukul, & R. Krishnan-Ayer. (2008). Heterogeneous Photocatalytic Treatment of Organic</p><p>Dyes in Air and Aqueous Media. Journal of Photochemistry and Photobiology C: Photochemistry</p><p>Reviews, 9(4), 171192.</p><p></p><p>Ranjith, Kuglaur Shanmugam, Palanisamy Manivel, Ramasamy Thangavel Rajendrakumar, & Tamer</p><p>Uyar. (2017). Multifunctional ZnO Nanorod-Reduced Graphene Oxide Hybrids Nanocomposites for</p><p>Effective Water Remediation:</p><p></p><p>Effective Sunlight Driven Degradation of Organic Dyes and Rapid Heavy Metal Adsorption. Chemical</p><p>Engineering Journal, 325(5), 588600.</p><p></p><p>Rashid, Affa Rozana Abdul, P. Susthitha Menon, N. Arsad, & Sahbudin Shaari. (2011). Ultraviolet</p><p>Sensing by Al-Doped ZnO Thin Films. Advanced Materials Research, 364 (10), 154158.</p><p></p><p>Rashid, Tonny Roksana, Duy Thach Phan, & Gwiy Sang Chung. (2012). Characteristics of UV</p><p>Sensors Using ZnO Nanostructures Synthesized by Galvanostatic Electrochemical Deposition.</p><p>Proceedings of IEEE Sensors, 2012(10), 14.</p><p></p><p>Ren, Peng-gang, Ding-xiang Yan, Xu Ji, & Tao Chen. (2011). Temperature Dependence of Graphene</p><p>Oxide Reduced by Hydrazine Hydrate. Nanotechnology, 22(5), 055705.</p><p></p><p>Ridha, Noor J, Mohammad Hafizuddin, Haji Jumali, Akrajas Ali Umar, & F Alosfur. (2013).</p><p>Defects-Controlled ZnO Nanorods with High Aspect Ratio for Ethanol Detection. Int. J. Electrochem.</p><p>Sci, 8(4), 45834594.</p><p></p><p>Rodwihok, Chatchai, Supab Choopun, Pipat Ruankham, Atcharawon Gardchareon, Surachet</p><p>Phadungdhitidhada, & Duangmanee Wongratanaphisan. (2017). UV Sensing Properties of ZnO</p><p>Nanowires/Nanorods. Applied Surface Science, 477(5),159-165.</p><p></p><p>Rogachev, Alexandr V, Alina V Semchenko, Dmitry L Kovalenko, Vitaliy V Sidsky, Olga I Tyulenkova,</p><p>Nina I Tyulenkova, Dumitru Luca, Vitaliy A Solodukha, Alyaxandr N Pyatlitski, & Natalya S</p><p>Kovalchuk. (2018). Sol-Gel Synthesis of ZnO Nanorods for MEMS. Recent Advances in Technology</p><p>Research and Education, 660(5), 17.</p><p></p><p>Rusli, Nurul Izni, Masahiro Tanikawa, Mohamad Rusop Mahmood, & Kanji Yasui. (2012). Growth of</p><p>High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation. Materials, 5(12),</p><p>2817-2832.</p><p></p><p>Rusop, M., M.H. Mamat, Mohd Firdaus Malek, I. Saurdi, Mohd Nor Asiah, Nor Diyana Md Sin, Nayan</p><p>Nafarizal, Zuraida Khusaimi, N.N. Hafizah, & Zulkefle Habibah. (2013). Investigation of Stress and</p><p>Electrical Properties of Air- Annealed and Oxygen-Annealed Aluminium-Doped Zinc Oxide Nanorod</p><p>Arrays. Advanced Materials Research, 832 (2014), 303309.</p><p></p><p>Sabeeh, Sabah Habeeb, & Ruaa Hashim Jassam. (2018). The Effect of Annealing Temperature and Al</p><p>Dopant on Characterization of ZnO Thin Films Prepared by Sol-Gel Method. Results in Physics, 10(5),</p><p>21216.</p><p></p><p></p><p>Senz-Trevizo, Anglica, Patricia Amzaga-Madrid, Pedro Piz-Ruiz, Wilber Antnez-Flores, &</p><p>Mario Miki-Yoshida. (2016). Optical Band Gap Estimation of ZnO Nanorods. Materials Research, 19(7),</p><p>3338.</p><p></p><p>Safa, M Zare S, & R Azimirad S Mokhtari. (2017). Graphene Oxide Incorporated ZnO Nanostructures as</p><p>a Powerful Ultraviolet Composite Detector. Journal of Materials Science: Materials in Electronics,</p><p>28(9), 69196927.</p><p></p><p>Safa, S., S. Mokhtari, A. Khayatian, & R. Azimirad. (2018). Improving Ultraviolet Photodetection of</p><p>ZnO Nanorods by Cr Doped ZnO Encapsulation Process. Optics Communications, 413(12), 131135.