Influence of rainfall, air temperature, physical and chemical water profiles on Cyanobacteria Biovolume in Slim River lake, Perak, Peninsular Malaysia

<p>This study aimed to identify the influence of rainfall, air temperature, physical and</p><p>chemical water profiles on cyanobacteria biovolume in Slim River Lake, Perak,</p><p>Peninsular Malaysia. Water samples were collected t...

Full description

Saved in:
Bibliographic Details
Main Author: Yonis Ahmed Kitan
Format: thesis
Language:eng
Published: 2022
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=9663
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ir.upsi.edu.my:9663
record_format uketd_dc
institution Universiti Pendidikan Sultan Idris
collection UPSI Digital Repository
language eng
topic TD Environmental technology
Sanitary engineering
spellingShingle TD Environmental technology
Sanitary engineering
Yonis Ahmed Kitan
Influence of rainfall, air temperature, physical and chemical water profiles on Cyanobacteria Biovolume in Slim River lake, Perak, Peninsular Malaysia
description <p>This study aimed to identify the influence of rainfall, air temperature, physical and</p><p>chemical water profiles on cyanobacteria biovolume in Slim River Lake, Perak,</p><p>Peninsular Malaysia. Water samples were collected twice per month for 12 months in five</p><p>sampling stations (S1-S5) to represent the lakes overall condition. Samplings were</p><p>consistently conducted at the same time in the morning to reduce the influence of</p><p>surrounding air temperature variations. The physical, chemical, and biological parameters</p><p>were analysed according to American Public Health Association (APHA) standard</p><p>methods. Rainfall and air temperature data were obtained from the Malaysian</p><p>Meteorological Department. Data were successfully collected and the results indicated</p><p>that Slim River Lake's physical, chemical, and biological water profiles were highly</p><p>variable on a temporal scale. Total phosphorus, total nitrogen, chemical oxygen demand,</p><p>chlorophyll-a and biovolumes of Microcystis spp. were recorded as 0.20-1.96 mg/L, 1.0-</p><p>4.2 mg/L, 9.50-82.0 mg/L, 2.08-132.05 g/L, 6.13106- 1.65108 m3 /mL, respectively.</p><p>These parameters were recorded at levels exceeding the recommended limit values by</p><p>National Lake Water Quality Criteria and Standards (NLWQS). Temporal fluctuations in</p><p>physical, chemical, and biological profiles cannot be generalized into similar patterns.</p><p>Rainfall and air temperature ranged as 36.3-642.5mm and 30.71-35.0oC, respectively.</p><p>Rainfall and air temperature explained up to 72.3% and 77.3% variation in lake water</p><p>quality. Multivariate Principal Component Analysis (PCA) suggested that 71.5% of</p><p>chlorophyll-a variation and 70.2% of Microcystis spp. biovolumes variation can be</p><p>explained by changes in rainfall, air temperature, physical and chemical water parameters.</p><p>In conclusion, this study successfully showed that the physical, chemical and biological</p><p>profiles in the Slim River Lake are variable and influenced by the variability of local</p><p>rainfall and air temperature. Moreover, parameters included in the PCA analysis can</p><p>largely explain temporal changes of cyanobacteria biovolume. In implication, the study</p><p>outputs are useful for lake quality assessment and rehabilitation strategy formulation to</p><p>mitigate the impact of changes in physical, chemical and biological profiles.</p>
format thesis
qualification_name
qualification_level Doctorate
author Yonis Ahmed Kitan
author_facet Yonis Ahmed Kitan
author_sort Yonis Ahmed Kitan
title Influence of rainfall, air temperature, physical and chemical water profiles on Cyanobacteria Biovolume in Slim River lake, Perak, Peninsular Malaysia
title_short Influence of rainfall, air temperature, physical and chemical water profiles on Cyanobacteria Biovolume in Slim River lake, Perak, Peninsular Malaysia
title_full Influence of rainfall, air temperature, physical and chemical water profiles on Cyanobacteria Biovolume in Slim River lake, Perak, Peninsular Malaysia
title_fullStr Influence of rainfall, air temperature, physical and chemical water profiles on Cyanobacteria Biovolume in Slim River lake, Perak, Peninsular Malaysia
title_full_unstemmed Influence of rainfall, air temperature, physical and chemical water profiles on Cyanobacteria Biovolume in Slim River lake, Perak, Peninsular Malaysia
title_sort influence of rainfall, air temperature, physical and chemical water profiles on cyanobacteria biovolume in slim river lake, perak, peninsular malaysia
granting_institution Universiti Pendidikan Sultan Idris
granting_department Fakulti Sains dan Matematik
publishDate 2022
url https://ir.upsi.edu.my/detailsg.php?det=9663
_version_ 1783730288100114432
