Preparation, characterisation and application of iron oxide-chitosan nanocomposites as flocculants for palm oil mill effluent

<p>This research aimed to prepare, characterise and apply four iron oxide-chitosan</p><p>nanocomposites, namely ferrihydrite-chitosan (FC), goethite-chitosan (GC), hematitechitosan</p><p>(HM) and magnetite-chitosan (MC) as floccul...

Full description

Saved in:
Bibliographic Details
Main Author: Juliana Jumadi
Format: thesis
Language:eng
Published: 2022
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=9499
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:9499
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic QD Chemistry
spellingShingle QD Chemistry
Juliana Jumadi
Preparation, characterisation and application of iron oxide-chitosan nanocomposites as flocculants for palm oil mill effluent
description <p>This research aimed to prepare, characterise and apply four iron oxide-chitosan</p><p>nanocomposites, namely ferrihydrite-chitosan (FC), goethite-chitosan (GC), hematitechitosan</p><p>(HM) and magnetite-chitosan (MC) as flocculants for the pre-treatment of palm</p><p>oil mill effluent (POME). The nanocomposites were prepared through a co-precipitation</p><p>method at three (w/w) ratios of iron oxide to chitosan. The physicochemical properties of</p><p>nanocomposites were characterised by using a scanning electron microscope (SEM),</p><p>X-ray diffraction (XRD) spectrometer, Fourier transform infrared (FTIR) spectrometer,</p><p>vibrating sample magnetometer (VSM) and thermogravimetric analyser (TGA) before</p><p>and after flocculation experiments to prove the effectiveness of the nanocomposites. The</p><p>effects of flocculant dosage, solution pH and settling time on flocculation for the removal</p><p>of total suspended solids (TSS), turbidity, chemical oxygen demand (COD), oil and</p><p>grease (O&G) and nutrients (K, Fe, Mn and Cu) were investigated by jar test method.</p><p>Research findings found that the MC nanocomposite with a ratio of 1:1 (w/w) showed the</p><p>highest percentage of contaminant reduction. The optimal conditions for the reduction of</p><p>all contaminants were achieved at a flocculant dosage of 1.5 g/L, pH of 5.0 and a settling</p><p>time of 60 minutes. Under this condition, the reduction of TSS, turbidity, COD and O&G</p><p>was 86.79%, 82.61%, 74.28% and 62.64%, respectively. After three cycles of</p><p>flocculation/deflocculation process, MC nanocomposite retained flocculation efficiency</p><p>and flocculants recovery in the range of 66.7-85.7% and 83-91%, respectively.</p><p>Combination of charge neutralisation and polymer bridging was the main mechanism of</p><p>interaction between nanocomposite and POME contaminants. In conclusion, the iron</p><p>oxide incorporated chitosan has increased the properties and flocculation performance of</p><p>the nanocomposite as compared to conventional flocculants. In implication, iron oxidechitosan</p><p>nanocomposites potentially act as alternative flocculants for pre-treatment of</p><p>POME due to having simplicity, recyclability and environmental friendly properties.</p>
format thesis
qualification_name
qualification_level Doctorate
author Juliana Jumadi
author_facet Juliana Jumadi
author_sort Juliana Jumadi
title Preparation, characterisation and application of iron oxide-chitosan nanocomposites as flocculants for palm oil mill effluent
title_short Preparation, characterisation and application of iron oxide-chitosan nanocomposites as flocculants for palm oil mill effluent
title_full Preparation, characterisation and application of iron oxide-chitosan nanocomposites as flocculants for palm oil mill effluent
title_fullStr Preparation, characterisation and application of iron oxide-chitosan nanocomposites as flocculants for palm oil mill effluent
title_full_unstemmed Preparation, characterisation and application of iron oxide-chitosan nanocomposites as flocculants for palm oil mill effluent
title_sort preparation, characterisation and application of iron oxide-chitosan nanocomposites as flocculants for palm oil mill effluent
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2022
url https://ir.upsi.edu.my/detailsg.php?det=9499
_version_ 1783730268186607616
spelling oai:ir.upsi.edu.my:94992023-09-13 Preparation, characterisation and application of iron oxide-chitosan nanocomposites as flocculants for palm oil mill effluent 2022 Juliana Jumadi QD Chemistry <p>This research aimed to prepare, characterise and apply four iron oxide-chitosan</p><p>nanocomposites, namely ferrihydrite-chitosan (FC), goethite-chitosan (GC), hematitechitosan</p><p>(HM) and magnetite-chitosan (MC) as flocculants for the pre-treatment of palm</p><p>oil mill effluent (POME). The nanocomposites were prepared through a co-precipitation</p><p>method at three (w/w) ratios of iron oxide to chitosan. The physicochemical properties of</p><p>nanocomposites were characterised by using a scanning electron microscope (SEM),</p><p>X-ray diffraction (XRD) spectrometer, Fourier transform infrared (FTIR) spectrometer,</p><p>vibrating sample magnetometer (VSM) and thermogravimetric analyser (TGA) before</p><p>and after flocculation experiments to prove the effectiveness of the nanocomposites. The</p><p>effects of flocculant dosage, solution pH and settling time on flocculation for the removal</p><p>of total suspended solids (TSS), turbidity, chemical oxygen demand (COD), oil and</p><p>grease (O&G) and nutrients (K, Fe, Mn and Cu) were investigated by jar test method.</p><p>Research findings found that the MC nanocomposite with a ratio of 1:1 (w/w) showed the</p><p>highest percentage of contaminant reduction. The optimal conditions for the reduction of</p><p>all contaminants were achieved at a flocculant dosage of 1.5 g/L, pH of 5.0 and a settling</p><p>time of 60 minutes. Under this condition, the reduction of TSS, turbidity, COD and O&G</p><p>was 86.79%, 82.61%, 74.28% and 62.64%, respectively. After three cycles of</p><p>flocculation/deflocculation process, MC nanocomposite retained flocculation efficiency</p><p>and flocculants recovery in the range of 66.7-85.7% and 83-91%, respectively.</p><p>Combination of charge neutralisation and polymer bridging was the main mechanism of</p><p>interaction between nanocomposite and POME contaminants. In conclusion, the iron</p><p>oxide incorporated chitosan has increased the properties and flocculation performance of</p><p>the nanocomposite as compared to conventional flocculants. In implication, iron oxidechitosan</p><p>nanocomposites potentially act as alternative flocculants for pre-treatment of</p><p>POME due to having simplicity, recyclability and environmental friendly properties.</p> 2022 thesis https://ir.upsi.edu.my/detailsg.php?det=9499 https://ir.upsi.edu.my/detailsg.php?det=9499 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abbott Chalew, T. E., Ajmani, G. S., Huang, H., & Schwab, K. J. (2013). Evaluating nanoparticle breakthrough during drinking water treatment. Environmental Health Perspectives, 121(10).</p><p></p><p>Abdulrahman, N. H., & Azhari, N. H. (2016). An integrated UMAS for POME treatment. Journal of Water Reuse and Desalination, 8(1), 68-75.</p><p></p><p>Abdulsalam, M., Man, H. C., Yunos, K. F., Abidin, Z. Z., Idris, A. I., & Hamzah, M.</p><p>H. (2020). Augmented yeast-extract and diary-waste for enhancing bio- decolourization of palm oil mill effluent using activated sludge. Journal of Water Process Engineering, 36, 101263.</p><p></p><p>Abdurahman, N. H., Azhari, H. N., & Said, N. (2017). An integrated ultrasonic membrane an aerobic system (IUMAS) for palm oil mill effluent (POME) treatment. Energy Procedia. 138, 10171022.</p><p></p><p>Abdurahman, N. H., Rosli, Y. M., & Azhari, N. H. (2013). The performance evaluation of anaerobic methods for palm oil mill effluent (POME) treatment: A review. IntechOpen Book Series, doi:10.5772/54331</p><p></p><p>Acero, J. L., & Von Gunten, U. (2001). Characterization of Oxidation processes: ozonation and the AOP O3/H2O2 . Journal - American Water Works Association, 93(10), 90100.</p><p></p><p>Adela, B. N., Muzzammil, N., Loh, S. K., & Choo, Y. M. (2014). Characteristic of palm oil mill effluent (POME) in an anaerobic biogas digester. Asian Journal of Mircobiology, Biotechnology and Environmental Sciences, 16(1), 225-231.</p><p></p><p>Adeleke, A. R. O., Latiff, A. A. A., Daud, Z., Daud, N. F. M., & Aliyu, M. K. (2017). Heavy metal removal from wastewater of palm oil mill using developed activated carbon from coconut shell and cow bones. Key Engineering Materials, 737, 428432.</p><p></p><p>Adeleke, A. R. O., Latiff, A. A. A., Daud, Z., Ridzuan, B., & Daud, N. F. M. (2016). Remediation of raw wastewater of palm oil mill using activated cow bone powder through batch adsorption. Key Engineering Materials, 705, 380384.</p><p></p><p>Adjimani, J. P., & Asare, P. (2015). Antioxidant and free radical scavenging activity of iron chelators. Toxicology Reports, 2, 721728.</p><p></p><p>Agboola, O. D., & Benson, N. U. (2021). Physisorption and chemisorption mechanisms influencing micro (nano) plastics-organic chemical contaminants interactions: A review. Frontiers in Environmental Science, 9, 167.</p><p></p><p>Ahmad, A. & Ghufran, R. (2018). Review on industrial wastewater energy source and carbon emission reduction: towards a clean production. International Journal of Sustainable Engineering, 12(1), 47-57.</p><p></p><p>Ahmad, A. (2019). Effect of ozonation on biodegradation and methanogenesis of palm oil mill effluent treatment for the production of biogas. Ozone: Science & Engineering, 41(5), 427-436.</p><p></p><p>Ahmad, A. L., Bhatia, S., & Ismail, S. (2003). Membrane separation technology for palm oil mill effluent (POME) treatment. In: Proceeding Environment 2013: Environmental Management and Sustainable Development for Better Future Growth, Malaysia, 372-376.</p><p></p><p>Ahmad, A. L., Idris, I., Chan, C. Y., & Ismail, S. (2015). Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process. Polish Journal of Chemical Technology, 17(4), 4955.</p><p></p><p>Ahmad, A. L., Ismail, S., & Bhatia, S. (2003). Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination, 157, 87-95.</p><p></p><p>Ahmad, A. L., Sumathi, S., & Hameed, B. H. (2003). Chitosan: a natural biopolymer for the adsorption of residue oil from oily wastewater. Adsorption Science & Technology, 22, 75-88.</p><p></p><p>Ahmad, A. L., Sumathi, S., & Hameed, B. H. (2005). Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: a comparative study. Chemical Engineering Journal, 108(1-2), 179- 185.</p><p></p><p>Ahmadzadeh, M., Romero, C., & McCloy, J. (2018). Magnetic analysis of commercial hematite, magnetite, and their mixtures. AIP Advances, 8(5), 056807.</p><p></p><p>Ahmed, I., Mondol, M. M. H., Lee, H. J., & Jhung, S. H. (2021). Application of metalorganic frameworks in adsorptive removal of organic contaminants from water, fuel and air. Chemistry An Asian Journal, 16(3), 185-196.</p><p></p><p>Aivazoglou, E., Metaxa, E., & Hristoforou, E. (2018). Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment. AIP Advances, 8(4), 048201.</p><p></p><p>Akhbari, A., Kutty, P. K., Chuen, O. N. & Ibrahim, S. (2020). A study of palm oil mill processing and environmental assessment of palm oil mill effluent treatment. Environmental Engineering Research, 25(2), 212-221.</p><p></p><p>Akhlaghi, S. P., Zaman, M., Mohammed, N., Brinatti, C., Batmaz, R., Berry, R., Loh, W., & Tam, K. C. (2015). Synthesis of amine functionalized cellulose nanocrystals: optimization and characterization. Carbohydrate Research, 409, 48-55.</p><p></p><p>Albrecht, A. (1972). Disposal of Alum Sludges. Journal - American Water Works Association, 64(1), 46-52.</p><p></p><p>Alcaraz-Lopez, C., Botia, M., Alcaraz, C. F., & Riquelme, F. (2003). Effects of foliar sprays containing calcium, magnesium and titanium on plum (Prunus domestica L.) fruit quality. Journal of Plant Physiology, 160(12), 14411446.</p><p></p><p>Ali, A., & Ahmed, S. (2018). A review on chitosan and its nanocomposites in drug delivery. International Journal of Biological Macromolecules, 109, 273286.