</p><p></p><p>Safa, S., R. Sarraf-Mamoory, & R. Azimirad. (2014). Investigation of Reduced Graphene Oxide Effects</p><p>on Ultra-Violet Detection of ZnO Thin Film. Physica E: Low-Dimensional Systems and Nanostructures,</p><p>57(11), 155160.</p><p></p><p>Saha, Tridib, Ajay Achath Mohanan, Varghese Swamy, Ningqun Guo, & N. Ramakrishnan. (2016). An</p><p>Optimal Thermal Evaporation Synthesis of c-Axis Oriented ZnO Nanowires with Excellent UV</p><p>Sensing and Emission Characteristics. Materials Research Bulletin, 77(1), 147154.</p><p></p><p>Saha, Tridib, Ningqun Guo, & N. Ramakrishnan. (2016). A Novel Langasite Crystal Microbalance</p><p>Instrumentation for UV Sensing Application. Sensors and Actuators, A: Physical, 252(12), 1625.</p><p></p><p>Sahoo, Nanda Gopal, Yongzheng Pan, Lin Li, and Siew Hwa Chan. (2012). Graphene-Based Materials for</p><p>Energy Conversion. Advanced Materials, 24(30), 4203-4210.</p><p></p><p>Sahoo, Satyaprakash, G. L. Sharma, and Ram S. Katiyar. (2012). Raman Spectroscopy to</p><p>Probe Residual Stress in ZnO Nanowire. Journal of Raman Spectroscopy, 43(1), 7275.</p><p></p><p>Saleh, Tawfik A, M A Gondal, and Q A Drmosh. (2010). Preparation of a MWCNT/ ZnO Nanocomposite and</p><p>Its Photocatalytic Activity for the Removal of Cyanide from Water using a Laser. Nanotechnology,</p><p>21(49), 495705.</p><p></p><p>Scholes, D. Tyler, Patrick Y. Yee, Jeffrey R. Lindemuth, Hyeyeon Kang, Jonathan Onorato, Raja</p><p>Ghosh, Christine K. Luscombe, Frank C. Spano, Sarah H. Tolbert, & Benjamin J. Schwartz. (2017). The</p><p>Effects of Crystallinity on Charge Transport and the Structure of Sequentially Processed</p><p>F4TCNQ-Doped Conjugated Polymer Films. Advanced Functional Materials, 27(44), 113.</p><p></p><p>Senthil, R Jeyachitra V Senthilnathan T S. (2018). Studies on Electrical Behavior of Fe Doped ZnO</p><p>Nanoparticles Prepared via Co-Precipitation Approach for Photo- Catalytic Application. Journal of</p><p>Materials Science: Materials in Electronics, 29 (2), 118997.</p><p></p><p>Shabannia, R. (2015). Vertically Aligned ZnO Nanorods on Porous Silicon Substrates : Effect of</p><p>Growth Time. Progress in Natural Science:Materials International, 25(2), 95-100.</p><p></p><p>Shahil, Khan M F, & Alexander A Balandin. (2012). Thermal Properties of Graphene and Multilayer</p><p>Graphene : Applications in Thermal Interface Materials. Solid State Communications, 152(15),</p><p>13311340.</p><p></p><p>Shi, Ruixia, Ping Yang, Xiaobin Dong, Qian Ma, & Aiyu Zhang. (2013). Growth of Flower-like ZnO on</p><p>ZnO Nanorod Arrays Created on Zinc Substrate through Low-Temperature Hydrothermal Synthesis.</p><p>Applied Surface Science, 264(10), 162170.</p><p></p><p>Si, Yongchao, Edward T Samulski, Chapel Hill, & North Carolina. (2008). Synthesis of Water Soluble</p><p>Graphene. Nano Letters, 8(6), 1679-1682.</p><p></p><p>Singh, Kamaljit, & Sucharita Arora. (2011). Removal of Synthetic Textile Dyes from Wastewaters:A</p><p>Critical Review on Present Treatment Technologies. Critical Reviews in Environmental Science and</p><p>Technology, 41(9), 80778.</p><p></p><p>Singh, Shaivalini. 2016. Al Doped ZnO Based Metal-Semiconductor-Metal and</p><p>Metal-Insulator-Semiconductor-Insulator-Metal UV Sensors. Optik, 127(7), 35233526.