spelling oai:ir.upsi.edu.my:96632023-11-07 Influence of rainfall, air temperature, physical and chemical water profiles on Cyanobacteria Biovolume in Slim River lake, Perak, Peninsular Malaysia 2022 Yonis Ahmed Kitan TD Environmental technology. Sanitary engineering <p>This study aimed to identify the influence of rainfall, air temperature, physical and</p><p>chemical water profiles on cyanobacteria biovolume in Slim River Lake, Perak,</p><p>Peninsular Malaysia. Water samples were collected twice per month for 12 months in five</p><p>sampling stations (S1-S5) to represent the lakes overall condition. Samplings were</p><p>consistently conducted at the same time in the morning to reduce the influence of</p><p>surrounding air temperature variations. The physical, chemical, and biological parameters</p><p>were analysed according to American Public Health Association (APHA) standard</p><p>methods. Rainfall and air temperature data were obtained from the Malaysian</p><p>Meteorological Department. Data were successfully collected and the results indicated</p><p>that Slim River Lake's physical, chemical, and biological water profiles were highly</p><p>variable on a temporal scale. Total phosphorus, total nitrogen, chemical oxygen demand,</p><p>chlorophyll-a and biovolumes of Microcystis spp. were recorded as 0.20-1.96 mg/L, 1.0-</p><p>4.2 mg/L, 9.50-82.0 mg/L, 2.08-132.05 g/L, 6.13106- 1.65108 m3 /mL, respectively.</p><p>These parameters were recorded at levels exceeding the recommended limit values by</p><p>National Lake Water Quality Criteria and Standards (NLWQS). Temporal fluctuations in</p><p>physical, chemical, and biological profiles cannot be generalized into similar patterns.</p><p>Rainfall and air temperature ranged as 36.3-642.5mm and 30.71-35.0oC, respectively.</p><p>Rainfall and air temperature explained up to 72.3% and 77.3% variation in lake water</p><p>quality. Multivariate Principal Component Analysis (PCA) suggested that 71.5% of</p><p>chlorophyll-a variation and 70.2% of Microcystis spp. biovolumes variation can be</p><p>explained by changes in rainfall, air temperature, physical and chemical water parameters.</p><p>In conclusion, this study successfully showed that the physical, chemical and biological</p><p>profiles in the Slim River Lake are variable and influenced by the variability of local</p><p>rainfall and air temperature. Moreover, parameters included in the PCA analysis can</p><p>largely explain temporal changes of cyanobacteria biovolume. In implication, the study</p><p>outputs are useful for lake quality assessment and rehabilitation strategy formulation to</p><p>mitigate the impact of changes in physical, chemical and biological profiles.</p> 2022 thesis https://ir.upsi.edu.my/detailsg.php?det=9663 https://ir.upsi.edu.my/detailsg.php?det=9663 text eng closedAccess Doctoral Universiti Pendidikan Sultan Idris Fakulti Sains dan Matematik <p>Abbasi Hassan Abadi, S., Najafi, P., Baharlouei, J., & Mohammadi Ghahsareh, A. (2021). Evaluation of lemna minor and cyanobacteria effect in aerated and non-aerated conditions on biological oxygen demand (BOD), dissolved chemical oxygen (COD), total coliform and faecal coliform of municipal and industrial wastewater. International Journal of Environmental Analytical Chemistry, 1-13.</p><p>Abdelwahab, H. E., & Amin, A. S. (2019). Multivariate Analyses of Physicochemical Factors Controlling Cyanobacteria Biodiversity in Al-Lith Thermal Springs, KSA. Egyptian Academic Journal of Biological Sciences, H. Botany, 10(1), 45-58.</p><p>Aeriyanie, A. R., Sinang, S. C., Nayan, N., & Song, H. (2021). Comparison of water level and eutrophication indicators during the wet and dry period in a eutrophic urban lake. Acta Ecologica Sinica, 41(2), 73-78.</p><p>Aeriyanie, A. R., Sinang, S. C., Nayan, N., & Song, H. (2021). Comparison of water level and eutrophication indicators during the wet and dry period in a eutrophic urban lake. Acta Ecologica Sinica, 41(2), 73-78.</p><p>Ahuja, S. (2019). Overview: Evaluating water quality to prevent future disasters. Separation Science and Technology, 11, 1-12.</p><p>Alcntara, A. R. (2018). Biotransformations in drug synthesis: A green and powerful tool for medicinal chemistry. J. Med. Chem. Drug Des, 1, 1-7.</p><p>Alexander, T. J., Vonlanthen, P., & Seehausen, O. (2017). Does eutrophication-driven evolution change aquatic ecosystems? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1712), 20160041.</p><p>Aliyu, A. D., Go, R., Omar, H., Sharifuddin, S. S., Muhammad, A., & Fazli, B. (2019). Water quality characteristic of the national hydraulic research institute of Malaysia (NAHRIM) lake undergoing remediation by the constructed wetlands: A baseline study. Pertanika Journal of Science and Technology, 27(2), 565587.</p><p>Alghanmi, H. A., Foad, M. A., & Al-Taee, M. M. (2018). Effect of light and temperature on new cyanobacteria producers for geosmin and 2-methylisoborneol. Journal of Applied Phycology, 30(1), 319-328.</p><p>Alprol, A. E., Heneash, A. M., Soliman, A. M., Ashour, M., Alsanie, W. F., Gaber, A., & Mansour,</p><p>A. T. (2021). Assessment of Water Quality, Eutrophication, and Zooplankton Community in Lake Burullus, Egypt. Diversity, 13(6), 268.</p><p>Ashraf, M. A., Maah, M. J., & Yusoff, I. (2010). Water quality characterization of varsity lake, University of Malaya, Kuala Lumpur, Malaysia. E-Journal of Chemistry, 7(S1), S245-S254.</p><p>Ansari, A. A., Gill, S. S., Khan, F. A., & Naeem, M. (2014). Phytoremediation systems for the recovery of nutrients from eutrophic waters. In Eutrophication: causes, consequences and control (pp. 239-248). Springer, Dordrecht.</p><p>Ansari, A. A., Ori, L., & Ramnarain, Y. I. (2020). An Effective Organic Waste Recycling Through Vermicompost Technology for Soil Health Restoration. In Soil Health Restoration and Management (pp. 83-112). Springer, Singapore.</p><p>APHA. (1985). Standard Methods for the Examination of Water and Wastewater (16th ed.). American Public Health Association, American Water Works Association, Water Environment Federation. Washington, DC.