</p><p></p><p>Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 4967.</p><p></p><p>Almarasy, A. A., Azim, S. A., & Ebeid, E. -Z. M. (2018). The application of hematite (-Fe2O3) nanoparticles in coagulation and flocculation processes of River Nile Rosetta branch surface water. SN Applied Sciences, 1, 6.</p><p></p><p>Alqadami, A. A., Naushad, M., Abdalla, M. A., Ahamad, T., ALOthman, Z. A., Alshehri, S. M., & Ghfar, A. A. (2017). Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. Journal of Cleaner Production, 156, 426-436.</p><p></p><p>Alrawi, R. A., Ab Rahman, N. N. N., Ahmad, A., Ismail, N., & Mohd Omar, A. K. (2013). Characterization of oily and non-oily natural sediments in palm oil mill effluent. Journal of Chemistry, 298958, 111.</p><p></p><p>Al-Sahari M., Al-Gheethi A. A. S., & Radin Mohamed R. M. S. (2020) Natural coagulates for wastewater treatment; a review for application and mechanism. In: Al-Gheethi A., Radin Mohamed R., Noman E., Mohd Kassim A. (eds) Prospects of Fresh Market Wastes Management in Developing Countries. Water Science and Technology Library, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-42641-5_2</p><p></p><p>Antonino, R. S. C. M. Q., Fook, B. R. P. L., Lima, V. A. O., Rached, R. I. F., Lima,</p><p>E. P. N., Lima, R. J. S., Covas, C. A. P., & Fook, M. V. L. (2017). Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei boone). Marine Drugs, 15(5), 141.</p><p></p><p>Anwar, F., & Arthanareeswaran, G. (2019). Silver nano-particle coated hydroxyapatite nano-composite membrane for the treatment of palm oil mill effluent. Journal of Water Process Engineering, 31, 100844.</p><p></p><p>Aqel, A., El-Nour, K. M. M. A., Ammar, R. A. A., & Al-Warthan, A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry, 5(1), 1-23.</p><p></p><p>AQPER, (2019). Association Qubcoise de la Production Dnergie Renouvelable. How much energy is there in biogas?. https://www.aqper.com/fr/combien- denergie-y-a-t-il-dans-le-biogaz.</p><p></p><p>Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., & Heras, A. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3, 203-230.</p><p></p><p>Aris, N. S. M., Ibrahim, S., Arifin, B., & Hawari, Y. (2017). Effect of operating parameters on decolourisation of palm oil mill effluent (POME) using electrocoagulation process. Pertanika Journal of Science & Technology, 25(S), 197-206.</p><p></p><p>Asadpour, R., Sapari, N. B., Isa, M. H., & Orji, K. U. (2014). Enhancing the hydrophobicity of mangrove bark by esterification for oil adsorption. Water Science and Technology, 70(7), 12201228.</p><p></p><p>Ashraf, M. A., Peng, W., Zare, Y., & Rhee, K. Y. (2018). Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters, 13(1), 214.</p><p></p><p>Awalludin, M. F., Sulaiman, O., Hashim, R., & Nadhari, W. N. A. W. (2015). An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renewable and Sustainable Energy Reviews, 50, 1469-1484.</p><p></p><p>Bagheri, R., Ariaii, P. & Motamedzadegan, A. (2021). Characterization, antioxidant and antibacterial activities of chitosan nanoparticles loaded with nettle essential oil. Food Measure, 15, 13951402.</p><p></p><p>Bala, J. D., Lalung, J., & Ismail, N. (2014). Biodegradation of palm oil mill effluent (POME) by bacterial. International Journal of Scientific and Research Publication, 4(3), 1-10.</p><p></p><p>Bala, J. D., Lalung, J., & Ismail, N. (2014). Palm oil mill effluent (POME) treatment</p><p>microbial communities in an anaerobic digester: A review. International Journal of Scientific and Research Publications, 4, 1-24.</p><p></p><p>Bala, J. D., Lalung, J., Al-Gheethi, A. A. S., Kaizar, H., & Ismail, N. (2018). Reduction of organic load and biodegradation of palm oil mill effluent by aerobic indigenous mixed microbial consortium isolated from palm oil mill effluent (POME). Water Conservation Science and Engineering, 3(3), 139- 156.</p><p></p><p>Bandi, S., Hastak, V., Pavithra, C. L. P., Kashyap, S., Singh, D. K., Luqman, S., Peshwe, D. R., & Srivastav, A. K. (2019). Graphene/chitosan-functionalized iron oxide nanoparticles for biomedical applications. Journal of Materials Research, 34(20), 3389-3399.</p><p></p><p>Bao, Y., Sherwood, J. A., & Sun, Z. (2018). Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. Journal of Materials Chemistry C, 6(6), 12801290.</p><p></p><p>Barrios-Hernndez, M. L., Buenao-Vargas, C., Garca,H., Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M. (2020). Effect of the co-treatment of synthetic faecal sludge and wastewater in an aerobic granular sludge system. Science of the Total Environment, 741, 140480.</p><p></p><p>Bashir, M. J., Lim, J. K., Amr, S. S. A., Wong, L. P., & Sim, Y. L. (2019). Post</p><p>treatment of palm oil mill effluent using electro-coagulation-peroxidation (ECP) technique. Journal of Cleaner Production, 208, 716-727.</p><p></p><p>Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109, 289-295.</p><p></p><p>Bello, M. M., Raman, A. A. A, & Asghar, A. (2019). A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environmental Protection, 126, 119-140.</p><p></p><p>Bharath, G., Alhseinat, E., Ponpandian, N., Khan, M. A., Siddiqui, M. R., Ahmed, F., & Alsharaeh, E. H. (2017). Development of adsorption and electrosorption techniques for removal of organic and inorganic pollutants from wastewater using novel magnetite/porous graphene-based nanocomposites. Separation and Purification Technology, 188, 206-218.</p><p></p><p>Bharathi, D., Ranjithkumar, R., Vasantharaj, S., Chandarshekar, B., & Bhuvaneshwari, V. (2019). Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. International Journal of Biological Macromolecules, 132, 880-887.</p><p></p><p>Bhumibhamon, O., Koprasertsak, A., & Funthong, S. (2002). Biotreatment of high fat and oil wastewater by lipase producing microorganisms. Kasetsat Journal (Nature Science), 36, 261-267.</p><p></p><p>Blanco, A., Monte, M. C., Campona, C., Balea, A., Merayo, N., Negro, C. (2018). Nanocellulose for industrial use. Handbook of Nanomaterials for Industrial Applications, 74-126.</p><p></p><p>Bora, D. K., Braun, A., Erat, S., Safonova, O., Graule, T., & Constable, E. C. (2012). Evolution of structural properties of iron oxide nano particles during temperature treatment from 250C900C: X-ray diffraction and Fe K-shell pre-edge X-ray absorption study. Current Applied Physics, 12(3), 817825.</p><p></p><p>Borja, R., Bank, C. J., & Sanchez, E. (1996). Anaerobic treatment of palm oil mill effluent in a two-stage up-flow anaerobic sludge blanket (UASB) system. Journal of Biotechnology, 45, 125135.</p><p></p><p>Brion-Roby, R., Gagnon, J., Deschnes, J. -S., & Chabot, B. (2018). Investigation of fixed bed adsorption column operation parameters using a chitosan material for treatment of arsenate contaminated water. Journal of Environmental Chemical Engineering, 6(1), 505-511.</p><p></p><p>Brugnerotto, J., Desbrires, J., Roberts, G., & Rinaudo, M. (2001). Characterization of chitosan by steric exclusion chromatography. Polymer, 42(25), 09921 09927.</p><p></p><p>Bucksteeg, K. (1987). German experiences with sewage treatment ponds. Water Science and Technology, 19(12), 17-23.</p><p>Cakmak, I., & Yazici, A. M. (2010). Magnesium: a forgotten element in crop Production. Better Crops with Plant Food, 94(2), 23-25</p><p></p><p>Cambier, P. (1986). Infrared study of goethites of varying crystallinity and particle size: I. Interpretation of OH and lattice vibration frequencies. Clay Minerals, 21(02), 191200.</p><p></p><p>Can, M. M., Ozcan, S., Ceylan, A., & Firat, T. (2010). Effect of milling time on the synthesis of magnetite nanoparticles by wet milling. Materials Science and Engineering: B, 172(1), 7275.</p><p></p><p>Cao, B., Gao, B., Liu, X., Wang, M., Yang, Z., & Yue, Q. (2011). The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment. Water Research, 45(18), 61816188.</p><p></p><p>Caudron, E., Tfayli, A., Monnier, C., Manfait, M., Prognon, P., & Pradeau, D. (2011). Identification of hematite particles in sealed glass containers for pharmaceutical uses by Raman microspectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 54(4), 866868.</p><p></p><p>Chaijak, P., Lertworapreecha, M., & Sukkasem, C. (2018). Phenol removal from palm oil mill effluent using galactomyces reessii termite-associated yeast. Polish Journal of Environmental Studies, 27(1), 39-44.</p><p></p><p>Chaiprapat, S., & Laklam, T. (2011). Enhancing digestion efficiency of POME in anaerobic sequencing batch reactor with ozonation pretreatment and cycle time reduction. Bioresource Technology, 102(5), 4061-4068.</p><p></p><p>Chan, Y. J., & Chong, M. C. (2019). Palm oil mill effluent (POME) treatment- current technologies, biogas capture and challenges. In: Foo D., Tun Abdul Aziz M. (eds) Green Technologies for the Oil Palm Industry. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13- 2236-5_4.</p><p></p><p>Chan, Y. J., Chong, M. F., & Law, C. L. (2010). Biological treatment of anaerobically digested palm oil mill effluent (POME) using a lab-scale sequencing batch reactor (SBR). Journal of Environmental Management, 91(8), 17381746.</p><p></p><p>Chan, Y. J., Chong, M. F., & Law, C. L. (2011). Optimization on thermophilic aerobic treatment of anaerobically digested palm oil mill effluent (POME). Biochemical Engineering Journal, 55(3), 193198.</p><p></p><p>Chandrakumara, G. T. D., Dissanayake, D. M. S. N., Mantilaka, M. M. M. G. P. G., De Silva, R. T., Pitawala, H. M. T. G. A., & de Silva, K. M. N. (2019). Eco- friendly, green packaging materials from akaganeite and hematite nanoparticle-reinforced chitosan nanocomposite films. Journal of Nanomaterials, 2019, 111.</p><p></p><p>Chao, L., Wang, Y., Chen, S., & Li, Y. (2021). Preparation and adsorption properties of chitosan-modified magnetic nanoparticles for removal of Mo (VI) ions. Polish Journal of Environmental Studies, 30(3), 2489-2498.</p><p></p><p>Charles, A., Khan, M. R., Ng, K. H., Wu, T. Y., Lim, J. W., Wongsakulphasatch, S., Witoon, T., & Cheng, C. K. (2019). Facile synthesis of CaFe2O4 for visible light driven treatment of polluting palm oil mill effluent: Photokinetic and scavenging study. Science of the Total Environment, 661, 522530.</p><p></p><p>Chatsungnoen, T., & Chisti, Y. (2019). Flocculation and electroflocculation for algal biomass recovery. Biofuels from Algae (Second Edition), 257286.</p><p></p><p>Cheng, C. K., Derahman, M. R., & Khan, M. R. (2015). Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania. Journal of Environmental Chemical Engineering, 3(1), 261 270.</p><p></p><p>Cheng, C. K., Deraman, M. R., Ng, K. H., & Khan, M. R. (2016). Preparation of titania doped argentum photocatalyst and its photoactivity towards palm oil mill effluent degradation. Journal of Cleaner Production, 112, 11281135.</p><p></p><p>Cheng, Y. W., Chang, Y. S., Ng, K. H., Wu, T. Y., & Cheng, C. K. (2017).</p><p>Photocatalytic restoration of liquid effluent from oil palm agroindustry in Malaysia using tungsten oxides catalyst. Journal of Cleaner Production, 162, 205219.</p><p></p><p>Chernyshova, I. V., Hochella Jr, M. F., & Madden, A. S. (2007). Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Physical Chemistry Chemical Physics, 9(14), 1736.</p><p></p><p>Chicot, D., Mendoza, J., Zaoui, A., Louis, G., Lepingle, V., Roudet, F., & Lesage, J. (2011). Mechanical properties of magnetite (Fe3O4), hematite (-Fe2O3) and goethite (-FeOOH) by instrumented indentation and molecular dynamics analysis. Materials Chemistry and Physics, 129(3), 862870.</p><p></p><p>Chin, Y. -H., Sin, J. -C., & Lam, S. -M. (2018). A facile route for fabrication of hierarchical porous Nb2O5/ZnO composites with enhanced photocatalytic degradation of palm oil mill effluent. Materials Letters, 216, 811.</p><p></p><p>Chmielewsk, E. (2019). Natural zeolite: alternative absorbent in purification or post- treatment of waters. Modified Clay and Zeolite Nanocomposite Materials, 87- 112.