</p><p>Son, Dong Ick, Hee Yeon Yang, Tae Whan Kim, Won Il Park, Dong Ick Son, Hee Yeon Yang, Tae Whan Kim,</p><p>& Won Il Park. (2013). Photoresponse Mechanisms of Ultraviolet Photodetectors Based on Colloidal</p><p></p><p>ZnO Quantum Dot-Graphene Nanocomposites. Applied Physics Letters, 102(2), 021105-0211053.</p><p>Song, Jaejin, & Sangwoo Lim. (2007). Effect of Seed Layer on the Growth of ZnO Nanorods. Physical</p><p>Chemistry C, 111(2): 596600.</p><p></p><p>Stankovich, Sasha, Dmitriy A. Dikin, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes,</p><p>Yuanyuan Jia, Yue Wu, Son Binh T Nguyen, & Rodney S. Ruoff. 2007. Synthesis of Graphene-Based</p><p>Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 45(7), 15581565.</p><p></p><p>Steurer, Peter, Rainer Wissert, Ralf Thomann, & Rolf Mu. (2009). Functionalized Graphenes and</p><p>Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromol. Rapid Communications,</p><p>30(45), 316327.</p><p></p><p>Sudhagar, P., Anitha Devadoss, Taeseup Song, P. Lakshmipathiraj, Hyungkyu Han, Volodymyr V. Lysak,</p><p>C. Terashima, et al. (2014). Enhanced Photocatalytic Performance at a Au/N-TiO hollow Nanowire</p><p>Array by a Combination of Light Scattering and Reduced Recombination. Physical Chemistry Chemical</p><p>Physics 16(33), 1774817755.</p><p></p><p>Sun, Ye, Gareth M Fuge, & Michael N R Ashfold. (2004). Growth of Aligned ZnO Nanorod Arrays by</p><p>Catalyst-Free Pulsed Laser Deposition Methods. Chemical Physics Letters, 396(1-3), 21-26.</p><p></p><p>Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi. (2016).</p><p>Highly Conductive Electrodes of Graphene Oxide / Natural Rubber Latex-Based Electrodes by Using</p><p>a Hyper-Branched Surfactant. Advanced Materials Research, 99(2016), 174181.</p><p></p><p>suriani, A.B. Muqoyyanah, A. Mohamed, M.H.Mamat, N. Hashim, I.M. Isa, M.F. Malek, M.I. Kairi, A.R.,</p><p>and M.K. Ahmad Mohamed. (2017). Improving the Photovoltaic Performance of DSSCs Using a Combination</p><p>of Mixed-Phase TiO Nanostructure Photoanode and Agglomerated Free Reduced Graphene Oxide Counter</p><p>Electrode Assisted with Hyperbranched Surfactant. Optik, 158(2010), 52234.</p><p></p><p>Suriani, A. B., Fatiatun, A. Mohamed, Muqoyyanah, N. Hashim, M. S. Rosmi, M. H. M.H.Mamat, M. F.</p><p>Malek, M. J. Salifairus, and H. P.S. Abdul Khalil. (2018). Reduced Graphene Oxide/platinum Hybrid</p><p>Counter Electrode Assisted by Custom-Made Triple-Tail Surfactant and Zinc Oxide/titanium Dioxide</p><p>Bilayer Nanocomposite Photoanode for Enhancement of DSSCs Photovoltaic Performance. Optik,</p><p>161(2), 7083.</p><p></p><p>Suriani, A. B., R. N. Safitri, A. Mohamed, S. Alfarisa, I. M. Isa, A. Kamari, N. Hashim, M. K.</p><p>Ahmad, M. F. Malek, and M. Rusop. (2015). Enhanced Field Electron Emission of Flower-like Zinc</p><p>Oxide on Zinc Oxide Nanorods Grown on Carbon Nanotubes. Materials Letters, 149(3), 6669.</p><p></p><p>Suriani, A.B., Muqoyyanah, A. Mohamed, M.H.Mamat, N. Hashim, I. M. Isa, M. F. Malek, M. I. Kairi,</p><p>A. R. Mohamed, & M. K. Ahmad. (2018). Improving the Photovoltaic Performance of DSSCs Using a</p><p>Combination of Mixed-Phase TiO nanostructure Photoanode and Agglomerated Free Reduced Graphene</p><p>Oxide Counter Electrode Assisted with Hyperbranched Surfactant. Optik, 158(2010), 522534.</p><p></p><p>Suriani, A.B., Nurhafizah M.D., A. Mohamed, M.H. M.H.Mamat, M.F. Malek, M.K. Ahmad, A. Pandikumar,</p><p>& N.M. Huang. (2017). Enhanced Photovoltaic Performance Using Reduced Graphene Oxide Assisted by</p><p>Triple-Tail Surfactant as an Efficient and Low-Cost Counter Electrode for Dye-Sensitized Solar</p><p>Cells. Optik, 139(2017), 291298.