</p><p>Arab, S., Hamil, S., Rezzaz, M. A., Chaffai, A., & Arab, A. (2019). Seasonal variation of water quality and phytoplankton dynamics and diversity in the surface water of Boukourdane Lake, Algeria. Arabian Journal of Geosciences, 12 no (2).</p><p>Aubriot, L. (2019). Nitrogen availability facilitates phosphorus acquisition by bloom-forming cyanobacteria. FEMS microbiology ecology 95, no. 2 (2019): fiy229.</p><p>Bajard, M., Etienne, D., Quinsac, S., Dambrine, E., Sabatier, P., Frossard, V., ... & Dorioz, J. M. (2018). Legacy of early anthropogenic effects on recent lake eutrophication (Lake Bnit, northern French Alps). Anthropocene, 24, 72-87.</p><p>Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: a review. Sustainable Water Resources Management, 2(2), 161-173.</p><p>Baulch, H. M., Elliott, J. A., Cordeiro, M. R., Flaten, D. N., Lobb, D. A., & Wilson, H. F. (2019). Soil and water management: Opportunities to mitigate nutrient losses to surface waters in the northern Great Plains. Environmental Reviews, 27(4), 447-477.</p><p>Beaulieu, M., Pick, F., & Gregory-Eaves, I. (2013). Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnology and Oceanography, 58(5), 1736-1746.</p><p>Benayache, N. Y., Nguyen-Quang, T., Hushchyna, K., McLellan, K., Afri-Mehennaoui, F. Z., & Bouacha, N. (2019). An overview of cyanobacteria harmful algal bloom (CyanoHAB) issues in freshwater ecosystems. In Limnology-Some New Aspects of Inland Water Ecology. IntechOpen.</p><p>Ben-Eledo, V. N., Kigigha, L. T., Izah, S. C., & Eledo, B. O. (2017). Water quality assessment of Epie creek in Yenagoa metropolis, Bayelsa state, Nigeria. Archives of Current Research International, 8(2): p 1-24, 2017; Article no.ACRI.34504</p><p>Beck, R., Xu, M., Zhan, S., Johansen, R., Liu, H., Tong, S., & Huang, Y. (2019). Comparison of satellite reflectance algorithms for estimating turbidity and cyanobacterial concentrations in productive freshwaters using hyperspectral aircraft imagery and dense coincident surface observations. Journal of Great Lakes Research, 45(3), 413-433.</p><p>Berry, M. A., Davis, T. W., Cory, R. M., Duhaime, M. B., Johengen, T. H., Kling, G. W., & Denef, V. J. (2017). Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities. Environmental microbiology, 19(3), 1149-1162.</p><p>Bertani, I., Steger, C. E., Obenour, D. R., Fahnenstiel, G. L., Bridgeman, T. B., Johengen, T. H., .& Scavia, D. (2017). Tracking cyanobacteria blooms: Do different monitoring approaches tell the same story? Science of the Total Environment, 575, 294-308.</p><p>Beversdorf, L. J., Miller, T. R., & McMahon, K. D. (2013). The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake. PloS one, 8(2), e56103.</p><p>Bertone, E., Burford, M. A., & Hamilton, D. P. (2018). Fluorescence probes for real-time remote cyanobacteria monitoring: a review of challenges and opportunities. Water research, 141, 152-162.</p><p>Bhagowati, B., & Ahamad, K. U. (2018). A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol Hydrobiol 19: 155166.</p><p>Bhagowati, B., & Ahamad, K. U. (2019). A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrology & Hydrobiology, 19(1), 155-166.</p><p>Bing, Z., Xiaoli, C., Sen, W., & Xinxin, Y. (2020). Analysis of the Causes of Cyanobacteria Bloom: A Review. Journal of Resources and Ecology, 11(4), 405-413.</p><p>Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems, J., Stehfest, E. (2013). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 19002050 period. Proceedings of the National Academy of Sciences of the United States of America , 110(52), 2088220887.</p><p>Boyd, C. E. (2020). Suspended Solids, Color, Turbidity, and Light. In Water Quality (pp. 119-133). Springer, Cham.</p><p>Boyd, C.E. (2015). 2nd edition. Water quality: An Introduction. Springer International Publishing.</p><p>Braaten, H. F. V., kerblom, S., Kahilainen, K. K., Rask, M., Vuorenmaa, J., Mannio, J., & Kashulin, N. (2019). Improved environmental status: 50 years of declining fish mercury levels in boreal and subarctic Fennoscandia. Environmental science & technology, 53(4), 1834- 1843.</p><p>Brnmark, C., & Hansson, L. A. (2017). The biology of lakes and ponds. Oxford University Press. Brophy, M. (2019). Understanding Water Quality and The Presence of Microcystin-Lr in A Small Drinking Water Supply. Dalhousie University Halifax, Nova Scotia March 2018.</p><p>Brown, A. R., Lilley, M., Shutler, J., Lowe, C., Artioli, Y., Torres, R., & Tyler, C. R. (2020). Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Reviews in Aquaculture, 12(3), 1663-1688.</p><p>Butcher, J. B., Nover, D., Johnson, T. E., & Clark, C. M. (2015). Sensitivity of lake thermal and mixing dynamics to climate change. Climatic Change, 129(1-2), 295-305.</p><p>Bulleri, F., Batten, S., Connell, S. D., Benedetti-Cecchi, L., Gibbons, M., Nugues, M. M., & Gribben, P. (2020). Human pressures and the emergence of novel marine ecosystems. In Oceanography and Marine Biology (pp. 456-535). CRC Press.</p><p>Bullerjahn, G. S., McKay, R. M., Davis, T. W., Baker, D. B., Boyer, G. L., DAnglada, L. V., & Wilhelm, S. W. (2016). Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae, 54, 223-238. Capasso, C. (2019). d-Carbonic anhydrases. In Carbonic Anhydrases (pp. 107-129). Academic Press.</p><p>Carlson, R. E. (1977). A trophic state index for lakes 1. Limnology and oceanography, 22(2), 361- 369.