</p><p></p><p>Choong Lek, B. L., Peter, A. P., Qi Chong, K. H., Ragu, P., Sethu, V., Selvarajoo, A., & Arumugasamy, S. K. (2018). Treatment of palm oil mill effluent (POME) using chickpea (Cicer arietinum) as a natural coagulant and flocculant: Evaluation, process optimization and characterization of chickpea powder, Journal of Environmental Chemical Engineering, 6(5):6243-6255.</p><p></p><p>Chukhrov, F. V., Zvyagin, B. B., Ermilova, L. P., & Gorshkov, A. I. ( 1973). New data on iron oxides in the weathering zone. Proceeding of the International Clay Conference 1972, 333-341.</p><p></p><p>Chukwunonso, O. I., Fauziah, S. H., & Redzwan, G. (2014). The Utilization of water hyacinth (Eichhorniacrassipes) as aquatic macrophage treatment system (AMATS) in phytoremediation for palm oil mill effluent (POME). International Journal of Sciences: Basic and Applied Research, 13(2), 31-47.</p><p></p><p>Chung, C. Y., Selvarajoo, A., Sethu, V., Koyande, A. K., Arputhan, A., & Lim, Z. C. (2018). Treatment of palm oil mill effluent (POME) by coagulation flocculation process using peanutokra and wheat germokra. Clean Technologies and Environmental Policy, 20, 19511970.</p><p></p><p>Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurences and uses, Second Edition. John Wiley & Sons, Weinheim, pp 29</p><p></p><p>Da Silva, S. B., Batista, G. L., & Santin, C. K. (2019).chitosan for sensors and electrochemical applications. Chitin and Chitosan: Properties and Application, 461476. https://doi.org/10.1002/9781119450467.ch18</p><p></p><p>Darajeh, N., Idris, A., Truong, P., Aziz, A. A., Bakar, R. A., & Man, H. C. (2014). Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluent. Advances in Materials Science and Engineering, 2014, 683579.</p><p></p><p>Das, S., & Hendry, M. J. (2011). Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology, 290(3-4), 101 108.</p><p></p><p>de Faria, D. L. A., & Lopes, F. N. (2007). Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them?. Vibrational Spectroscopy, 45, 117-121.</p><p></p><p>Department of Environment Malaysia 2020 Environmental Quality (Prescribed Premises) (Crude Palm Oil) Regulation 1977</p><p>https://www.doe.gov.my/portalv1/wp- content/uploads/2015/01/Environmental_Quality_Prescribed_Premises_Crude</p><p>_Palm_Oil_Regulations_1977_-_P.U.A_342-77.pdf</p><p></p><p>Department of Industrial Works. (1997). Environmental management guideline for the palm oil industry. 1-72.</p><p></p><p>Di Pietro, M. E., Mannu, A., & Mele, A. (2020). NMR Determination of Free Fatty Acids in Vegetable Oils. Processes, 8(4), 410.</p><p>Dian, N. L. H. M., Hamid, R. A., Kanagaratnam, S., Isa, W. R. A., Hassim, N. A. M., Ismail, N. H., Omar, Z., & Sahri, M. M. (2017). Palm oil and palm kernel oil: Versatile ingredients for food applications. Journal of Oil Palm Research, 29, 487-511.</p><p></p><p>Ding, J., Shen, L., Yan, R., Lu, S., Zhang, Y., Zhang, X., & Zhang, H. (2020). Heterogeneously activation of H2O2 and persulfate with goethite for bisphenol A degradation: A mechanistic study. Chemosphere, 261, 127715.</p><p></p><p>Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., Li, C., & Xie, M. (2018).</p><p>Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids, 76, 131140.</p><p></p><p>Dubey, V., & Kain, V. (2017). Synthesis of magnetite by coprecipitation and sintering and its characterization. Materials and Manufacturing Processes, 33(8), 835 839.</p><p></p><p>Dung, D. D., Hung, N. T., & Odkhuu, D. (2019). Magnetic and optical properties of MgMnO3-modified Bi0.5Na0.5TiO3 materials. Journal of Magnetism and Magnetic Materials, 482, 3137.</p><p></p><p>El-kharrag, R., Abdel Halim, S. S., Amin, A., & Greish, Y. E. (2018). Synthesis and characterization of chitosan-coated magnetite nanoparticles using a modified wet method for drug delivery applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(1-3), 7382.</p><p></p><p>Environmental Protection Agency. (2002). Wastewater technology fact sheet facultative lagoons. https://www3.epa.gov/npdes/pubs/faclagon.pdf.</p><p></p><p>Ercuta, A., & Chirita, M. (2013). Highly crystalline porous magnetite and vacancy- ordered maghemite microcrystals of rhombohedral habit. Journal of Crystal Growth, 380, 182186.</p><p></p><p>Esteves, B. M., Rodrigues, C. S. D., Maldonado-Hdar, F. J., & Madeira, L. M. (2019). Treatment of high-strength olive mill wastewater by combined fenton- like oxidation and coagulation/flocculation. Journal of Environmental Chemical Engineering. 7(4), 103252.</p><p></p><p>Eyley, S., Vandamme, D., Lama, S., Van den Mooter, G., Muylaert, K., & Thielemans, W. (2015). CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals. Nanoscale, 7(34), 14413-14421.</p><p></p><p>Facta, M., Salam, Z., Buntat, Z., & Yuniarto, A. (2010). Silent discharge ozonizer for colour removal of treated palm oil mill effluent using a simple high frequency resonant power converter. 2010 IEEE International Conference on Power and Energy. https://doi.org/10.1109/PECON.2010.5697554</p><p></p><p>Farid, M. S., Shariati, A., Badakhshan, A., & Anvaripour, B. (2013). Using nano- chitosan for harvesting microalga Nannochloropsis sp. Bioresource Technology, 131, 555-559.</p><p></p><p>Fato, F. P., Li, D.-W., Zhao, L.-J., Qiu, K., & Long, Y.-T. (2019). Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. ACS Omega, 4(4), 75437549.</p><p></p><p>Febriana, I., Chodijah, S., Husaini, & Novriani, L. (2017). Pengolahan limbah cair kelapa sawit menggunakan membran berbasis kitosan, PVA and silika. Jurnal Penelitian Teknologi Industri, 9, 73-84.</p><p></p><p>Ficai, D., Ficai, A., Vasile, B. S., Ficai, M., Oprea, O. C., Guran, C., & Andronescu,</p><p>E. (2011). Synthesis of rod-like magnetite by using low magnetic field. Digest Journal of Nanomaterials & Biostructures, 6 (3), 943-951.</p><p></p><p>Fondriest Environmental, Inc. (2014). Turbidity, Total Suspended Solids and Water Clarity. Fundamentals of Environmental Measurements. https://www.fondriest.com/environmental-measurements/parameters/water- quality/turbidity-total-suspended-solids-water-clarity/</p><p></p><p>Food and Agriculture Organization of the United Nations. (2018). Fisheries and aquaculture information and statistics service. http://www.fao.org/statistics/en/.</p><p></p><p>Foster, L. J. R., Ho, S., Hook, J., Basuki, M., & Marcal, H. (2015). Chitosan as a biomaterial: influence of degree of deacetylation on its physiochemical, material and biological properties. Plos One, 10(8), e0135153.</p><p></p><p>Fouad, D. E., Zhang, C., El-Didamony, H., Yingnan, L., Mekuria, T. D., & Shah, A.</p><p>H. (2019). Improved size, morphology and crystallinity of hematite (-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results in Physics, 12, 12531261.</p><p></p><p>Franca, D., Medina, . F., Messa, L. L., Souza, C. F., & Faez, R. (2018). Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable controlled release materials. Carbohydrate Polymers, 196, 47-55.</p><p>Gamarallage, D., Sawai, O., & Nunoura, T. (2019). Degradation behavior of palm oil mill effluent in Fenton oxidation. Journal of Hazardous Materials, 364, 791- 799.</p><p></p><p>Ganapathe, L. S., Mohamed, M. A., Mohamad Yunus, R., & Berhanuddin, D. D. (2020). Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry, 6(4), 68.</p><p></p><p>Ganapathy, B., Yahya, A., & Ibrahim, N. (2019).Bioremediation of palm oil mill effluent (POME) using indigenous Meyerozyma guilliermondii. Environmental Science and Pollution Research, 26(11), 11113-11125.</p><p></p><p>Gehrke, I., Geiser, A., & Somborn-Schulz, A. (2015). Innovations in nanotechnology for water treatment. Nanotechnology, Science and Applications, 8, 1-17.</p><p></p><p>Ghazali, S., Jusoh, R., & Shariffuddin, J. H. (2019). Parameter affecting photocatalytic degradation of POME using LaCa as photocatalyst. Materials Today: Proceedings, 19, 11731182.</p><p></p><p>Ghernaout, D. (2020). Enhanced coagulation: promising findings and challenges.</p><p>Open Access Library Journal, 7, e6569</p><p></p><p>Guinesi, L. S., & Cavalheiro, E. T. G. (2006). The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochimica Acta, 444(2), 128-133.</p><p></p><p>Guo, X., Qu, L., Zhu, S., Tian, M., Zhang, X., Sun, K., & Tang, X. (2015). Preparation of three-dimensional chitosan-graphene oxide aerogel for residue oil removal. Water Environment Research, 88(8), 768778.</p><p></p><p>H.P.S, A. K., Saurabh, C. K. A. S. A., Nurul Fazita, M. R., Syakir, M. I., Davoudpour, Y., Rafatullah, M., Abdullah, C. K., Haafiz, M. K. M., & Dungani, R. (2016). A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydrate Polymers, 150, 216-226.</p><p></p><p>Habib, M. A. B., Yusoff, F. M., Phang, S. M., Ang, K. J. & Mohamed, S. (1997). Nutritional values of chironomid larvae grown in palm oil mill effluent and algal culture. Aquaculture, 158(1-2), 95-105.</p><p></p><p>Hadi, A.G. (2013). Synthesis of chitosan and its use in metal removal. Chemistry and Materials Research, 3(3).</p><p></p><p>Halim, A. L. A., Kamari, A., & Philip, E. (2018). Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. International Journal of Biological Macromolecules, 120, 1119-1126.</p><p></p><p>Hamzah, M. H., Asri, M. F. A., Man, H. C., & Mohammed, A. (2019). Prospective application of palm oil mill boiler ash as a biosorbent: effect of microwave irradiation and palm oil mill effluent decolorization by adsorption. International Journal of Environmental Research and Public Health, 16(18), 3453.</p><p></p><p>Hanesch, M. (2009). Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177(3), 941948.</p><p></p><p>Hannouche, A., Chebbo, G., Ruban, G., Tassin, B., Lemaire, B. J., & Joannis, C. (2011). Relationship between turbidity and total suspended solids concentration within a combined sewer system. Water Science and Technology, 64(12), 24452452.</p><p></p><p>Harif, T., Khai, M., & Adin, A. (2012). Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics. Water Research, 46(10), 3177-3188.</p><p></p><p>Hasan, A., & Fatehi, P. (2019). Flocculation of kaolin particles with cationic lignin polymers. Scientific Reports, 9(1), 2672.</p><p></p><p>Hassan, M. A. A., & Puteh, M. H. (2007). Pre-treatment of palm oil mill effluent (POME): a comparison study using chitosan and alum. Malaysian Journal of Civil Engineering, 19(2), 128-141.</p><p></p><p>Hassan, M. A., Yacob, S., Shirai, Y. & Hung, Y. T. (2004). Handbook of industrial and hazardous wastes treatment 2nd edition revised and expanded. Treatment of Palm Oil Wastewater, 776-796.</p><p></p><p>Hausner, D. B., Bhandari, N., Pierre-Louis, A. -M., Kubicki, J. D., & Strongin, D. R. (2009). Ferrihydrite reactivity toward carbon dioxide. Journal of Colloid and Interface Science, 337(2), 492500.</p><p></p><p>He, M., Cho, B. U., Lee, Y. K., & Won, J. M. (2016). Utilizing cellulose nanofibril as an eco-friendly flocculant for filler flocculation in papermaking. BioResources, 11(4):10296-10313.</p><p></p><p>Hedayatnasab, Z., Dabbagh, A., Abnisa, F., & Wan Daud, W. M. A. (2020). Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. European Polymer Journal, 133, 109789.</p><p></p><p>Henry, K. A., & Lee D. W. (2017). Flocculation optimization of orthophosphate with fecl3 and alginate using the boxbehnken response surface methodology, Industrial & Engineering Chemistry Research, 56(12), 3145-3155 .</p><p></p><p>Ho, K. C., Teow, Y. H., & Mohammad, A. W. (2019). Optimization of nanocomposite conductive membrane formulation and operating parameters for electrically-enhanced palm oil mill effluent filtration using response surface methodology. Process Safety and Environmental Protection, 126, 297- 308.</p><p></p><p>Ho, K. C., Teow, Y. H., Ang, W. L., & Mohammad, A. W. (2017). Novel GO/OMWCNTs mixed-matrix membrane with enhanced antifouling property for palm oil mill effluent treatment. Separation and Purification Technology, 177, 337349.</p><p></p><p>Holder, C. F., & Schaak, R. E. (2019). Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano, 13(7), 73597365.</p><p></p><p>Hossain, M. S., Omar, F., Asis, A. J., Bachmann, R. T., Sarker, M. Z. I., & Kadir, M.