</p><p></p><p>Suriani, A B, M.D Nurha, A Mohamed, I Zainol, & A K Masrom. (2015). A Facile One-Step Method for</p><p>Graphene Oxide/Natural Rubber Latex Nanocomposite Production for Supercapacitor Applications.</p><p>Materials Letters, 161(9), 665-668.</p><p></p><p>Suriani, A B, A Mohamed, N Hashim, M H D Othman, M. H. Mamat, & M K Ahmad. (2018). Reduced Graphene</p><p>Oxide-Multiwalled Carbon Nanotubes Hybrid Film with Low Pt Loading as Counter Electrode for</p><p>Improved Photovoltaic Performance of Dye-Sensitised Solar Cells. Journal of Materials Science:</p><p>Materials in Electronics, 29(13), 10723-10743.</p><p></p><p>Suriani, A B, M D Nurhafizah, A Mohamed, and M.H.Mamat. 2017. Optik Enhanced Photovoltaic</p><p>Performance Using Reduced Graphene Oxide Assisted by Triple- Tail Surfactant as an Efficient and</p><p>Low-Cost Counter Electrode for Dye- Sensitized Solar Cells. Optik - International Journal for Light</p><p>and Electron Optics, 139(4), 291298.</p><p></p><p>Tang, H, K Prasad, R Sanjins, P E Schmid, & F Lvy. (1994). Electrical and Optical Properties of</p><p>TiO Anatase Thin Films Ellectrical and Optical Properties of Ti02</p><p></p><p>Anatase Thin Films. Journal of applied physics, 75(4), 2042-2047.</p><p></p><p>Tauc, J., & A. Menth. (1972). States in the Gap. Journal of Non-Crystalline Solids,10(6), 569585.</p><p></p><p>Tavakoli, Farnosh, Masoud Salavati-Niasari, Alireza Badiei, & Fatemeh Mohandes. (2015). Green</p><p>Synthesis and Characterization of Graphene Nanosheets. Materials Research Bulletin, 63(3),</p><p>5157.</p><p></p><p>Taziwa, Raymond, Luyolo Ntozakhe, and Meyer. Edson. (2017). Structural, Morphological and</p><p>Raman Scattering Studies of Carbon Doped ZnO Nanoparticles Fabricated by PSP Technique. J</p><p>Nanosci Nanotechnol Res, 1(13),1-8.</p><p></p><p>Terasako, Tomoaki, Nur Ashikyn, Nurul Azzyaty, Toshiya Wakisaka, Abdul Manaf, & Masakazu Yagi.</p><p>(2015). Shape Controlled Growth of ZnO Nanorods and Fabrication of ZnO/CuO Heterojunctions by</p><p>Chemical Bath Deposition Using Zinc Nitrate Hexahydrate and Copper (III) Nitrate Trihydrate. Thin</p><p>Solid Films, Thin Solid Films, 596(12), 201-208.</p><p></p><p>Ting, Chu Chi, Chang Hung Li, Chih You Kuo, Chia Chen Hsu, Hsiang Chen Wang, & Ming Hsun Yang.</p><p>(2010). Compact and Vertically-Aligned ZnO Nanorod Thin Films by the Low-Temperature Solution</p><p>Method. Thin Solid Films, 518 (15), 41564162.</p><p></p><p>Toh, Shaw Yong, Kee Shyuan Loh, Siti Kartom Kamarudin, Wan Ramli, & Wan Daud. (2014). Graphene</p><p>Production via Electrochemical Reduction of Graphene Oxide: Synthesis and Characterisation.</p><p>Chemical Engineering Journal, 251(4), 422-434.</p><p></p><p>Tripathy, S, S J Chua, P Chen, Z L Miao, S Tripathy, S J Chua, P Chen, & Z L Miao. (2003).</p><p>Micro-Raman investigation of strain in GaN and Alx Ga 1x N/GaN heterostructures grown on Si (111).</p><p>Journal of applied physics, 92(7), 3503-3510.</p><p></p><p>Tuinstra, F., & J. L. Koenig. (1970). Raman Spectrum of Graphite. The Journal of Chemical Physics,</p><p>53(3), 11261130.</p><p></p><p>Uberlegung, Der. (1913). Interferenzerscheinungen bei Rntgenstrahlen. Annalen der Physik, 346(10),</p><p>971-988</p><p></p><p>Uddin, Elias, Tapas Kuila, Ganesh Chandra Nayak, Nam Hoon Kim, Cheol Ku, Joong Hee Lee, and Joong</p><p>Hee Lee. (2013). Effects of various surfactants on the dispersion stability and electrical</p><p>conductivity of surface modified graphene. Journal of Alloys and Compounds, 562(6), 134-142.