</p><p>Christensen, V. G., Maki, R. P., & Kiesling, R. L. (2013). Evaluation of internal loading and water level changes: Implications for phosphorus, algal production, and nuisance blooms in Kabetogama Lake, Voyageurs National Park, Minnesota. Lake and Reservoir Management, 29(3), 202-215.</p><p>Chen, G., Fang, Y., Huang, J., Zhao, Y., Li, Q., Lai, F., & Zhao, H. (2018). Duckweed systems for eutrophic water purification through converting wastewater nutrients to high-starch biomass: comparative evaluation of three different genera (Spirodela polyrhiza, Lemna minor and Landoltia punctata) in monoculture or polyculture. RSC advances, 8(32), 17927-17937.</p><p>Chen, G., Fang, Y., Huang, J., Zhao, Y., Li, Q., Lai, F., & Zhao, H. (2018). Duckweed systems for eutrophic water purification through converting wastewater nutrients to high-starch biomass: comparative evaluation of three different genera (Spirodela polyrhiza, Lemna minor and Landoltia punctata) in monoculture or polyculture. RSC advances, 8(32), 17927-17937.</p><p>Chaves, L. C. G., Lopes, F. B., Maia, A. R. S., Meireles, A. C. M., & Andrade, E. M. D. (2019). Water quality and anthropogenic impact in the watersheds of service reservoirs in the Brazilian semi-arid region1. Revista Cincia Agronmica, 50, 223-233.</p><p>Chaffin, J. D., Kane, D. D., Stanislawczyk, K., & Parker, E. M. (2018). Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Environmental science and pollution research, 25(25), 25175-25189.</p><p>Cody, E. M., Reagan, A. J., Mitchell, L., Dodds, P. S., & Danforth, C. M. (2015). Climate change sentiment on Twitter: An unsolicited public opinion poll. PloS one, 10(8), e0136092.</p><p>Cottingham, K. L., Ewing, H. A., Greer, M. L., Carey, C. C., & Weathers, K. C. (2015). Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere, 6(1), 1-19.</p><p>Cunha, D. G. F., do Carmo Calijuri, M., & Lamparelli, M. C. (2013). A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecological Engineering, 60, 126-134.</p><p>Deng, J., Salmaso, N., Jeppesen, E., Qin, B., & Zhang, Y. (2019). The relative importance of weather and nutrients determining phytoplankton assemblages differs between seasons in large Lake Taihu, China. Aquatic Sciences, 81(3), 48.</p><p>Descy, J.-P., Leprieur, F., Pirlot, S., Leporcq, B., Van Wichelen, J., Peretyatko, A., Wilmotte, A. (2016). Identifying the factors determining blooms of cyanobacteria in a set of shallow lakes. Ecological Informatics, 34, 129138.</p><p>De Santi, F., Luciani, G., Bresciani, M., Giardino, C., Lovergine, F. P., Pasquariello, G., & De Carolis, G. (2019). Synergistic use of Synthetic Aperture Radar and optical imagery to monitor surface accumulation of cyanobacteria in the Curonian Lagoon. Journal of Marine Science and Engineering, 7(12), 461.</p><p>Di Carvalho, J. A., & Wickham, S. A. (2019). Simulating eutrophication in a metacommunity landscape: an aquatic model ecosystem. Oecologia, 189(2), 461-474.</p><p>Ding, S., Chen, M., Gong, M., Fan, X., Qin, B., Xu, H., et al (2018). Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment, 625, 872884.</p><p>Dong, X., Zeng, S., Bai, F., Li, D., & He, M. (2016). Extracellular microcystin prediction based on toxigenic Microcystis detection in a eutrophic lake. Scientific reports, 6(1), 1-8.</p><p>Downing, J. A., Watson, S. B., & McCauley, E. (2001). Predicting cyanobacteria dominance in lakes. Canadian journal of fisheries and aquatic sciences, 58(10), 1905-1908.</p><p>Du, H., Chen, Z., Mao, G., Chen, L., Crittenden, J., Li, R. Y. M., & Chai, L. (2019). Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecological Indicators, 102, 686-692.</p><p>Dubey, D., & Dutta, V. (2020). Nutrient Enrichment in Lake Ecosystem and Its Effects on Algae and Macrophytes. In Environmental Concerns and Sustainable Development (pp. 81-126). Springer, Singapore.</p><p>Duarte, M. R. N., Pereira, T. M., Lima, P. D. F., Pereira, E. C. B., Lopes, F. B., & Rezende, C. F. (2021). Limnological dynamics in an artificial reservoir and intermittent river in the semi-arid region as a function of land use and occupation1. Scientific Article Rev. Cinc. Agron. 52 (1) 2021.</p><p>Elliott, J. A. (2012). Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water research, 46(5), 1364- 1371.</p><p>Elsworth, G. W., Lovenduski, N. S., McKinnon, K. A., Krumhardt, K. M., & Brady, R. X. (2020). Finding the Fingerprint of Anthropogenic Climate Change in Marine Phytoplankton Abundance. Current Climate Change Reports, 6(2), 37- 46.</p><p>Eslamian, S. (Ed.). (2016). Urban water reuse handbook. CRC Press.</p><p>Fadel, A., Sharaf, N., Siblini, M., Slim, K., & Kobaissi, A. (2019). A simple modelling approach to simulate the effect of different climate scenarios on toxic cyanobacterial bloom in a eutrophic reservoir. Ecohydrology & Hydrobiology, 19(3), 359-369.</p><p>Fang, L., Wang, L., Chen, W., Sun, J., Cao, Q., Wang, S., & Wang, L. (2021). Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. Journal of Cleaner Production, 127995.</p><p>Fernndez, J. A., Muiz, C. D., Nieto, P. G., de Cos Juez, F. J., Lasheras, F. S., & Roque, M. N. (2013). Forecasting the cyanotoxins presence in fresh waters: A new model based on genetic algorithms combined with the MARS technique. Ecological engineering, 53, 68-78.</p><p>Frau, D., Gutierrez, M. F., Regaldo, L., Saigo, M., & Licursi, M. (2021). Plankton community responses in Pampean lowland streams linked to intensive agricultural pollution. Ecological Indicators, 120, 106934.