</p><p>O. A. (2019). Effective treatment of palm oil mill effluent using FeSO4.7H2O waste from titanium oxide industry: Coagulation adsorption isotherm and kinetics studies. Journal of Cleaner Production, 219, 86-98.</p><p></p><p>Hosseini, S. E., & Abdul Wahid, M. (2013). Pollutant in palm oil production process.</p><p>Journal of the Air & Waste Management Association, 65(7), 773-781.</p><p></p><p>Hubbe, M. A., Metts, J. R., Hermosilla, D., Blanco, M. A., Yerushalmi, L., Haghighat, F., Lindholm-Lehto, P., Khodaparast, Z., Kamali, M., & Elliott, A. (2016). Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities. BioResources, 11(3), 7953-8091.</p><p></p><p>Hui, M., Shengyan, P., Yaqi, H., Rongxin, Z., Anatoly, Z. & Wei, C. (2018). A highly efficient magnetic chitosan fluid adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification. Chemical Engineering Journal, 345, 556-565.</p><p></p><p>Huzir, N. M., Aziz, M. M. A., Ismail, S. B., Mahmood, N. A. N., Umor, N. A., & Muhammad, S. A. F. S. (2019). Optimization of coagulation-flocculation process for the palm oil mill effluent treatment by using rice husk ash. Industrial Crops and Products, 139, 111482.</p><p></p><p>Ibrahim, I., Hassan, M. A., Abd-Aziz, S., Shirai, Y., Andou, Y., Othman, M. R., Ali,</p><p>A. A. M., & Zakaria, M. R. (2017). Reduction of residual pollutants from biologically treated palm oil mill effluent final discharge by steam activated bioadsorbent from oil palm biomass. Journal of Cleaner Production, 141, 122127.</p><p></p><p>Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 2018, 116.</p><p></p><p>Igwegbe, C. A, Ighalo, J. O., Onukwuli, O. D., Obiora-Okafo, I. A., & Anastopoulos,</p><p>I. (2021). Coagulation-flocculation of aquaculture wastewater using green coagulant from Garcinia kola seeds: Parametric studies, kinetic modelling and cost analysis. Sustainability, 13(16), 9177.</p><p></p><p>Iskandar, M. J., Baharum, A., Anuar, F. H., & Othaman, R. (2018). Palm oil industry in south east asia and the effluent treatment technology- A review. Environmental Technology and Innovation, 9, 169-185.</p><p>Islam, M. A., Yousuf, A., Karim, A., Pirozzi, D., Khan, M. R., & Wahid, Z. A. (2018). Bioremediation of palm oil mill effluent and lipid production by lipomyces atarkeyi: a combined approach. Journal of Cleaner Production, 172, 1779-1787.</p><p></p><p>Iwuagwu, J. O., & Ugwuanyi, J. O. (2014). Treatment and valorization of palm oil mill effluent through production of food grade yeast biomass. Journal of Waste Management, 2014, 439071.</p><p></p><p>Jagaba, A. H., Kutty, S. R. M., Hayder, G., Latiff, A. A. A., Aziz, N. A. A., Umaru, I.,</p><p>Ghaleb, A. A. S., Abubakar, S., Lawal, I. M., & Nasara, M. A. (2020). Sustainable use of natural and chemical coagulants for contaminants removal from palm oil mill effluent: A comparative analysis. Ain Shams Engineering Journal, 11(4), 951-960.</p><p></p><p>Jaiswal, A., Banerjee, S., Mani, R., Chattopadhyaya, M. C. (2013). Synthesis, characterization and application of goethite mineral as an absorbent. Journal of Environmental Chemical Engineering, 1(3), 281-289.</p><p></p><p>Jalani, N. F., Aziz, A. A., Wahab, N. A., Hassan, W. H. W., & Zainal, N. H. (2016). Application of palm kernel shell activated carbon for the removal of pollutant and color in palm oil mill effluent treatment. Journal of Earth, Environment and Health Sciences, 2(1), 15-20.</p><p></p><p>Jawad, R. J., Ismail, M. H. S. & Siajam, S. I. (2018). Adsorption of heavy metals and residual oil from palm oil mill effluent using a novel adsorbent of alginate and mangrove composite beads coated with chitosan in a packed bed column. IIUM Engineering Journal, 19, 1.</p><p></p><p>Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 10501074.</p><p></p><p>Jiang, X., Chen, L., & Zhong, W. (2003). A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydrate Polymers, 54(4), 457-463.</p><p></p><p>Johnson, D., Lun, A. W., Mohammed, A. W., & Hilal, N. (2020). Dewatering of POME digestate using lignosulfonate driven forward osmosis. Separation and Purification Technology, 235, 116151.</p><p></p><p>Joseph, L., Boateng, L. K., Flora, J. R. V., Park, Y. G., Son, A., Badawy, M., & Yoon, Y. (2013). Removal of bisphenol A and 17-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon. Separation and Purification Technology, 107, 37- 47.</p><p></p><p>Juinui, Q. C. (2008). Research progress of novel adsorption processes in water purification: A review. Journal of Environmental Sciences, 20(1), 1-13.</p><p></p><p>Jumadi, J., Kamari, A., Hargreaves, J. S. J., & Yusof, N. (2020). A review of nano- base materials used as flocculants for water treatment. International Journal of Environmental Science and Technology, 17, 3571-3594.</p><p></p><p>Jun, L. Y., Mubarak, N. M., Yee, M. J., Yon, L. S., Bing, C. H., Khalid, M., & Abdullah, E. C. (2018). An overview of functionalised carbon nanomaterial for organic pollutant removal. Journal of Industrial and Engineering Chemistry, 67, 175-186.</p><p></p><p>Kadir, A. B. A., Abdullah, S. R. S., & Hasan, H. A. (2018). Comparative phytotoxicity of Azolla pinnata and Lemna minor in treated palm oil mill effluent. International Journal of Engineering and Technology, 7(4), 2499- 2505.</p><p></p><p>Kamalzare, M., Ahghari, M. R., Bayat, & Maleki, A. (2021). Fe3O4@chitosan-tannic acid bionanocomposite as a novel nanocatalyst for the synthesis of pyranopyrazoles. Scientific Reports, 11, 20021.</p><p></p><p>Kamari, A. (2011).Chitosans as soil amendments for the remediation of metal contaminated soil. PhD thesis, University of Glasgow.</p><p></p><p>Kamyab, H., Chelliapan, S., Din, M. F. M., Shahbazian-Yassar, R., Rezania, S., Khademi, T., Kumar, A., & Azimi, M. (2017). Evaluation of Lemna minor and Chlamydomonas to treat palm oil mill effluent and fertilizer production. Journal of Water Process Engineering, 17, 229236.</p><p></p><p>Kanakaraju, D., Ahmad, N. L. B., Sedik, N. B. M., Long, S. G. H., Guan, T. M., & Chin, L. Y. (2017). Performance of solar photocatalysis and photo-fenton degradation of palm oil mill effluent. The Malaysian Journal of Analytical Sciences, 21(5), 996-1007.</p><p></p><p>Karam, A., Bakhoum, E. S., & Zaher K. (2021). Coagulation/flocculation process for textile mill effluent treatment: experimental and numerical perspectives, International Journal of Sustainable Engineering, 14(5), 983-995.</p><p></p><p>Karim, M. I. A., & Kamil, A. Q. A. (1989). Biological treatment of palm oil mill effluent using Trichoderma viride. Biological wastes, 27, 143-152.</p><p></p><p>Kassai, M. R. (2008). A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymers, 71(4), 497-508.</p><p></p><p>Katiyar, V. (2017). Bio-based plastics for food packaging application. Smither Information Ltd, United Kingdom.</p><p>Kefeni, K. K., Msagati, T. A. M., Nkamnule, T. T. I., & Mamba, B.B. (2018). Synthesis and application of hematite nanoparticles for acid mine drainage treatment. Journal of Environmental Chemical Engineering, 6(2), 1865-1874.</p><p></p><p>Khairul Zaman, N., Rohani, R., Izni Yusoff, I., Kamsol, M. A., Basiron, S. A., & Abd. Rashid, A. I. (2021). Eco-friendly coagulant versus industrially used coagulants: identification of their coagulation performance, mechanism and optimization in water treatment process. International Journal of Environmental Research and Public Health, 18(17), 9164.</p><p></p><p>Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry.12(7), 908-931.</p><p></p><p>Khorshidi, N., & Azadmehr, A. R. (2017). Competitive adsorption of Cd (II) and Pb</p><p>(II) ions from aqueous solution onto Iranian hematite (Sangan mine): optimum condition and adsorption isotherm study. Desalination and Water Treatment, 58, 106-119.</p><p></p><p>Kim, S. A., & Guerinot, M. L. (2007). Mining iron: Iron uptake and transport in plants. FEBS Letters, 581(12), 22732280.</p><p>Klausen, L. H., Fuhs, T., & Dong, M. (2016). Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nature Communications, 7, 12447.</p><p></p><p>Kubo, M. T. K., Augusto, P. E. D., & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Research International, 51(1), 170179.</p><p></p><p>Kumar, M. S. C., Selvam, V., Vadivel, M. (2012). Synthesis and characterization of silane modified iron (III) oxide nanoparticles reinforced chitosan nanocomposites. International Journal of Engineering Science & Advanced Technology, 2(5), 1258-1263.</p><p></p><p>Kumari, S., Kumar Annamereddy, S. H., Abanti, S., & Kumar Rath, P. (2017). Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. International Journal of Biological Macromolecules, 104, 1697-1705.</p><p></p><p>Kurniawan, S. B, Abdullah, S. R. S, Imron, M. F., Said, N. S. M., Ismail, N. I., Hasan,</p><p>H. A., Othman, A. R., & Purwanti, I. F. (2020). Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. International Journal of Environmental Research and Public Health, 17(24), 9312.</p><p></p><p>Kwasi, P. (2002). Small-scale palm oil processing in Africa FAO Agricultural Services Bulletin. Food and Agriculture Organization of the United Nations, No. 148.</p><p></p><p>Kwok, K. C. M., Koong, L. F., Chen, G., & McKay, G. (2014). Mechanism of arsenic removal using chitosan and nanochitosan. Journal of Colloid and Interface Science, 416, 110.</p><p></p><p>Kyzas, G. Z., & Bikiaris, D. N. (2015). Recent modifications of chitosan for adsorption applications: a critical and systematic review. Marine Drugs, 13(1), 312-337.</p><p></p><p>Lai, M., Liu, P., Lin, H., Luo, Y., Li, H., Wang, X., & Sun, R. (2016). Interaction between chitosan-based clay nanocomposites and cellulose in a chemical pulp suspension. Carbohydrate Polymers, 137, 375-381.</p><p></p><p>Lam, S. S., Liew, R. K., Cheng, C. K., Rasit, N., Ooi, C. K., Ma, N. L., Ng, J. -H.,</p><p>Lam, W. H., Chong, C. T., &Chase, H. A. (2018). Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. Journal of Environmental Management, 213, 400408.</p><p></p><p>Latiff, A. A. A., Adeleke, A. R. O., Daud, Z., Ridzuan, B. M., & Daud, N. F. M. (2016). Batch adsorption of manganese from palm oil mill effluent onto activated cow bone powder. ARPN Journal of Engineering and Applied Sciences, 11(4), 2627-2631.</p><p></p><p>Lee, C. S., Chong, M. F., Robinson, J., & Binner, E. (2014). A review on development and application of plant-based bioflocculants and grafted bioflocculants. Industrial and Engineering Chemistry Research, 53(48), 18357-18369.</p><p></p><p>Lee, C. S., Robinson, J., & Chong, M. F. (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92(6), 489508.</p><p></p><p>Legodi, M., & Dewaal, D. (2007). The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and Pigments, 74(1), 161168.</p><p></p><p>Lei,Y. (2013). Carbon nanotube flocculation as a green nanoseparation. Chemistry Letters, 42(1), 11-13.</p><p></p><p>Lek, B. L. C., Peter, A. P., Chong, K. H. Q., Ragu, P., Sethu, V., Selvarajoo, A., & Arumugasamy, S. K. (2018). Treatment of palm oil mill effluent (POME) using chickpea (cicer arietinum) as a natural coagulant and flocculant: evaluation, process optimization and characterization of chickpea powder. Journal of Environmental Chemical Engineering, 6(5), 6243-6255.</p><p></p><p>Lemine, O. M., Alanazi, A., Albert, E. L., Hjiri, M., Mhamed, M. O., Alrub, S. A., Alkaoud, A. & Abdullah, C. A. C. (2020). -Fe2O3/Gd2O3-chitosan magnetic nanocomposite for hyperthermia application: structural, magnetic, heating efficiency and cytotoxicity studies. Applied Physics A, 126, 471.</p><p></p><p>Leshuk, T., Holmes, A. B., Ranatunga, D., Chen, P. Z., Jiang, Y., & Gu, F. (2018). Magnetic flocculation for nanoparticle separation and catalyst recycling. Environmental Science: Nano, 5, 509-519.</p><p></p><p>Li, Q., Dunn, E. T., Grandmaison, E. W. & Goosen, M. F. A. (1992). Applications and properties of chitosan. Journal of Bioactive and Compatible Polymers, 7, 370.</p><p></p><p>Liew, W. L., Kassim, M. A., Muda, K., Loh, S. K., & Affam, A. C. (2015). Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. Journal of Environmental Management, 149, 222-235.