</p><p></p><p>Meryl D Stoller, Sungjin Park, Yanwu Zhu, Jinho An, Rodney S Ruoff, Meryl D Stoller, et al. (2008).</p><p>Graphene-Based Ultracapacitors. Nano letters, 8(10), 34983502.</p><p></p><p>Ulyankina, Anna, Igor Leontyev, Marina Avramenko, Denis Zhigunov, and Nina Smirnova. (2018).</p><p>Large-Scale Synthesis of ZnO Nanostructures by Pulse Electrochemical Method and Their</p><p>Photocatalytic Properties. Materials Science in Semiconductor Processing, 76(8), 713.</p><p></p><p>Umar, A, S H Kim, Y Lee, K S Nahm, and Y B Hahn. (2005). Catalyst-Free Large- Quantity Synthesis</p><p>of ZnO Nanorods by a Vapor Solid Growth Mechanism : Structural and Optical Properties Journal of</p><p>Crystal Growth, 282(1-2), 131-136</p><p></p><p>V, Poornima Parvathi, Parimaladevi R, Vasant Sathe, and Umadevi Mahalingam. (2019). Graphene</p><p>Boosted Silver Nanoparticles as Surface Enhanced Raman Spectroscopic Sensors and Photocatalysts</p><p>for Removal of Standard and Industrial Dye Contaminants. Sensors and Actuators B:Chemical,</p><p>281(11), 679- 688.</p><p></p><p>Vasudevan, Arun, Soyoun Jung, & Taeksoo Ji. (2011). Synthesis and Characterization of Hydrolysis</p><p>Grown Zinc Oxide Nanorods. ISRN Nanotechnology, 2011(7),1-7.</p><p></p><p>W.Xia, H.Wang, X.Zeng, J.Han, J.Zhu, M.Zhou, & S.Wu. (2014). High Efficiency Photocatalytic</p><p>Activity of Type-II SnO/SnO Heterostructures via Interfacial Charge Transfer. CrystEngComm,</p><p>16(30), 68416847.</p><p></p><p>Wahid, Khairul Anuar, Wai Yee Lee, Hing Wah Lee, Aun Shin Teh, Daniel C.S. Bien, & Ishak Abd Azid.</p><p>(2013). Effect of Seed Annealing Temperature and Growth Duration on Hydrothermal ZnO Nanorod</p><p>Structures and Their Electrical Characteristics. Applied Surface Science, 283(6), 629635.</p><p></p><p>Wang, W., Ai, T., Li, W., Jing, R., Fei, Y., & Feng, X. (2017). Photoelectric and Electrochemical</p><p>Performance of Al-Doped ZnO Thin Films Hydrothermally Grown on PETGR Bilayer Flexible Substrates.</p><p>The Journal of Physical Chemistry, 43(11), 145.</p><p></p><p>Wang, Chang, Jianping Xu, Shaobo Shi, Yuzhu Zhang, Yanyan Gao, Zeming Liu, Xuguang Zhang, & Lan Li.</p><p>(2017). Optimizing Performance of CuO/ZnO Nanorods Heterojunction Based Self-Powered Photodetector</p><p>with ZnO Seed Layer. Journal of Physics and Chemistry of Solids, 103(4), 218223.</p><p></p><p>Wang, Guosheng, Xiaoguang San, Liang Bing, Yinmin Song, Shangyao Gao, Jinsong Zhang, & Fanli Meng.</p><p>(2015). Catalyst-Free Growth of One-Dimensional ZnO Nanostructures on SiO Substrate and in Situ</p><p>Investigation of Their H Sensing Properties. Journal of Alloys and Compounds, 622(2), 7378.</p><p></p><p>Wang, Hui, Yufang Wang, Xuewei Cao, Min Feng, & Guoxiang Lan. (2009). Vibrational Properties of</p><p>Graphene and Graphene Layers. Journal of Raman Spectroscopy, 40(12), 1791196.</p><p></p><p>Wang, Jing, Pengyang Ma, & Lan Xiang. (2015). Effects of NaOH on Formation of ZnO Nanorods from </p><p>-Zn(OH). Materials Letters, 141(2), 118121.</p><p></p><p>Wang, Qin, Linfeng Hu, Min Chen, & Limin Wu. (2015). Synthesis and Enhanced Photoelectric</p><p>Performance of Au/ZnO Hybrid Hollow Sphere. RSC Advances, 5 (125), 103636103642.