</p><p>Filstrup, C. T., & Downing, J. A. (2017). Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters, 7(4), 385400.</p><p>Fondi, M., & Li, P. (2015). Multi-omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiological research, 171, 52-64.</p><p>Garca, R., & Johnstone, R. W. (2006). Effects of Lyngbya majuscula (Cyanophycea) blooms on sediment nutrients and meiofaunal assemblages in seagrass beds in Moreton Bay, Australia. Marine and Freshwater Research, 57(2), 155165. https://doi.org/10.1071/MF05053.</p><p>Gasim, M. B., Toriman, M. E., Muftah, S., Barggig, A., Aziz, N. A. A., Azaman, F., & Muhamad, H. (2015). Water quality degradation of Cempaka Lake, Bangi, Selangor, Malaysia as an impact of excessive E. coli and nutrient concentrations. Malaysian Journal of Analytical Sciences, 19(6), 1391-1404.</p><p>Gandaseca, S., Rosli, N., Ngayop, J., & Arianto, C. I. (2011). Status of water quality based on the physico-chemical assessment on river water at Wildlife Sanctuary Sibuti Mangrove Forest, Miri Sarawak. American Journal of Environmental Sciences, 7(3), 269.</p><p>Genter, R. B., Cherry, D. S., Smith, E. P., & Cairns Jr, J. (1988). Attached-algal abundance altered by individual and combined treatments of zinc and pH. Environmental Toxicology and Chemistry: An International Journal, 7(9), 723-733.</p><p>Glibert, P. M., Berdalet, E., Burford, M. A., Pitcher, G. C., & Zhou, M. (Eds.). (2018). Global ecology and oceanography of harmful algal blooms (Vol. 232). Cham: Springer.</p><p>Gobler, C. J., Doherty, O. M., Hattenrath-Lehmann, T. K., Griffith, A. W., Kang, Y., & Litaker, R. W. (2017). Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proceedings of the National Academy of Sciences, 114(19), 4975-4980.</p><p>Gonzalez Sagrario, M. A., Jeppesen, E., Gom, J., Sndergaard, M., Jensen, J. P., Lauridsen, T., & Landkildehus, F. (2005). Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology, 50(1), 27- 41.</p><p>Gonzlez-Madina, L., Pacheco, J. P., Yema, L., de Tezanos, P., Levrini, P., Clemente, J., ... & Goyenola, G. (2019). Drivers of cyanobacteria dominance, composition and nitrogen fixing behavior in a shallow lake with alternative regimes in time and space, Laguna del Sauce (Maldonado, Uruguay). Hydrobiologia, 829(1), 61-76.</p><p>Gonzalez-Aravena, A. C., Yunus, K., Zhang, L., Norling, B., & Fisher, A. C. (2018). Tapping into cyanobacteria electron transfer for higher exoelectrogenic activity by imposing iron limited growth. RSC advances, 8(36), 20263-20274.</p><p>Goshtasbi, H., Atazadeh, E., Fathi, M., & Movafeghi, A. (2021). Using physicochemical and biological parameters for the evaluation of water quality and environmental conditions in international wetlands on the southern part of Lake Urmia, Iran. Environmental Science and Pollution Research, 1-15.</p><p>Haakonsson, S., Rodrguez, M. A., Carballo, C., del Carmen Prez, M., Arocena, R., & Bonilla, S. (2020). Predicting cyanobacterial biovolume from water temperature and conductivity using a Bayesian compound Poisson-Gamma model. Water Research, 115710.</p><p>Haakonsson, S., Rodrguez-Gallego, L., Somma, A., & Bonilla, S. (2017). Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems. Science of the Total Environment, 609, 1132-1139.</p><p>Haas, M., Baumann, F., Castella, D., Haghipour, N., Reusch, A., Strasser, M., & Dubois, N. (2019). Roman-driven cultural eutrophication of Lake Murten, Switzerland. Earth and Planetary Science Letters, 505, 110-117.</p><p>Haile, D. (2019). Ground and Surface Water Quality Assessment of Chilanchil Abay Water Shade: The Case of Bahir Dar City Waste Disposal Site (Doctoral dissertation).</p><p>Hamidi, Z. S., Shariff, N. N. M., Monstein, C., Ibrahim, A. B. M. A., & Yusof, M. I. M. (2016). The international cooperation of solar radio burst project using e-Callisto system network. In Information Science and Applications (ICISA) 2016 (pp. 309-317). Springer, Singapore.</p><p>Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54, 4-20.</p><p>Hartmann, A., Horn, H., Rske, I., & Rske, K. (2019). Comparison of fluorometric and microscopical quantification of phytoplankton in a drinking water reservoir by a one-season monitoring program. Aquatic Sciences, 81(1), 19.</p><p>Havens, K. E., Ji, G., Beaver, J. R., Fulton, R. S., & Teacher, C. E. (2019). Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change. Hydrobiologia, 829(1), 43-59.</p><p>He, X., Wang, H., Fan, L., Liang, D., Ao, Y., & Zhuang, W. (2020). Quantifying physical transport and local proliferation of phytoplankton downstream of an eutrophicated lake. Journal of Hydrology, 585, 124796.</p><p>Ho, J. C., Michalak, A. M., & Pahlevan, N. (2019). Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574(7780), 667-670.</p><p>Hossain, N., & Mahmud, L. (2019). Experimental investigation of water quality and inorganic solids in Malaysian Urban Lake, Taman Tasik Medan Idaman. Lakes & Reservoirs: Research & Management, 24(2), 107-114.</p><p>Hood, E., Battin, T. J., Fellman, J., O'neel, S., & Spencer, R. G. (2015). Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8(2), 91-96.</p><p>Hu, H., Ding, L., Geng, J., Huang, H., Xu, K., & Ren, H. (2016). Effect of coagulation on dissolved organic nitrogen (DON) bioavailability in municipal wastewater effluents. Journal of environmental chemical engineering, 4(2), 2536-2544.