</p><p></p><p>Lim, C. H., Ang, J. J., Lau, S., & Tay, M. G. (2017). Optimization of hydroxyl radical production using electro-Fenton method for chemical oxygen demand reduction in diluted palm oil mill effluent. Water and Environment Journal, 31(4), 578583.</p><p></p><p>Linden, K. G., & Mohseni, M. (2014). 2.8 - Advanced oxidation processes: applications in drinking water treatment. In S. Ahuja (Ed.), Comprehensive Water Quality and Purification pp: 148-172 Waltham: Elsevier.</p><p></p><p>Liu, J., Li, P., Xiou, H., Zhang, Y., Shi, X., L, X., & Chen, X. (2015). Understanding flocculation mechanism of graphene oxide for organic dyes from water: experimental and molecular dynamics simulation. AIP Advances, 5(11), 117151.</p><p></p><p>Liu, M., Zhou, Y., Zhang, Y., Yu, C., Cao, S. (2013). Preparation and structural analysis of chitosan films with and without sorbitol. Food Hydrocolloids, 33(2), 186191.</p><p></p><p>Liu, T., Ding, E., & Xue, F. (2017). Polyacrylamide and poly(N,N- dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension. International Journal of Biological Macromolecules, 103, 1107-1112.</p><p></p><p>Liu, X., Hu, Q., Fang, Z., Zhang, X., & Zhang, B. (2008). Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir, 25(1), 3-8.</p><p></p><p>Loh, S. K., Lai, M. E., & Ngatiman, M. (2019). Vegetative growth enhancement of organic fertilizer from anaerobically-treated palm oil mill effluent (POME) supplemented with chicken manure in food-energy-water nexus challenge. Food and Bioproducts Processing, 117, 95-104.</p><p></p><p>Loh, S. K., Lai, M. E., Ngatiman, M., Lim, W. S., Choo, Y. M., Zhang, Z., & Salimon, J. (2013). Zero discharge treatment technology of palm oil mill effluent. Journal of Oil Palm Research, 25(3), 273-281.</p><p></p><p>Lorevice, M. V., Otoni, C. G., de Moura, M. R., & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732 740.</p><p></p><p>L, T., Zhang, S., Qi, D., Zhang, D., & Zhao, H. (2018). Enhanced demulsification from aqueous media by using magnetic chitosan-based flocculant. Journal of Colloid and Interface Science, 518, 76-83.</p><p></p><p>Luo, L., & Nguyen, A. V. (2017). A review of principles and applications of magnetic flocculation to separate ultrafine magnetic particles. Separation and Purification Technology, 172, 8599.</p><p></p><p>Ma, A. N. (2000). Environmental management for the palm oil mill effluent. Palm Oil Development, 30, 1-10.</p><p></p><p>Ma, J., Fu, K., Shi, J., Sun, Y., Zhang, X., & Ding, L. (2016). Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance. Carbohydrate Polymers, 151, 565-575.</p><p></p><p>Ma, J., Fu, X., Jiang, L., Zhu, G., & Shi, J. (2018). Magnetic flocculants synthesized by Fe3O4 coated with cationic polyacrylamide for high turbid water flocculation. Environmental Science and Pollution Research, 25(26), 25955- 25966.</p><p></p><p>Ma, J., Zhang, X., Chen, K., Li, G., & Han, X. (2013). Morphology-controlled synthesis of hematite hierarchical structures and their lithium storage performances. Journal of Materials Chemistry A, 1(18), 5545.</p><p></p><p>Maczak, P., Kaczmarek, H., & Ziegler-Borowska, M. (2020). Recent achievements in polymer bio-based flocculants for water treatment. Materials, 13(18), 3951.</p><p></p><p>Macera, L., Daniele, V., Mondelli, C., Capron, M., & Taglieri, G. (2021). New sustainable, scalable and one-step synthesis of iron oxide nanoparticles by ion exchange process. Nanomaterials, 11(3), 798.</p><p></p><p>Madaki, Y. S. & Seng, L. (2013). Palm oil mill effluent (POME) from Malaysia palm oil mills: waste or resource. International Journal of Science Environment and Technology, 2(6), 1138-1155.</p><p></p><p>Magdziarz, A., & Werle, S. (2014). Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Management, 34(1), 174179.</p><p></p><p>Malaysian Meteorological Department. (2018). Weather observation and monitorong. http://www.met.gov.my/iklim/meteorologipertanian/buletinmeteorologipertani an10hari.</p><p>Malaysian Palm Oil Board. (2021). Palm oil industry overview and production statistic. https://doi.org/10.1016/S0304-3894(99)00168-5.</p><p></p><p>Malik, Q. H. (2018). Performance of alum and assorted coagulants in turbidity removal of muddy water. Applied Water Science, 8(1),40.</p><p></p><p>Maria, A., Mayasari, E., Irawati, U., & Zulfikurrahman. (2020). Comparing the effectiveness of chitosan and conventional coagulants for coal wastewater treatment. IOP Conference Series: Materials Science and Engineering, 980, 012077.</p><p></p><p>Martnez, G., Malumbres, A., Mallada, R., Hueso, J. L., Irusta, S., Bomat-Miguel, O., & Santamara, J. (2012). Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis. Nanotechnology. 23(42), 425605.</p><p></p><p>Mascolo, M., Pei, Y., & Ring, T. (2013). Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials, 6(12), 55495567.</p><p></p><p>Mazzetti, L., & Thistlethwaite, P. J. (2002). Raman spectra and thermal transformations of ferrihydrite and schwertmannite. Journal of Raman Spectroscopy, 33(2), 104111.</p><p></p><p>Metcalf & Eddy. (2004). Wastewater Engineering: treatment and reuse. Fourth edition. McGraw Hill, United States.</p><p>Mhashhash, A., Bockelmann-Evans, B., & Pan, S. (2017). Effect of hydrodynamics factors on sediment flocculation processes in estuaries. Journal of Soils and Sediments, 18, 3094-3103.</p><p></p><p>Ministry of Plantation Industries and Commodities, (2021). Biofuel Industry. https://www.mpic.gov.my/mpi/en/agricommodity/industry/biofuel-industry</p><p></p><p>Mohamed Noor, M. H., Lee, K. J., & Ngadi, N. (2021). Starch engineered with Moringa oleifera seeds protein crosslinked Fe3O4: A synthesis and flocculation studies. International Journal of Biological Macromolecules, 193(Pt B), 2006- 2020.</p><p></p><p>Mohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., Mohammad Amran,</p><p>M. S., Fakrul-Razi, A., & Taufiq-Yap, Y. H. (2011). Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 15, 1258-1270.</p><p></p><p>Mohammed, N., Grishkewich, N., & Tam, K. C. (2018). Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environmental Science: Nano, 5, 623-658.</p><p></p><p>Mohammed, R. R., & Chong, M. F. (2014). Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent. Journal of Environmental Management, 132, 237249.</p><p></p><p>Mos, Y. M., Vermeulen, A. C., Buisman, C. J. N., & Weijma, J. (2018). X-Ray Diffraction of Iron Containing Samples: The Importance of a Suitable Configuration. Geomicrobiology Journal, 35(6), 511517.</p><p></p><p>MPOC (2020). The oil palm tree. http://mpoc.org.my/the-oil-palm-tree/.</p><p></p><p>Muda, M. S., Kamari, A., Bakar, S. A., Yusoff, S. N. M., Fatimah, I., Phillip, E., & Din, S. M. (2020). Chitosan-graphene oxide nanocomposites as water- solubilising agents for rotenone pesticide. Journal of Molecular Liquids, 318, 114066.</p><p></p><p>Muhrizal, S., Shamshuddin, J., Fauziah, I., & Husni, M. A. H. (2006). Changes in iron-poor acid sulfate soil upon submergence. Geoderma, 131, 110-122.</p><p></p><p>Muradov, N., Taha, M., Miranda, A. F., Kadali, K., Gujar, A., Rochfort, S., Stevenson, T., Ball, A. S., & Mouradov, A. (2014). Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnology for Biofuels, 7(1), 30.</p><p></p><p>Muralikrishna, I. V., & Manickam,V. (2017). Wastewater treatment technologies, Chap 12. Environmental Management:Science and Engineeringfor Industry. Elsevier, Massachusetts pp 248-293.</p><p></p><p>Murphy, D. J. (2014). The future of oil palm as a major global crop: Opportunities and challenges. Journal of Oil Palm Research, 26, 1-24.</p><p></p><p>Muzzarelli, R. A. A., & Peter, M. G. (1997). Chitin handbook. European Chitin Society, 475-489</p><p></p><p>Nadella, M., Sharma, R., & Chellam, S. (2020). Fit-for-purpose treatment of produced water with iron and polymeric coagulant for reuse in hydraulic fracturing: temperature effects on aggregation and high-rate sedimentation. Water Research, 170, 115330.</p><p></p><p>Najafpour, G., Yieng, H. A., Younnesi, H. & Zinatizadeh, A. A. L. (2005). Effect of organic loading on performance of rotating biological contractor using palm oil mill effluent. Process Biochemistry, 40, 2879-2884.</p><p></p><p>Namduri, H., & Nasrazadani, S. (2008). Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corrosion Science, 50(9), 24932497.</p><p></p><p>Nasrullah, M., Singh, L., Krishnan, S., Sakinah, M., Mahapatra, D. M., & Zularisam,</p><p>A. W. (2020). Electrocoagulation treatment of raw palm oil mill effluent: Effect of operating parameters on floc growth and structure. Journal of Water Process Engineering, 33, 101114.</p><p></p><p>Nasrullah, M., Singh, L., Krishnan, S., Sakinah, M., Zularisam, A. W. (2018). Electrode design for electrochemical cell to treat palm oil mill effluent by electrocoagulation process. Environmental Technology and Innovation, 9, 323-341.</p><p></p><p>Nasrullah, M., Singh, L., Mohamad, Z., Norsita, S., Krishnan, S., Wahida, N., & Zularisam, A. W. (2017). Treatment of palm oil mill effluent by electrocoagulation with presence of hydrogen peroxide as oxidizing agent and polialuminum chloride as coagulant-aid. Water Resources and Industry, 17, 7 10.</p><p></p><p>Nasrullah, M., Zularisam, A. W., Krishnan, S., Sakinah, M., Singh, L., & Fen, Y. W. (2019). High performance electrocoagulation process in treating palm oil mill effluent using high current intensity application. Chinese Journal of Chemical Engineering, 27(1), 208-217.</p><p></p><p>Nawaz, R., Kait, C. F., Chia, H. Y., Isa, M. H., & Huei, L. W. (2019). Glycerol- mediated facile synthesis of colored titania nanoparticles for visible light photodegradation of phenolic compounds. Nanomaterials. 9(11), 1586.</p><p></p><p>Nechita, P. (2017). Applications of Chitosan in Wastewater Treatment. Biological Activities and Application of Marine Polysaccharides. IntechOpen Book Series. 209-228. http://dx.doi.org/10.5772/65289</p><p></p><p>Neoh, C. H., Lam, C. Y., Yahya, A., Ware, I., & Ibrahim, Z. (2015). Utilization of agro-industrial residues from palm oil industry for production of lignocellulolytic enzymes by Curvularia clavata. Waste Biomass Valorization. 6(3), 385-390.</p><p></p><p>Neoh, C. H., Lam, C.Y., Ghani, S. M., Ware, I., Sarip, S. H. M., & Ibrahim, Z. (2016). Bioremediation of high-strength agricultural wastewater using Ochrobactrum sp. strain SZ1. 3 Biotech, 6(2), 143.</p><p></p><p>Ng, C. A., Wong, L. Y., Chai, H. Y., Bashir, M. J. K., Ho, C. -D., Nisar, H., & Lo, P.</p><p>K. (2017). Investigation on the performance of hybrid anaerobic membrane bioreactors for fouling control and biogas production in palm oil mill effluent treatment. Water Science & Technology, 76(6), 1389-1398.</p><p></p><p>Ng, W. J., Goh, A. C. C. & Tay, J. H. (1987). Palm oil mill effluent (POME) treatment- an assessment of coagulants used to aid liquid-solid separation. Biological Wastes, 21(4), 237-248.</p><p></p><p>Ng, Y. S., Lim, C. R. & Chan, D. J. C. (2016). Development of treated palm oil mill effluent (POME) culture medium for plant tissue culture of hemianthus callirichoides. Journal of Environmental Chemical Engineering, 4(4), 4890- 4896.</p><p></p><p>Nguyen, N. H. A., Padil, V. V. T., Slaveykova, V. I., ernk, M., & evc, A. (2018). Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas reinhardtii. Nanoscale Research Letters, 13, 159.</p><p></p><p>Nizamuddin, S., Siddiqui, M. T. H., Mubarak, N. M., Baloch, H. A., Abdullah, E. C., Mazari, S. A., Griffin, G. J., Srinivasan, M. P., & Tanksale, A. (2019). Iron Oxide Nanomaterials for the Removal of Heavy Metals and Dyes From Wastewater. Nanoscale Materials in Water Purification, 447472.</p><p></p><p>No, H. K., & Meyers, S. P. (1992). Preparation and characterization of chitin and chitosan- A review. Journal of Aquatic Food Product Technology, 4(2), 27-52.</p><p></p><p>Noor, M. H. M., Ngadi, N., & Luing, W. S. (2018). Synthesis of magnetic cellulose as flocculant for pre-treatment of anaerobically treated palm oil mill effluent. Chemical Engineering Transaction, 63, 589-594.