</p><p></p><p>Wang, Yi. (2011). Green and Easy Synthesis of Biocompatible Graphene for Use as an Anticoagulant.</p><p>RSC Advances, 2(6), 2322-2328.</p><p></p><p>Wang, Yumin, Xia Zhang, and Chao Hou. (2018). Facile Synthesis of Al-Doping 1D ZnO Nanoneedles by</p><p>Co-Precipitation Method for Efficient Removal of Methylene Blue. Nano-Structures and Nano-Objects,</p><p>16(10), 250257.</p><p></p><p>Wang, Zhenxing, Xueying Zhan, Yajun Wang, Safdar Muhammad, Ying Huang, and Jun He. (2012). A</p><p>Flexible UV Nanosensor Based on Reduced Graphene Oxide Decorated ZnO Nanostructures. Nanoscale,</p><p>4(8), 26782684.</p><p></p><p>Wang, Zhong Lin. (2010). Piezopotential Gated Nanowire Devices:Piezotronics and Piezo-Phototronics.</p><p>Nano Today, 5(6), 540552.</p><p></p><p>Welderfael, Tesfay, Manjunatha Pattabi, Rani M Pattabi, & Arun Kumar Thilipan G. (2016).</p><p>Photocatalytic Activity of Ag-N Co-Doped ZnO Nanorods under Visible and Solar Light Irradiations</p><p>for MB Degradation. Journal of Water Process Engineering, 14(12), 117-123.</p><p></p><p>Wojewoda-Budka, Joanna, Katarzyna Stan, Rafal Nowak, & Natalia Sobczak. (2016). High-Temperature</p><p>Reactivity and Wetting Characteristics of Al/ZnO System Related to the Zinc Oxide Single Crystal</p><p>Orientation. Journal of Materials Science, 51(4), 16921700.</p><p></p><p>Wu, Jih-jen, & Sai-chang Liu. (2012). Low-Temperature Growth of Well-Aligned ZnO Nanorods by</p><p>Chemical Vapor Deposition. Advanced materials, 14(3), 215- 218.</p><p></p><p>Wu, Jili, Xiaoping Shen, Lei Jiang, Kun Wang, & Kangmin Chen. (2010). Solvothermal Synthesis and</p><p>Characterization of Sandwich-like graphene/ZnO Nanocomposites. Applied Surface Science, 256(9),</p><p>28262830.</p><p></p><p>Wu, Wei, Quanguo He, & Changzhong Jiang. (2008). Magnetic Iron Oxide Nanoparticles : Synthesis</p><p>and Surface Functionalization Strategies. Nanoscale Res Lett, 3(10), 397415.</p><p></p><p>Wu, Xiang, Huibo Chen, Lihong Gong, Fengyu Qu, & Yufeng Zheng. (2011). Low Temperature Growth and</p><p>Properties of ZnO Nanorod Arrays. Advances in Natural Sciences:Nanoscience and Nanotechnology,</p><p>2(3), 035006.</p><p></p><p>Xian, Fenglin, Gaige Zheng, Linhua Xu, Wenjian Kuang, & Shixin Pei. (2017). Temperature and</p><p>Excitation Power Dependence of Photoluminescence of ZnO Nanorods Synthesized by Pattern Assisted</p><p>Hydrothermal Method. Journal of Alloys and Compounds, 710(7), 695701.</p><p></p><p>Xie, Chao, Yi Wang, Zhi-xiang Zhang, Di Wang, & Lin-bao Luo. (2018). Graphene/Semiconductor Hybrid</p><p>Heterostructures for Optoelectronic Device Applications. Nano Today, 19(2), 41-83.</p><p></p><p>Xie, Xiang, Keke Zhao, Xiaodong Xu, Wenbo Zhao, Shujuan Liu, Zhiwei Zhu, Meixian Li, Zujin Shi, &</p><p>Yuanhua Shao. (2010). Study of Heterogeneous Electron Transfer on the Graphene/Self-Assembled</p><p>Monolayer Modified Gold Electrode by Electrochemical Approaches. The Journal of Physical Chemistry</p><p>C, 114(33), 14243-14250.</p><p></p><p>Xu, C H, Y F You, J Z Wang, S F Ge, W K Fong, K Leung, & C Surya. (2013). Growth Behavior of ZnO</p><p>Nanowires on Au-Seeded SiO 2 GaN Co-Substrate by Vapor Transport and Deposition. Superlattices</p><p>and Microstructures, 61(6), 97105.</p><p></p><p>Xu, Tongguang, Liwu Zhang, Hanyun Cheng, & Yongfa Zhu. (2011). Significantly Enhanced</p><p>Photocatalytic Performance of ZnO via Graphene Hybridization and the Mechanism Study. Applied</p><p>Catalysis B:Environmental, 101(34), 382387.