</p><p>He, J., Zhang, Y., Wu, X., Yang, Y., Xu, X., Zheng, B., Deng, W., Shao, Z., Lu, L., Wang, L., & Zhou, H. (2019). A study on the relationship between metabolism of Cyanobacteria and chemical oxygen demand in Dianchi Lake, China. Water Environment Research, 91(12), 1650-1660.</p><p>Huang, J., Xu, C. C., Ridoutt, B. G., Wang, X. C., & Ren, P. A. (2017). Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, 159, 171-179.</p><p>Huang, Y. F., Ang, S. Y., Lee, K. M., & Lee, T. S. (2015). Quality of water resources in Malaysia. Research and Practices in Water Quality, 65-94.</p><p>Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471-483.</p><p>Hutchins, M. G., & Hitt, O. E. (2019). Sensitivity of river eutrophication to multiple stressors illustrated using graphical summaries of physics-based river water quality model simulations. Journal of Hydrology, 577, 123917. In Unconventional Water Resources and Agriculture in Egypt (pp. 509-532). Springer, Cham.</p><p>Hennemann, M. C., & Petrucio, M. M. (2016). High chlorophyll a concentration in a low nutrient context: discussions in a subtropical lake dominated by Cyanobacteria. Journal of Limnology, 75(3).</p><p>Iachetti, C. M., & Llames, M. E. (2015). Light limitation helps stabilize the phytoplankton assemblage steady-state in a temperate and highly turbid, hypertrophic shallow lake (Laguna Chascoms, Argentina). Hydrobiologia, 752(1), 33-46.</p><p>Imanhomayoonnezhad, A. H., Arjmandi, R., & Lahijanian, A. (2019). Assessment of Chahnimeh Water Quality through the Water Quality Index (WQI). Asian Journal of Water, Environment and Pollution, 16(3), 5562.</p><p>Islam, M. S., Ismail, B. S., Barzani, G. M., Sahibin, A. R., & Ekhwan, T. M. (2012). Hydrologica l assessment and water quality characteristics of Chini Lake, Pahang, Malaysia. American- Eurasian J. Agric. & Environ. Sci, 12(6), 737-749.</p><p>Izaguirre, I., Snchez, M. L., Schiaffino, M. R., OFarrell, I., Huber, P., Ferrer, N., ... & Mancini, M. (2015). Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes? Hydrobiologia, 752(1), 47-64.</p><p>Jackson, M. C., Loewen, C. J., Vinebrooke, R. D., & Chimimba, C. T. (2016). Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global change biology, 22(1), 180-189.</p><p>Jarosiewicz, A. (2009). Seasonal changes of nutrients concentration in two shallow estuarine lakes gardno and Lebsko; Comparison. Baltic Coastal Zone. Journal of Ecology and Protection of the Coastline, 13.</p><p>Jeffrey, L. C., Maher, D. T., Johnston, S. G., Kelaher, B. P., Steven, A., & Tait, D. R. (2019). Wetland methane emissions dominated by plant-mediated fluxes: Contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland. Limnology and Oceanography, 64(5), 1895-1912.</p><p>Jeppesen, E., Sndergaard, M., Meerhoff, M., Lauridsen, T. L., & Jensen, J. P. (2007). Shallow lake restoration by nutrient loading reduction - Some recent findings and challenges ahead. In Hydrobiologia (Vol. 584, pp. 239252). https://doi.org/10.1007/s10750-007- 0596-7.</p><p>Jeon, J. C., Kwon, K. H., Jung, Y. J., Kang, M. J., & Min, K. S. (2015). Characteristics of stormwater runoff from junkyard. Desalination and Water Treatment, 53(11), 3039-3047.</p><p>Jiang, H. B., Lu, X. H., Deng, B., Liu, L. M., & Qiu, B. S. (2020). Adaptive Mechanisms of the Model Photosynthetic Organisms, Cyanobacteria, to Iron Deficiency. In Microbial Photosynthesis (pp. 197-244). Springer, Singapore.</p><p>Jiang, Z., Du, P., Liu, J., Chen, Y., Zhu, Y., Shou, L., & Chen, J. (2019). Phytoplankton biomass and size structure in Xiangshan Bay, China: Current state and historical comparison under accelerated eutrophication and warming. Marine pollution bulletin, 142, 119-128.</p><p>Josu, I. I., Cardoso, S. J., Miranda, M., Mucci, M., Ger, K. A., Roland, F., & Marinho, M. M. (2019). Cyanobacteria dominance drives zooplankton functional dispersion. Hydrobiologia, 831(1), 149-161.</p><p>Juahir, H., Ghazali, A., Ismail, A., Mohamad, M., Hamzah, F. M., Sudianto, S., Lasim, M. L. M., & Shahriz, M. A. (2019, October). The assessment of Danau Kota Lake water quality using chemometrics approach. In IOP Conference Series: Materials Science and Engineering (Vol. 621, No. 1, p. 012019). IOP Publishing.</p><p>Jankowiak, J., Hattenrath-Lehmann, T., Kramer, B. J., Ladds, M., & Gobler, C. J. (2019). Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnology and oceanography, 64(3), 1347-1370.</p><p>Jung, S. W., Yun, S. M., Yoo, J. W., Zhun, L., Jang, P. G., Lim, D. I., Lee, Y. C., Lee, H. U., Lee, T. K., Heo, J., Lee, J. H., & Han, M. S. (2015). Can the algicidal material Ca-aminoclay be harmful when applied to a natural ecosystem? An assessment using microcosms. J Hazard Mater, 298, 178-187. doi:10.1016/j.jhazmat.2015.05.012</p><p>Kale, V. S. (2016). Consequence of Temperature , pH , Turbidity and Dissolved Oxygen Water Quality Parameters. International Advanced Research Journal in Science, Engineering and Technology, 3(8), 186190. https://doi.org/10.17148/IARJSET.2016.3834.</p><p>KasthuriThilagam, V., Manivannan, S., & Khola, O. P. S. (2019). Impact of of Soil Erosion and and Nutrient Management Practices On on Surface Water Quality in in Nilgiris District. Ctcsa-2019, 5.</p><p>Kertsz, ., Nagy, L. A., & Balzs, B. (2019). Effect of land use change on ecosystem services in Lake Balaton Catchment. Land Use Policy, 80, 430-438.</p><p>Kies, F., Manuel, M., De los Rios, P., Elegbede, I., & Corselli, C. (2020). Integrated Coastal Zone Management (ICZM) Framework and Ecosystem Approach: eutrophication phenomenon at the Mediterranean Sea.