</p><p></p><p>Noor, M. H. M., Ngadi, N., Inuwa, I. M., Opotu, L. A., & Nawawi, M. G. M. (2020). Synthesis and application of polyacrylamide grafted magnetic cellulose flocculant for palm oil wastewater treatment. Journal of Environmental Chemical Engineering, 8(4), 104014.</p><p></p><p>Nurain Ahmad, S. Z., Wan Salleh, W. N., Ismail, A. F., Yusof, N., Mohd Yusop, M. Z., & Aziz, F. (2020).Adsorptive removal of heavy metal ions using graphene- based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 248, 126008.</p><p></p><p>Nwabanne, J. T., Oguegbu, O. O., & Agu, C. M. (2018). Removal of solids from palm oil mill effluent and paint wastewater using electrocoagulation technique. International Journal of Electrochemical Science, 2018, 4349639.</p><p></p><p>Nwuche, C. O., Aoyagi, H., & Ogbonna, J. C. (2014). Treatment of palm oil mill effluent by a microbial consortium developed from compost soils. International Scholarly Research Notices, 2014, 762070.</p><p></p><p>Nyzhnyk, T. (2017) High efficiency titanium coagulants for water treatment. Technology Transfer: Fundamental Principles and Innovative TechnicalSolutions, 54-56.</p><p></p><p>Okaiyeto, K., Nwodo, U. U., Okoli, S. A., Mabinya, L. V., & Okoh, A. I. (2016). Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen, 5(2), 177211.</p><p></p><p>Ooi, Z. X., Ismail, H., Abu Bakar, A., & Teoh, Y. P. (2014). A review on recycling ash derived from Elaeis guineensis by-product, BioResources, 9(4), 7926- 7940.</p><p></p><p>Ordaz-Daz, L. A., Valle-Cervantes, S., Rodrguez-Rosales, J., Bailn-Salas, A. M., Madrid-Del Palacio, M., Torres-Fraga, K., & De la Pea-Arellano, L. A. (2017). Zeta potential as a tool to evaluate the optimum performance of a coagulation-flocculation process for wastewater internal treatment for recirculation in the pulp and paper process. BioResources, 12(3).</p><p></p><p>Oswal, N., Sarma, P. M., Zinjarde, S. S., & Pant, A. (2002). Palm oil mill effluent treatment by a tropical marine yeast. Bioresource Technology, 85, 35-37.</p><p></p><p>Oviasogie, P. O. & Aghimien, A. E. (2003). Macronutrient status and speciation of Cu, fe, zn and pb in soil containing palm oil mill effluent. Global Journal of Pure and Applied Sciences, 9(1), 71-80.</p><p></p><p>Oyekanmi, A. A., Latiff, A. A. A., Daud, Z., Ismail, N., Aliyu, M. K., Rosli, M. A., Nasir, N., Suhani, N., & Kumar, V. (2019). Batch adsorption of activated coconut shell for the removal of zinc from palm oil mill effluent. Malaysian Journal of Fundamental and Applied Sciences, 15(5), 708-711.</p><p></p><p>Oyekanmi, A. A., Latiff, A. A. A., Daud, Z., Mohamed, R. M. S. R., Ismail, N., Aziz,</p><p>A. A., Rafatullah, M., Hossain, K., Ahmad, A., & Abiodun, A. K. (2019). Adsorption of cadmium and lead from palm oil mill effluent using bone- composite: optimisation and isotherm studies. International Journal of Environmental Analytical Chemistry, 99(8), 707-725.</p><p></p><p>zdemir, K. (2016). The use of carbon nanomaterials for removing natural organic matter in drinking water sources by a combined coagulation process. Nanomaterials and Nanotechnology, 6, 1-12.</p><p></p><p>Palmer, J., Flint, S., & Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology & Biotechnology, 34(9), 577588.</p><p></p><p>Pandharipande, S., & Bhagat, P. (2016). Synthesis of chitin from crab shells and its utilization in preparation of nanostructured film. International Journal of Science, Engineering and Technology Research, 5(5), 1378-1383.</p><p></p><p>Pandia, S., Hutagalung, A. T., & Siahaan, A. D. (2018). Utilization of cocoa peel as biosorbent for oil and color removal in palm oil mill effluent (POME). IOP Conference Series: Materials Science and Engineering, 300, 012066.</p><p></p><p>Parthasarathy, S., Gomes, R. L., & Manickam, S. (2016). Process intensification of anaerobically digested palm oil mill effluent (AAD-POME) treatment using combined chitosan coagulation, hydrogen peroxide (H2O2) and Fentons oxidation. Clean Technologies and Environmental Policy, 18(1), 219230.</p><p></p><p>Patel, M., Patel, J., Pawar, Y., Patel, N., & Shah, M. (2020). Membrane-based downhole oilwater separation (DOWS) technology: an alternative to hydrocyclone-based DOWS. Journal of Petroleum Exploration and Production Technology, 10, 20792088.</p><p></p><p>Patel, P. (2015). Zero discharge of palm oil mill effluent through outdoor flash evaporation at standard atmospheric conditions. Oil Palm Bulletin, November 2015, 14-24.</p><p></p><p>Patra, A. K., Kundu, S. K., Bhaumik, A., & Kim, D. (2016). Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity. Nanoscale, 8(1), 365377.</p><p></p><p>Pavel, K., Nikolay, K., & Oleg, F. (2017). Matrix-isolated nanocomposites-alumina- silicon and iron-silicon flocculants-coagulants. Journal of Physical Science and Application, 7(2), 36-41.</p><p></p><p>Peralta, M. E., Nistic, R., Franzoso, F., Magnacca, G., Fernandez, L., Parolo, M. E., Len, E. G., & Carlos, L. (2019). Highly efficient removal of heavy metals from waters by magnetic chitosan-based composite. Adsorption, 25(7), 1337- 1347.</p><p>Peraturan Pemerintah Republik Indonesia Nomor 82 Tahun 2001. https://peraturan.bpk.go.id/Home/Details/53103/pp-no-82-tahun-2001</p><p></p><p>Pernitsky, D. J., & Edzwald, J. K. (2006). Selection of alum and polyaluminum coagulants: principles and applications. Journal of Water Supply: Research and Technology - Aqua, 55(2), 121141.</p><p></p><p>Pham, X. N., Nguyen, T. P., Pham, T. N., Tran, T. T. N., & Tran, T. V. T. (2016).</p><p>Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7, 045010.</p><p></p><p>Pimpalkar, S. N., Suresh, N. & Singh, G. F. (2021). Flocculation studies on high-ash coal slurry for improved clarification of water. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021- 03578-7</p><p></p><p>Pisutpaisal, N., Tanikkul, P., & Phoochinda, W. (2014). Improvement of mesophilic biohydrogen production from palm oil mill effluent using ozonation process. Energy Procedia, 50, 723-728.</p><p></p><p>Pivariov, L., Rosskopfov, O., Galambo, M., & Rajec, P. (2014). Sorption of nickel on chitosan. Journal of Radioanalytical and Nuclear Chemistry, 300(1), 361366.</p><p></p><p>Pochanavanish, P., & Suntornsuk, W. (2002). Fungal chitosan production and its characterization. Letter in Applied Microbiology, 35(1), 17-21.</p><p></p><p>Poh, P. E., & Chong, M. F. (2009). Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresource Technology, 100(1), 1- 9.</p><p></p><p>Poh, P. E., Yong, W. J. & Chong, M. F. (2010) Palm oil mill effluent (POME) characteristic in high crop season and the applicability of high rate anaerobic bioreactors for the treatment of POME. Industrial and Engineering Chemistry Research, 49(22), 11732-11740.</p><p></p><p>Poirier, J. (2015). A review: influence of refractories on steel quality. Metallurgical Research & Technology, 112(4), 410.</p><p>Pokhrel, S., Yadav, P. N., & Adhikari, R. (2015). Application of chitin and chitosan in industry and medical science: a review. Nepal Journal of Science and Technology, 16(1), 99-104.</p><p></p><p>Quinlan, P. J., Tanvir, A., & Tam, K. C. (2015). Application of the central composite design to study the flocculation of an anionic azo dye using quaternized cellulose nanofibrils. Carbohydrate Polymers, 133, 80-89.</p><p></p><p>Rabel, A. M., Jayanthi, V., Raj, N. N., Ramachandran, D., & Brijitta, J. (2013). Synthesis and characterization of chitosan-coated iron oxide nanoparticles. International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, 569-571.</p><p></p><p>Rajabi-Moghaddam, H., Naimi-Jamal, M. R., & Tajbakhsh, M. (2021). Fabrication of copper(II)-coated magnetic core-shell nanoparticles Fe3O4@SiO2-2- aminobenzohydrazide and investigation of its catalytic application in the synthesis of 1,2,3-triazole compounds. Scientific Reports, 11(1).</p><p></p><p>Ramalingam, B., Khan, M. M. R., Mondal, B., Mandal, A. B., & Das, S. K. (2015). Facile synthesis of silver nanoparticles decorated magnetic-chitosan microsphere for efficient removal of dyes and microbial contaminants. ACS Sustainable Chemistry & Engineering, 3(9), 22912302.</p><p></p><p>Ramavandi, B. (2014). Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resources and Industry, 6, 3650.</p><p></p><p>Rasit, N., & Kuan, O. C. (2018). Investigation on the influence of bio-catalytic enzyme produced from fruit and vegetable waste on palm oil mill effluent. IOP Conference Series: Earth and Environmental Science, 140, 012015.</p><p></p><p>Raymond, L., Morin, F. G., & Marchessault, R. H. (1993). Degree of deacetylation of chitosan using conductometric titration and solid-state NMR. Carbohydrate Research, 246(1), 331-336.</p><p></p><p>Razali, N., & Kamarulzaman, N. Z. (2020). Chemical characterizations of biochar from palm oil trunk for palm oil mill effluent (POME) treatment. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.02.219</p><p></p><p>Riddick, T. M. (1961). Zeta Potential and Its Application to Difficult Waters. Journal American Water Works Association, 53(8), 10071030. http://www.jstor.org/stable/41257173</p><p></p><p>Rinaudo, M., Milas, M., & Dung, P. L. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules, 15(5), 281285.</p><p></p><p>Risti, M., De Grave, E., Musi, S., Popovi, S., & Orehovec, Z. (2007). Transformation of low crystalline ferrihydrite to -Fe2O3 in the solid state. Journal of Molecular Structure, 834-836, 454460.</p><p></p><p>Rocha, J. -D. R., Rogers, R. E., Dichiara, A. B., & Capasse, R. C. (2017). Emerging investigators series: highly effective adsorption of organic aromatic molecules from aqueous environments by electronically sorted single-walled carbon nanotubes. Environmental Science: Water Research and Technology, 3(2), 203-212.</p><p></p><p>Rout, K., Mohapatra, M., & Anand, S. (2012). 2-line ferrihydrite: synthesis, characterization and its adsorption behavior for removal of Pd(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. Dalton Transactions, 41(11), 3302- 12.</p><p></p><p>Rumsey, D.J. (2019). Statistics Essentials for Dummies. John Wiley & Son, Hoboken, New Jersey pp 113-127.</p><p></p><p>Rupani, P. F., Singh, R. P., Ibrahim, M. H., & Esa, N. (2010). Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Applied Science Journal, 10(10), 1190-1201.</p><p></p><p>Rytwo, G., Lavi, R., Knig, T. N., & Avidan, L. (2014). Direct relationship between electrokinetic surface-charge measurement of effluents and coagulant type and dose. Colloids and Interface Science Communications, 1, 2730.</p><p></p><p>Saeed, M. O., Azizli, K. A. M., Isa, M. H., & Ezechi, E. H. (2016). Treatment of POME using Fenton oxidation process: removal efficiency, optimization, and acidity condition. Desalination Water Treat, 57(50), 2375023759.</p><p></p><p>Saeed, M. O., Azizli, K., Isa, M. H., & Bashir, M. J. K. (2015). Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process. Journal of Water Process Engineering, 8, e7e16.</p><p></p><p>Said, M., Hasan, H. A., Nor, M. T. M., & Mohammad, A. W. (2016). Removal of COD, TSS and colour from palm oil mill effluent (POME) using montmorillonite, Desalination Water Treat, 57(23), 10490-10497.</p><p></p><p>Saifuddin, N., & Dinara, S. (2011). Pretreatment of palm oil mill effluent (POME) using magnetic chitosan. E-Journal of Chemistry, 8(S1), S67-S78.</p><p></p><p>Saito, G., Nomura, T., Sakaguchi, N., & Akiyama, T. (2016). Optimization of the dehydration temperature of goethite to control pore morphology. ISIJ International, 56(9), 15981605.</p><p></p><p>Saleh, S., Ghani, W. A. W. A. K., & Loh, S. K. (2019). Treated coal bottom ash for palm oil mill effluent (POME) decolourisation. Journal of Physical Science, 30(3), 101-116.</p><p></p><p>Sami, A. J., Khalid, M., Iqbal, S., Afzal, M., & Shakoori, A. R. (2017). Synthesis and application of chitosan-starch based nanocomposite in wastewater treatment for the removal of anionic commercial dyes. Pakistan Journal of Zoology, 49, 21-26.</p><p></p><p>Santos, T. R. T., Silva, M. F., Nishi, L., Vieira, A. M. S., Klein, M. R. F., Andrade,</p><p>M. B., Vieira, M. F., & Bergamasco, R. (2016). Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment. Environmental Science and Pollution Research, 23(8), 7692-7700.