</p><p></p><p>Xu, Yuxi, & Gaoquan Shi. (2011). Assembly of Chemically Modified Graphene: Methods and</p><p>Applications. J. Mater. Chem, 21(10), 33113323.</p><p></p><p>Yadav, Raja R, Chandra S Rout, & Stanislav A Moshkalev. (2017). Synthesis of self- Assembled and</p><p>Hierarchical Palladiumcnts-Reduced Graphene Oxide Composites for Enhanced Field Emission</p><p>Properties. Materials & Design, 122(5), 110-117.</p><p></p><p>Yang, Kaikun, Congkang Xu, Liwei Huang, & Lianfeng Zou. (2011). Hybrid Nanostructure Heterojunction</p><p>Solar Cells Fabricated Using Vertically Aligned ZnO Nanotubes Grown on Reduced Graphene Oxide.</p><p>Nanotechnology, 22(40), 405401.</p><p></p><p>Yang, T L, D H Zhang, J Ma, H L Ma, & Y Chen. (1998). Transparent Conducting ZnO:Al Films Deposited</p><p>on Organic Substrates Deposited by R.F Magnetron- Sputtering. Thin Solid Film, 326(1-2), 6062.</p><p></p><p>Yang Yang, & Tianxi Liu. (2011). Applied Surface Science Fabrication and Characterization of</p><p>Graphene Oxide/Zinc Oxide Nanorods Hybrid. Applied Surface Science, 257(21), 89508954.</p><p></p><p>Yao, Tinghui, Xin Guo, Shengchun Qin, Fangyuan Xia, Qun Li, Yali Li, Qiang Chen, Junshuai Li, &</p><p>Deyan He. (2017). Effect of rGO Coating on Interconnected CoONanosheets and Improved</p><p>Supercapacitive Behavior of CoO/rGO/NF Architecture. Nano-Micro Letters, 9(4), 18.</p><p></p><p>Yazici, M. Suha, M. Akif Azder, & Omer Salihoglu. (2018). CVD Grown Graphene as Catalyst for Acid</p><p>Electrolytes. International Journal of Hydrogen Energy, 43 (23), 1071010716.</p><p></p><p>Yin, Perry T., Shreyas Shah, Manish Chhowalla, & Ki-Bum Lee. (2015). Design, Synthesis, and</p><p>Characterization of GrapheneNanoparticle Hybrid Materials for Bioapplications. Chemical Reviews,</p><p>115(7), 24832531.</p><p></p><p>Yin, Shengyan, Xiaoju Men, Hang Sun, Ping She, Wei Zhang, Changfeng Wu, Weiping Qin, & Xiaodong</p><p>Chen. (2015). Enhanced Photocurrent Generation of Bio-Inspired graphene/ZnO Composite Films.</p><p>Journal of Materials Chemistry A, 3(22), 1201612022.</p><p></p><p>Yu, Aifang, Peng Jiang, & Zhong Lin Wang. (2012). Nanogenerator as Self-Powered Vibration Sensor.</p><p>Nano Energy, 1(3), 418423.</p><p></p><p>Yung, K. C., H. Liem, & H. S. Choy. (2009). Enhanced Red Shift of the Optical Band Gap in Sn-Doped</p><p>ZnO Free Standing Films Using the Sol-Gel Method. Journal of Physics D:Applied Physics, 42(18),</p><p>185002.</p><p></p><p>Z. Khusaimi, M. H. Mamat, M. Z. Sahdan, M. K. Ahmad, N. Abdullah, S Amizam, &</p><p>M. Rusop. (2010). Controlled Growth of Zinc Oxide Nanorods by Aqueous- Solution Method. Synthesis</p><p>and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 40(3), 190194.</p><p></p><p>Zamiri, Reza, Budhendra Singh, Michael Scott Belsley, and J. M.F. Ferreira. (2014). Structural &</p><p>Dielectric Properties of Al-Doped ZnO Nanostructures. Ceramics International, 40(4), 60316036.</p><p></p><p>Zavar, Salehe. (2017). A Novel Three Component Synthesis of 2-Amino-4H- Chromenes Derivatives</p><p>Using Nano ZnO Catalyst. Arabian Journal of Chemistry, 10(7), S67S70.</p><p></p><p>Zeng, By Qiong, Jinsheng Cheng, Longhua Tang, Xiaofei Liu, Yanzhe Liu, and Jinghong Li. (2010).</p><p>Self-Assembled GrapheneEnzyme Hierarchical Nanostructures for Electrochemical Biosensing.</p><p>Advanced Functional Materials, 20(19), 3366-3372.