</p><p>Kilic, E., & Yucel, N. (2019). Determination of Spatial and Temporal Changes in Water Quality at Asi River Using Multivariate Statistical Techniques. Turkish Journal of Fisheries and Aquatic Sciences, 19(9), 727-737.</p><p>Kimambo, O. N., Chikoore, H., Gumbo, J. R., & Msagati, T. A. (2019). Retrospective analysis of Chlorophyll-a and its correlation with climate and hydrological variations in Mindu Dam, Morogoro, Tanzania. Heliyon, 5(11), e02834.</p><p>Krinos, A. I., Farrell, K. J., Daneshmand, V., Subratie, K. C., Figueiredo, R. J., & Carey, C. C. (2019). Including variability in air temperature warming scenarios in a lake simulation model highlights uncertainty in predictions of cyanobacteria. bioRxiv (2019): 734285.</p><p>Kleinman, P. J., Fanelli, R. M., Hirsch, R. M., Buda, A. R., Easton, Z. M., Wainger, L. A., ... & Boomer, K. (2019). Phosphorus and the Chesapeake Bay: Lingering issues and emerging concerns for agriculture. Journal of environmental quality, 48(5), 1191-1203.</p><p>Kolmonen, E., Sivonen, K., Rapala, J., & Haukka, K. J. A. M. E. (2004). Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquatic microbial ecology, 36(3), 201-211.</p><p>Krzton, W., Kosiba, J., Pociecha, A., & Wilk-Wozniak, E. (2019). The effect of cyanobacterial blooms on bio-and functional diversity of zooplankton communities. Biodiversity and Conservation, 28(7), 1815-1835.</p><p>Kumari, M., & Gupta, S. K. (2020). A novel process of adsorption cum enhanced coagulation- flocculation spiked with magnetic nanoadsorbents for the removal of aromatic and hydrophobic fraction of natural organic matter along with turbidity from drinking water. Journal of Cleaner Production, 244, 118899.</p><p>Kubo, A., Yoshida, K., & Suzuki, K. (2021). Seasonal and spatial variations in the partial pressure of carbon dioxide in a eutrophic brackish lake, Lake Hamana, Japan. Journal of Oceanography, 1-9.</p><p>Kowalczewska-Madura, K., Dondajewska, R., & Goldyn, R. (2010). Internal phosphorus loading in selected lakes of the Cybina River valley. Oceanological and Hydrobiological Studies, 39(3), 35-45.</p><p>Kowalczewska-Madura, K., Dondajewska, R., Goldyn, R., Rosinska, J., & Podsiadlowski, S. (2019). Internal phosphorus loading as the response to complete and then limited sustainable restoration of a shallow lake. In Annales de Limnologie-International Journal of Limnology (Vol. 55, p. 4). EDP Sciences.</p><p>Larkum, A. W., Grossman, A. R., & Raven, J. A. (Eds.). (2020). Photosynthesis in Algae: Biochemical and Physiological Mechanisms (Vol. 45). Springer Nature.</p><p>Lashari, K. H., Korai, A. L., Sahato, G. A., & Kazi, T. G. (2009). Limnological studies of keenjhar lake, district, Thatta, Sindh, Pakistan. Pak J Anal Environ Chem, 10(12), 39-47.</p><p>Le Moal, M., Gascuel-Odoux, C., Mnesguen, A., Souchon, Y., trillard, C., Levain, A., Moator, F., Pannard, A., Souchu, P., Lefebvre, A., & Pinay, G. (2019). Eutrophication: a new wine in an old bottle? Science of the Total Environment, 651, 1-11.</p><p>Lee, T. A., Rollwagen-Bollens, G., Bollens, S. M., & Faber-Hammond, J. J. (2015). Environmenta l influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotoxicology and environmental safety, 114, 318-325.</p><p>Li, H., Wang, Y., Shi, L. Q., Mi, J., Song, D., & Pan, X. J. (2012). Distribution and Fractions of Phosphorus and Nitrogen in Surface Sediments from Dianchi Lake, China. Int. J. Environ. Res, 6(1), 195-208.</p><p>Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., & Chen, P. (2019). Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 291, 121934.</p><p>Li, R., Li, L., Zhang, Z., Chen, H., McKenna, A. M., Chen, G., & Tang, Y. (2020). Speciation and conversion of carbon and nitrogen in young landfill leachate during anaerobic biologica l pretreatment. Waste Management, 106, 88-98.</p><p>Li, W. G., Huang, D. Y., Chen, D., Wang, C., & Wei, G. L. (2019). Temporalspatial distribut ion of synthetic pyrethroids in overlying water and surface sediments in Guangzhou waterways: potential input mechanisms and ecological risk to aquatic systems. Environmental Science and Pollution Research, 26(17), 17261-17276.</p><p>Li, X., Huang, T., Ma, W., Sun, X., & Zhang, H. (2015). Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management. Science of the Total Environment, 521, 27-36.</p><p>Li, X., Sha, J., & Wang, Z. L. (2017). Chlorophyll-a prediction of lakes with different water quality patterns in China based on hybrid neural networks. Water, 9(7), 524.</p><p>Liu, M., Liu, L., Chen, H., Yu, Z., Yang, J. R., Xue, Y., & Yang, J. (2019). Community dynamics of free-living and particle-attached bacteria following a reservoir Microcystis bloom. Science of the Total Environment, 660, 501-511.</p><p>Liu, X., Lu, X., & Chen, Y. (2011). The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful algae, 10(3), 337-343.</p><p>Liu, M., Ma, J., Kang, L., Wei, Y., He, Q., Hu, X., & Li, H. (2019). Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms. Science of the total environment, 670, 613-622.</p><p>Liao, J., Zhao, L., Cao, X., Sun, J., Gao, Z., Wang, J., & Huang, Y. (2016). Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use. Scientific reports, 6(1), 1-10.</p><p>Lopes, F. A., Davies-Colley, R., Piazi, J., Silveira, J. S., Leite, A. C., & Lopes, N. I. A. (2020). Challenges for contact recreation in a tropical urban lake: assessment by a water quality index. Environment, Development and Sustainability, 22(6), 5409-5423.