</p><p></p><p>Sari, A. M., Purnawan, I., Erdawati, (2016). The influence of chitosan flocculant on the flocculation of microalgae Chlorella sp. ARPN Journal of Engineering and Applied Sciences, 11, 8.</p><p></p><p>Saritha, V., Srinivas, N., & Srikanth Vuppala, N. V. (2017). Analysis and optimization of coagulation and flocculation process. Applied Water Science, 7(1), 451460.</p><p></p><p>Savage, N., & Diallo, M. S. (2005). Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle Research, 7(4-5), 331- 342.</p><p></p><p>Schlegel, A., Alvarado, S. F., & Wachter, P. (1979). Optical properties of magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12(6), 1157-1164.</p><p></p><p>Schwaminger, S. P., Syhr, C., & Berensmeier, S. (2020). Controlled synthesis of magnetic iron oxide nanoparticles: magnetite or maghemite? Crystals, 10(3), 214.</p><p></p><p>Schwandt, H., Kgel-Knabner, I., Stanjek, H., & Totsche, K. (1992). Sorption of an acidic herbicide on synthetic iron oxides and soils: sorption isotherms. Science of the Total Environment, 123-124, 121131.</p><p></p><p>Sen, B., Alp, M. T., Sonmez, F., Kocer, M. A. T., & Canpolat, O. (2013). Relationship of algae to water pollution and waste water Treatment. Water Treatment. Walid Elshorbagy and Rezaul Kabir Chowdhury, IntechOpen, http://dx.doi.org/10.5772/51927</p><p></p><p>Servais, P., Seidl, M., & Mouchel, J. M. (1999). Comparison of parameters characterizing organic matter in a combined sewer during rainfall events and dry weather. Water Environment Research, 71(4), 408417.</p><p></p><p>Sewvandi, G. A., & Adikary, S. U. (2011). Removal of heavy metals from wastewater using chitosan. Department of Materials Science and Engineering, University of Moratuwa, Sri Lanka. http://hdl.handle.net/10173/836</p><p></p><p>Shafqat, S. S., Khan, A. A., Zafar, M. N., Alhaji, M. H., Sanaullah, K., Shafqat, S. R., Murtaza, S., & Pang, S. C. (2019). Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. Journal of Materials Research and Technology, 8(1), 385 395.</p><p></p><p>Shahrifun, N. S. A., Ablah, N. N., Hussain, H., Aris, A., Omar, Q. & Ahmad, N. (2015). Characterization of palm oil mill secondary effluent (POMSE). Malaysian Journal of Civil Engineering, 27(1), 144-151.</p><p></p><p>Shak, K. P. Y., & Wu, T. Y. (2015). Optimized use of alum together with unmodified cassia obtusifolia seed gum as a coagulant aid in treatment of palm oil mill effluent under natural pH of wastewater. Industrial Crops and Products, 76, 1169-1178.</p><p></p><p>Sharma, M. D., Mahala, C., & Basu, M. (2019). Shape-Controlled Hematite: An Efficient Photoanode for Photoelectrochemical Water Splitting. Industrial & Engineering Chemistry Research. 58(17), 7200-7208.</p><p></p><p>Shavandi, M. A., Haddadian, Z., Ismail, M. H. S., Abdullah, N., & Abidin, Z. Z. (2012). Removal of Fe(II), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite. Journal of the Taiwan Institute of Chemical Engineers, 43(5), 750-759.</p><p></p><p>Sia, Y. Y., Tan, I. A. W., & Abdullah, M. O. (2017). Adsorption of colour, TSS and COD from palm oil mill effluent (POME) using acid-washed coconut shell activated carbon: Kinetic and mechanism studies. MATEC Web of Conferences, 87, 03010.</p><p></p><p>Simate, G. S. (2015). The treatment of brewery wastewater for reuse by integration of coagulation/flocculation and sedimentation with carbon nanotubes</p><p>sandwiched in a granular filter bed. Journal of Industrial and Engineering Chemistry, 21, 1277-1285.</p><p></p><p>Simate, G. S., Iyuke, S. E., Ndlovu, S., & Heydenrych, M. (2012). The heterogeneous coagulation and flocculation of brewery wastewater using carbon nanotubes. Water Research, 46(4), 1185-1197.</p><p></p><p>Sime Darby. (2014). Palm oil facts and figures. http://online.fliphtml5.com/ioag/tkkz/.</p><p></p><p>Simonescu, C. M., Ttru, A., Culi, D. C., Stnic, N., Ionescu, I. A., Butoi, B., & Banici, A.-M. (2021). Comparative study of CoFe2O4 nanoparticles and CoFe2O4-chitosan composite for congo red and methyl orange removal by adsorption. Nanomaterials, 11, 711.</p><p></p><p>Sin, J. -C., Chin, Y. -H., & Lam, S. -M. (2019). WO3/Nb2O5 nanoparticles-decorated hierarchical porous ZnO microspheres for enhanced photocatalytic degradation of palm oil mill effluent and simultaneous production of biogas. Key Engineering Materials, 821, 379385.</p><p></p><p>Singh, G., Huan, L. K., Leng, T., & Kow, D. L. (1999). Oil palm and the environment: a malaysian perspective. Publisher Malaysian Oil Palm Growers Council, Kuala Lumpur. https://agris.fao.org/agris- search/search.do?recordID=XF2015044246</p><p></p><p>Singh, R. P., Ibrahim, M. H., Esa, N., & Iliyana, M. S. (2010). Composting of waste from palm oil mill: a sustainable waste management practice. Reviews in Environment Science and Biotechnology, 9, 331-344.</p><p></p><p>Sklute, E. C., Kashyap, S., Dyar, M. D., Holden, J. F., Tague, T., Wang, P., & Jaret,</p><p>S. J. (2017). Spectral and morphological characteristics of synthetic nanophase iron (oxyhydr)oxides. Physics and Chemistry of Minerals, 45(1), 126.</p><p></p><p>Soetrisnanto, D., & Hadiyanto, H. (2014). Phytoremediation of palm oil mill effluent by using Pistia Stratiotes Plant and Algae Spirulina sp for Biomass Production. International Journal of Engineering, 27(12), 1809-1814.</p><p></p><p>Song, J., Zhang, F., Huang, Y., Keller, A. A., Tang, X., Zhang, W., Jia, W., & Santos,</p><p>J. (2018). Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environmental Science: Nano, 5(6), 1341-1349.</p><p></p><p>Song, Q., Zhao, H., Chang, S., Yang, L., Zou, F., Shu, X., & Zhang, P. (2020).Study on the catalytic pyrolysis of coal volatiles over hematite for the production of light tar. Journal of Analytical and Applied Pyrolysis, 151, 104927.</p><p></p><p>Stolarski, M., Eichholz, C., Fuchs, B., & Nirschl, H. (2007). Sedimentation acceleration of remanent iron oxide by magnetic flocculation. China Particuology, 5(1-2), 145150.</p><p></p><p>Subramaniam, M. N., Goh, P. S., Lau, W. J., Ng, B. C., & Ismail, A. F. (2018). AT- POME colour removal through photocatalytic submerged filtration using antifouling PVDF-TNT nanocomposite membrane. Separation and Purification Technology, 191, 266275.</p><p></p><p>Subramaniam, M. N., Goh, P. S., Lau, W. J., Tan, Y. H., Ng, B. C., & Ismail, A. F. (2017). Hydrophilic hollow fiber PVDF ultrafiltration membrane incorporated with titanate nanotubes for decolourization of aerobically-treated palm oil mill effluent. Chemical Engineering Journal, 316, 101110.</p><p></p><p>Subramaniam, M. N., Goh, P. S., Sevgili, E., Karaman, M., Lau, W. J., & Ismail, A.</p><p>F. (2020). Hydroxypropyl methacrylate thin film coating on polyvinylidene fluoride hollow fiber membranes via initiated chemical vapor deposition. European Polymer Journal, 122, 109360.</p><p></p><p>Sun, S. -N., Wei, C., Zhu, Z. -Z., Hou, Y.- L., Venkatraman, S. S., & Xu, Z. -C. (2014). Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B, 23(3), 037503.</p><p></p><p>Sun, S., & Zeng, H. (2002). Size-controlled synthesis of magnetite nanoparticles.</p><p>Journal of the American Chemical Society, 124(28), 8204-8205.</p><p></p><p>Sun, Y., Zhou, S., Chiang, P. -C., & Shah, K. J. (2020).Evaluation and Optimization of Enhanced Coagulation Process: Water and Energy Nexus. Water-Energy Nexus. 2(1), 25-36.</p><p></p><p>Suopajrvi, T., Liimatainen, H., Hormi, O., & Niinimki, J. (2013). Coagulation flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chemical Engineering Journal, 231, 59-67.</p><p></p><p>Suppiah, D. D., & Abd Hamid, S. B. (2016). One step facile synthesis of ferromagnetic magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 414, 204208.</p><p></p><p>Tabassum, S., Zhang, Y., & Zhang, Z. (2015). An integrated method for palm oil mill effluent (POME) treatment for achieving zero liquid discharge A pilot study. Journal of Cleaner Production, 95, 148155.</p><p></p><p>Tadza, M. Y. M., Ghani, N. A. F., & Sobani, H. H. M. (2016). Evaluation of sludge from coagulation of palm oil mill effluent with chitosan based coagulant. Jurnal Teknologi, 78(5-4), 19-22.</p><p></p><p>Talaiekhozani, A., Bagheri, M., Goli, A., & Khoozani, M. R. T. (2016). An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. Journal of Environmental Management, 170, 186-206.</p><p></p><p>Tan, I. A. W., Jamali, N. S., & Ting, W. H. T. (2019). Phytoremediation of palm oil mill effluent (POME) using Eichhornia crassipes. Journal of Applied Science and Process Engineering, 6(1), 340-354.</p><p></p><p>Tan, S. P., Kong, H. F., Bashir, M. J. K., Lo, P. K., Ho, C. D. & Ng, C. A. (2017).</p><p>Treatment of palm oil mill effluent using combination system of microbial fuel cell and anaerobic membrane bioreactor. Bioresource Technology, 245, 915-924.</p><p></p><p>Tan, Y. H., Goh, P. S., Ismail, A. F., Ng, B. C., & Lai, G. S. (2017). Decolourization of aerobically treated palm oil mill effluent (AT-POME) using polyvinylidene fluoride (PVDF) ultrafiltration membrane incorporated with coupled zinc-iron oxide nanoparticles. Chemical Engineering Journal, 308, 359369.</p><p></p><p>Tang, R., Chen, J., Zeng, Q., Li, Y., Liang, X., Yang, B., & Wang, Y. (2020). Study on the High-Pressure Behavior of Goethite up to 32 GPa Using X-Ray Diffraction, Raman, and Electrical Impedance Spectroscopy. Minerals, 10(2), 99.</p><p></p><p>Tanikkul, P., & Pisutpaisal, N. (2014). Biohydrogen production under thermophilic condition from ozonated palm oil mill effluent. Energy Procedia. 61, 1234 1238.</p><p></p><p>Tanikkul, P., Boonyawanich, S.,& Pisutpaisal, N. (2019b). Production of methane from ozonated palm oil mill effluent. International Journal of Hydrogen Energy, 44(56), 29561-29567.</p><p></p><p>Tanikkul, P., Booyawanich, S., & Pisutpaisal, N. (2019a). Ozonation aided mesophilic biohydrogen production from palm oil mill effluent. International Journal of Hydrogen Energy, 44(11), 5182-5188.</p><p></p><p>Tanikkul, P., Chantoom, K., Phoochinda, W., & Pisutpaisal, N. (2014). Improvement of biomethane production yield from palm oil mill effluent using ozonation process. Energy Procedia. 61, 22392243.</p><p></p><p>Tariq, M. A., Sethu, V., Arumugasamy, S. K., & Selvarajoo, A. (2020). Rambutan and fenugreek seeds for the treatment of palm oil mill effluent (POME) and its feed forward artificial neural network (FANN) modeling. Research Communication in Engineering Science and Technology, 4, 1-14.</p><p></p><p>Terbojevich, M., Cosani, A., Focher, B., Naggi, A., & Torri, G. (1992). Chitosans from Euphausia superba. 1: Solution properties. Carbohydrate Polymers, 18(1), 3542.</p><p></p><p>Testa Anta, M., Ramos-Docampo, M. A., Comesaa-Hermo, M., Rivas-Murias, B., & Salgueirio, V. (2019). Raman Spectroscopy to unravel Magnetic Properties of Iron Oxide Nanocrystals for Bio-related Applications. Nanoscale Advance,1, 2086-2103.</p><p></p><p>Towe, K. M., & Bradley, W. F. (1967). Mineralogical constitution of colloidal</p><p>hydrous ferric oxides. Journal of Colloid and Interface Science, 24(3), 384 392.</p><p></p><p>Tripathi, N., Choppala, G., Singh, R. S., & Hills, C. D. (2018). Impact of modified chitosan on pore water bioavailability of zinc in contaminated soils. Journal of Geochemical Exploration, 186, 94-99.</p><p></p><p>United States Department of Agriculture. (2021). Oilseeds: world markets and trade. https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade.</p><p></p><p>United States Environmental Protection Agency. (2021). Types of Drinking Water contaminants. https://www.epa.gov/ccl/types-drinking-water-contaminants.</p><p></p><p>US Environmental Protection Agency (2002). Wastewater Technology Fact Sheet: Facultative Lagoons, US Environmental Protection Agency. https://www3.epa.gov/npdes/pubs/faclagon.pdf</p><p></p><p>USGS (2020). U.S. Geological Survey. Nutrients and Eutrophication. https://www.usgs.gov/mission-areas/water-resources/science/nutrients-and- eutrophication?qt-science_center_objects=0#qt-science_center_objects.