</p><p></p><p>Zhan, Zhaoyao, Lianxi Zheng, Yongzheng Pan, Gengzhi Sun, & Lin Li. (2012). Self- Powered,</p><p>Visible-Light Photodetector Based on Thermally Reduced Graphene Oxide-ZnO (rGO-ZnO) Hybrid</p><p>Nanostructure. Journal of Materials Chemistry, 22(6), 25892595.</p><p></p><p>Zhang, Guling, Chaoyue Deng, Honglong Shi, Bin Zou, Yongchao Li, Tengteng Liu, & Wenzhong Wang.</p><p>(2017). ZnO/Ag Composite Nanoflowers as Substrates for Surface-Enhanced Raman Scattering. Applied</p><p>Surface Science, 402(4), 154160.</p><p></p><p>Zhang, Jin, & Wenxiu Que. (2010). Preparation and Characterization of SolGel Al- Doped ZnO Thin</p><p>Films and ZnO Nanowire Arrays Grown on Al-Doped ZnO Seed Layer by Hydrothermal Method. Solar Energy</p><p>Materials and Solar Cells, 94(12), 21812186.</p><p></p><p>Zhang, Lixin, Na Li, Hongfang Jiu, Guisheng Qi, & Yunjie Huang. (2015). ZnO- Reduced Graphene Oxide</p><p>Nanocomposites as Efficient Photocatalysts for</p><p></p><p>Photocatalytic Reduction of CO. Ceramics International, 41(5), 62566262.</p><p></p><p>Zhang, Sheng, Yuyan Shao, Honggang Liao, Mark H Engelhard, Geping Yin, & Yuehe Lin. (2011).</p><p>Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide : A Facile Route to Synthesis of</p><p>Soluble Graphene. ACS nano, 5(3), 1785- 1791.</p><p></p><p>Zhang, Xian Fu, & Qian Xi. (2011). A Graphene Sheet as an Efficient Electron Acceptor and Conductor</p><p>for Photoinduced Charge Separation. Carbon, 49(12), 38423850.</p><p></p><p>Zhang, Yangyang, Manoj K. Ram, Elias K. Stefanakos, & D. Yogi Goswami. (2012). Synthesis,</p><p>Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials, 2012(4),1-22.</p><p></p><p>Zhang, Yanhui, Zi-rong Tang, Xianzhi Fu, & Yi-jun Xu. (2010). TiOGraphene Nanocomposites for</p><p>Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiOGraphene Truly</p><p>Different from Other TiOCarbon Composite Materials?. ACS Nano, 4(12), 73037314.</p><p></p><p>Zhang, Yijun, Ming Liu, Wei Ren, & Zuo-guang Ye. (2015). Well-Ordered ZnO Nanotube Arrays and</p><p>Networks Grown by Atomic Layer Deposition. Applied Surface Science, 340(6), 120125.</p><p></p><p>Zhao, J., Liu, L., Li, F. (2015). Graphene Oxide: Physics and Applications. London, UK: Springer,</p><p>161.</p><p></p><p>Zhao, Yanting, Lin Liu, Tingting Cui, Guoxiu Tong, & Wenhua Wu. (2017). Enhanced Photocatalytic</p><p>Properties of ZnO/reduced Graphene Oxide Sheets (rGO) Composites with Controllable Morphology and</p><p>Composition. Applied Surface Science, 412(3), 5868.</p><p></p><p>Zhou, Hai, Guojia Fang, Nishuang Liu, & Xingzhong Zhao. (2011). Ultraviolet Photodetectors Based on</p><p>ZnO Nanorods-Seed Layer Effect and Metal Oxide Modifying Layer Effect. Nanoscale Research Letters,</p><p>6(1), 16.</p><p></p><p>Zhou, Qiong. (2013). Synthesis of Vertically-Aligned Zinc Oxide Nanowires and Their Applications as</p><p>Photocatalysts. Nanomaterials, 7(1), 1-13.</p><p></p><p>Zi-QiangXu, HongDeng, JuanXie, YanLi & Xiao-TaoZu. (2006). Ultraviolet Photoconductive</p><p>Detector Based on Al Doped ZnO Films Prepared by Solgel Method. Applied Surface Science, 253(11),</p><p>476479.</p><p></p><p>Zou, Yanan, Yue Zhang, Yongming Hu, and Haoshuang Gu. (2018). Ultraviolet Detectors Based on Wide</p><p>Bandgap Semiconductor Nanowire. Sensors, 2072 (18), 125.</p><p></p><p>Zu, Xihong, Huan Wang, Guobin Yi, Zheng Zhang, Xuemei Jiang, and Jian Gong. (2015). Self-Powered UV</p><p>Photodetector Based on Heterostructured TiO Nanowire Arrays and Polyaniline Nano Flower Arrays.</p><p>Synthetic Metals, 200(2), 865.</p><p></p>