</p><p></p><p>Usov, N. A., Rytov, R. A., & Bautin, V. A. (2021). Properties of assembly of superparamagnetic nanoparticles in viscous liquid. Scientific Reports, 11(1), 6999.</p><p></p><p>Vandamme, D., Eyley, S., Mooter, G. V. D., Muylaert, K., & Thielemans, W. (2015). Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Bioresource Technology, 194, 270-275.</p><p></p><p>Vandamme, D., Foubert, I., Fraeye, I., & Muylaert, K. (2012). Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresource Technology, 124, 508511.</p><p></p><p>Vijaya, S., Ma, A. N., & Choo, Y. M. (2010). Capturing biogas: a means to reduce greenhouse gas emissions for the production of crude palm oil. American Journal of Geoscience, 1(1), 1-6.</p><p></p><p>Vikram, S., Vasanthakumari, R., Tsuzuki, T., & Rangarajan, M. (2016). Investigations of suspension stability of iron oxide nanoparticles using time- resolved UVvisible spectroscopy. Journal of Nanoparticle Research, 18, 272.</p><p></p><p>Villacs-Garca, M., Ugalde-Arzate, M., Vaca-Escobar, K., Villalobos, M., Zanella, R., & Martnez-Villegas, N. (2015). Laboratory synthesis of goethite and ferrihydrite of controlled particle sizes. Boletn de la Sociedad Geolgica Mexicana, 67(3), 433-446.</p><p></p><p>Villalobos, M., & Leckie, J. O. (2001).Surface Complexation Modeling and FTIR Study of Carbonate Adsorption to Goethite. Journal of Colloid and Interface Science, 235(1), 1532.</p><p></p><p>Vopson, M. M., Belusky, M., & Lepadatu, S. (2020). Diamagnetic coupling for magnetic tuning in nano-thin films. Applied Physics Letters, 116(25), 252402.</p><p></p><p>Wafti, N. S. A., Lau, H. L. N., Loh, S. K., Aziz, A. A., Rahman, Z. A., & May, C. Y.</p><p>(2017). Activated carbon from oil palm biomass as potential adsorbent for palm oil mill effluent treatment. Journal of Oil Palm Research, 29(2), 278- 290.</p><p></p><p>Wahi, R., Abdullah, L. C., Mobarekeh, M. N., Ngaini, Z., & Yaw, T. C. S. (2017). Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. Journal of Environmental Chemical Engineering, 5(1), 170177.</p><p></p><p>Wahyuni, S., Siswanto, & Putera, S. M. (2017). Formulasi komposisi membran kitosan dan optimasi pengadukan dalam penurunan kandungan padatan limbah cair kelapa sawit. Widyariset, 3(1), 35-46.</p><p></p><p>Wallyn, J., Anton, N., & Vandamme, T. F., (2019). Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applicationsA review. Pharmaceutics, 11(11), 601.</p><p></p><p>Walter, A., Garofalo, A., Parat, A., Martinez, H., Felder-Flesch, D., & Begin-Colin, S. (2015). Functionalization strategies and dendronization of iron oxide nanoparticles. Nanotechnology Reviews, 4(6), 581-593.</p><p></p><p>Wang, D., Yu, H., Fan, X., Gu, J., Ye, S., Yao, J., & Ni, Q. (2018). High aspect ratio carboxylated cellulose nanofibers crosslinked to robust aerogels for superabsorptionflocculants: paving way from nanoscale to macroscale. ACS Applied Materials & Interfaces, 10(24), 20755-20766.</p><p></p><p>Wang, J., Cao, L., & Han, S. (2014). Effect of polymeric cold flow improvers on flow properties of biodiesel from waste cooking oil. Fuel, 117(Part A), 876881.</p><p></p><p>Wang, K., Ran, T., Yu, P., Chen, L., Zhao, J., Ahmad, A., Ramzan, N., Xu, X., Xu, Y., & Shi, Y. (2021). Evaluation of renewable pH-responsive starch-based flocculant on treating and recycling of highly saline textile effluents. Environmental Research, 201, 111489.</p><p></p><p>Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The Critical Role of Potassium in Plant Stress Response. International Journal of Molecular Sciences, 14(4), 73707390.</p><p></p><p>Wang, T., Jin, Y., Wang, Z., & Yu, Z. (1998). A study of the morphology of the goethite crystallization process. Chemical Engineering Journal, 69(1), 15.</p><p></p><p>Wang, T., Yang, W. L., Hong, Y., & Hou, Y. L. (2016). Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae. Chemical Engineering Journal, 297, 304-314.</p><p></p><p>Wang, Y., Muramatsu, A., & Sugimoto, T. (1998). FTIR analysis of well-defined - Fe2O3 particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134(3), 281297.</p><p></p><p>Wang, Z., Wang, C., Wang, P., Qian, J., Hou, J., Ao, Y., & Wu, B. (2015). The performance of chitosan/montmorillonite nanocomposite during the flocculation and floc storage processes of Microcystis aeruginosa cells. Environmental Science and Pollution Research, 22(14), 11148-61.</p><p></p><p>Wellen, K. E., & Thompson, C. B. (2010). Cellular metabolic stress: considering how cells respond to nutrient excess. Molecular Cell, 40(2), 323332.</p><p></p><p>Williams, P. Jle. B., Laurens, L. M. L. (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science, 3, 554590.</p><p></p><p>Wisconsin Department of Natural Resources. (2013). Introduction to ponds, lagoons, and natural systems study guide.</p><p></p><p>Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57-55.</p><p></p><p>Wong, K. -A., Lam, S. -M., & Sin, J. -C. (2019). Wet chemically synthesized ZnO structures for photodegradation of pre-treated palm oil mill effluent and antibacterial activity. Ceramics International, 45(2), 1868-1880.</p><p></p><p>World Wildlife Fund. (2020) 8 Things to know about palm oil https://www.wwf.org.uk/updates/8-things-know-about-palm-oil</p><p></p><p>Wu, F. C., Tseng, R. L., & Juang, R. S. (2000). Comparative adsorption of metal and dye on flake- and bead- types of chitosans prepared from fishery wastes. Journal of Hazardous Materials, 73(1), 63-75.</p><p>Wu, H., & Qiao, Y. (2021). Microscopy techniques for protocell characterization.</p><p>Polymer Testing, 93, 106935.</p><p></p><p>Wu, T. Y., Mohammad, A. W., Jahim, J. M., & Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end- of-pipe processes. Journal of Environmental Management, 91(7), 1467-1490.</p><p></p><p>Wu, T., & Zivanovic, S. (2008). Determination of the degree of acetylation (DA) of chitin and chitosan by an improved first derivative UV method. Carbohydrate Polymers, 73(2), 248-253.</p><p></p><p>Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters, 3(11), 397 415.</p><p></p><p>Wu, W., Wu, Z., Yu, T., Jiang, C., & Kim, W. -S. (2015).Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials, 16(2), 023501.</p><p></p><p>Wun, W. L., Chua, G. K., & Chin, S. Y. (2017). Effect of palm oil mill effluent (POME) treatment by activated sludge. Journal Clean WAS. 1(2), 06-09.</p><p></p><p>Xiaohua, W., & Jiancheng, J. (2012). Effect of Heating Rate on the Municipal Sewage Sludge Pyrolysis Character. Energy Procedia, 14, 16481652.</p><p></p><p>Xing, Y., Li, X., Guo, X., Li, W., Chen, J., Liu, Q., Xu, Q., Wang, Q., Yang, H., & Bi, X. (2020). Effects of different TiO2 nanoparticles concentrations on the physical and antibacterial activities of chitosan-based coating film. Nanomaterials, 10(7), 1365.</p><p></p><p>Xu, L. H., Patil, D. S., Yang, J., & Xiao, J. (2015). Metal oxide nanostructure: synthesis, properties, and applications. Journal of Nanotechnology, 2015, 1-2.</p><p></p><p>Xu, Y., Gan, K., Liang, S., Liu, H., & Wang, Q. (2021). Investigation and Optimization of Chitosan Performance in Flocculating Kaolin Suspensions Using a Real-Time Suspending Solid Concentration Measuring Method. Water, 13(4), 513.</p><p></p><p>Yacob, S., Hassan, M. A., Shirai, Y., Wakisaka, M., & Subash, S. (2006). Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Science of the Total Environment, 366, 187-196.</p><p></p><p>Yang, R., Li, H., Huang, M., Yang, H., & Li, A. (2016). A review on chitosan-based flocculants and their applications in water treatment. Water Research, 95, 59- 89.</p><p></p><p>Yang, Z., Miao, H., Rui, Z., & Ji, H. (2019). Enhanced formaldehyde removal from air using fully biodegradable chitosan grafted -cyclodextrin adsorbent with weak chemical interaction. Polymers, 11(2), 276.</p><p></p><p>Yilmaz Atay H. (2020). Antibacterial activity of chitosan-based systems. Functional Chitosan: Drug Delivery and Biomedical Applications, 457489.</p><p></p><p>Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources, structure, properties and applications. Marine Drugs, 13(3), 1133- 1174.</p><p></p><p>Young, N. J., Coley, M. D., & Greenaway, A. M. (2019). Mineralogical investigations of Jamaican hematite-rich and goethite-rich bauxites using XRD and solid state 27Al and 31P MAS NMR spectroscopy. Journal of Geochemical Exploration, 200, 5476.</p><p></p><p>Yu, H. Y., Zhang, D. Z., Lu, F. F., & Yao, J. (2016). New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustainable Chemistry & Engineering, 4, 2632-2643.</p><p></p><p>Yu, W., Wang, C., Wang, G., & Feng, Q. (2020). flocculation performance and kinetics of magnetic polyacrylamide microsphere under different magnetic field strengths. Journal of Chemistry, 2020, 19.</p><p></p><p>Yuan, Y., Chesnutt, B. M., Haggard, W. O., & Bumgardner, J. D. (2011). Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials (Basel), 4(8), 1399-1416.</p><p></p><p>Yusoff, S. N. M., Kamari, A., Ishak, S., & Halim, A. L. A. (2018). N-hexanoyl-O- glycol chitosan as a carrier agent for water insoluble herbicide. Journal of Physics: Conference Series, 1097, 012053.</p><p></p><p>Zahrim, A. Y., Dexter, Z. D., Joseph, C. G., & Hilal, N. (2017). Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: Decolourisation, kinetics and phytotoxicity studies. Journal of Water Process Engineering, 16, 258269.</p><p></p><p>Zaied, B. K., Nasrullah, M., Siddique, M. N. I., Zularisam, A. W., Singh, L., Krishnan, S. (2020). Enhanced bioenergy production from palm oil mill effluent by co-digestion in solar assisted bioreactor: Effects of hydrogen peroxide pretreatment. Journal of Environmental Chemical Engineering, 8(2), 103551.</p><p></p><p>Zainal, N. H., Jalani, N. F, Mamat, R. & Astimar, A. A. (2017). A review on the development of palm oil mill effluent (POME) final discharge polishing treatments. Journal of Oil Palm Research, 29(4), 528-540.</p><p></p><p>Zainuri, N. Z., Hairom, N. H. H., Sidik, D. A. B., Desa, A. L., Misdan, N., Yusof, N., & Mohammad, A. W. (2018). Palm oil mill secondary effluent (POMSE) treatment via photocatalysis process in presence of ZnO-PEG nanoparticles. Journal of Water Process Engineering, 26, 1016.</p><p></p><p>Zangeneh, H., Zinatizadeh, A. A., & Zinadini, S. (2020). Self-cleaning properties of L-Histidine doped TiO2-CdS/PES nanocomposite membrane: Fabrication, characterization and performance. Separation and Purification Technology, 240, 116591.</p><p></p><p>Zarei Mahmoudabadi, T., Ehrampoush, M. H., Talebi, P., Fouladi-Fard, R., & Eslami,</p><p>H. (2021). Comparison of poly ferric chloride and poly titanium tetrachloride in coagulation and flocculation process for paper and cardboard wastewater treatment. Environmental Science and Pollution Research, 28, 2726227272.</p><p></p><p>Zargar, V., Asghari, M., & Dashti, A. (2015). A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2(3), 204226.</p><p></p><p>Zhang, M., & Li, J. (2009). Carbon nanotube in different shapes. Materials Today, 12, 12-18.</p><p></p><p>Zhang, M., Dong, H., Zhao, L., Wang, D., & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110-121.</p><p></p><p>Zhang, X., Gu, W. J., Li, H., Chi, H., & Chen, L. (2010). Flocculation of reed pulp suspensions by quaternary chitosan-nanoparticle SiO2 retention aid systems. Journal of Applied Polymer Science, 117(2), 742749.</p><p></p><p>Zhou, Q., Yu, Z., & Ma, Y. (2019). Review on the application of magnetic flocculation technology in water treatment. IOP Conference Series: Earth and Environmental Science, 295, 042107.</p><p></p><p>Zhou, X. (2016). Cationic cellulose nanocrystals (CNCs) for organic and inorganic colloids flocculation . Masters thesis. University of Waterloo. http://hdl.handle.net/10012/10235</p><p></p><p>Zhou, Y., Franks, G. V. (2006). Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir, 22, 6775-6786.</p><p></p><p>Zinatizadeh, A. A., Ibrahim, S., Aghamohammadi, N., Mohamed, A. R., Zangeneh, H., & Mohammadi, P. (2017). Polyacrylamide-induced coagulation process removing suspended solids from palm oil mill effluent. Separation Science and Technology, 52(3), 520527.</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p>