</p><p>Luo, F. J., Zhang, P. C., Ma, X., & Bai, J. (2020). Research on Normative Expressions of Geomatics Elements from the Perspective of Quality Inspection. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 1271-1275.</p><p>Lu, Z., Gan, J., Dai, M., Liu, H., & Zhao, X. (2018). Joint effects of extrinsic biophysical fluxes and intrinsic hydrodynamics on the formation of hypoxia west off the Pearl River Estuary. Journal of Geophysical Research: Oceans, 123(9), 6241-6259.</p><p>Mackay, E. B., Feuchtmayr, H., De Ville, M. M., Thackeray, S. J., Callaghan, N., Marshall, M., & Maberly, S. C. (2020). Dissolved organic nutrient uptake by riverine phytoplankton varies along a gradient of nutrient enrichment. Science of the Total Environment, 137837.</p><p>Mallin, M. A., McIver, M. R., Wambach, E. J., & Robuck, A. R. (2016). Algal blooms, circulators, waterfowl, and eutrophic Greenfield Lake, North Carolina. Lake and Reservoir Management, 32(2), 168-181.</p><p>Mantzouki, E., Visser, P. M., Bormans, M., & Ibelings, B. W. (2016). Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquatic ecology, 50(3), 333-350.</p><p>Ma, G., & Wang, S. (2015). Temporal and spatial distribution changing characteristics of exogenous pollution load into Dianchi Lake, Southwest of China. Environmental Earth Sciences, 74(5), 3781-3793.</p><p>Magee, M. R., & Wu, C. H. (2017). Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrology and Earth System Sciences, 21, 62536274. Roman, A. M., Boultreau, S., Villanueva, V. D., Garabetian, F., Marxsen, J., Norf, H., ... & Weitere, M. (2016). Microbes in aquatic biofilms under the effect of changing climate. Climate change and microbial ecology: Current research and future trends, 83-96.</p><p>Maznah, W. W., & Makhlough, A. (2015). Water quality of tropical reservoir based on spatio- temporal variation in phytoplankton composition and physico-chemical analysis. International Journal of Environmental Science and Technology, 12(7), 2221-2232.</p><p>Matthews, M. W. (2014). Eutrophication and cyanobacterial blooms in South African inland waters: 10 years of MERIS observations. Remote Sensing of Environment, 155, 161-177.</p><p>Malazarte, J. M., Lee, H., Kim, H. W., & Sin, Y. (2017). Spatial and temporal dynamics of potentially toxic cyanobacteria in the riverine region of a temperate estuarine system altered by weirs. Water, 9(11), 819. NAHRIM. National Lake Water Quality Criteria and Standards Malaysia, in Malaysia, (National Hydraulic Research Institute of Malaysia). 2015.</p><p>Mekonnen, M. M., & Hoekstra, A. Y. (2018). Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: A high-resolution global study. Water resources research, 54(1), 345-358.</p><p>Melendez-Pastor, I., Isenstein, E. M., Navarro-Pedreo, J., & Park, M. H. (2019). Spatial variabilit y and temporal dynamics of cyanobacteria blooms and water quality parameters in Missisquoi Bay (Lake Champlain). Water Supply, 19(5), 1500-1506.</p><p>Merel, S., Walker, D., Chicana, R., Snyder, S., Baurs, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment international, 59, 303-327.</p><p>Milan, M., Bigler, C., Salmaso, N., Guella, G., & Tolotti, M. (2015). Multiproxy reconstruction of a large and deep subalpine lake's ecological history since the Middle Ages. Journal of Great Lakes Research, 41(4), 982-994.</p><p>Mirzaee, S. A., Jaafarzadeh, N., Gomes, H. T., Jorfi, S., & Ahmadi, M. (2019). Magnetic titanium/carbon nanotube nanocomposite catalyst for oxidative degradation of Bisphenol A form high saline polycarbonate plant effluent using catalytic wet peroxide oxidation. Chemical Engineering Journal, 370, 372-386.</p><p>Miswan, M. S., Mohamed, R. M. S. R., Al-Gheethi, A. A. S., & Kassim, A. H. M. (2019, August). Preliminary Assessment of Teknologi Lake Quality Status at Universiti Tun Hussein Onn Malaysia (UTHM) Campus in Parit Raja, Johor, Malaysia. In IOP Conference Series: Materials Science and Engineering (Vol. 601, No. 1, p. 012013). IOP Publishing.</p><p>Mir, S. A., Qadri, H., Beigh, B. A., Dar, Z. A., & Bashir, I. (2019). Assessment of nutrient status and water quality index of Rambiara stream, Kashmir Himalaya, India. Journal of Pharmacognosy and Phytochemistry, 8(3), 172-180.</p><p>MohaMaD, R., RafatuLLah, M., Yusof, T. N., Sim, Y. J., Ismail, N., & Lalung, J. (2016). Detection of microcystin (mcyE) gene in recreational lakes in Miri, Sarawak, Malaysia. Current World Environment, 11(3), 690.</p><p>Monchamp, M. E., Spaak, P., Domaizon, I., Dubois, N., Bouffard, D., & Pomati, F. (2018). Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nature ecology & evolution, 2(2), 317-324.</p><p>Murchie, E. H., & Ruban, A. V. (2020). Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. The Plant Journal, 101(4), 885-896.</p><p>Mayer, B. K., Gerrity, D., Rittmann, B. E., Reisinger, D., & Brandt-Williams, S. (2013). Innovative strategies to achieve low total phosphorus concentrations in high water flows. Critical reviews in environmental science and technology, 43(4), 409-441.</p><p>Nankabirwa, A., De Crop, W., Van der Meeren, T., Cocquyt, C., Plisnier, P. D., Balirwa, J., & Verschuren, D. (2019). Phytoplankton communities in the crater lakes of western Uganda, and their indicator species in relation to lake trophic status. Ecological Indicators, 107, 105563.</p><p>Nasir, N., Mohmadisa, H., Mohamad, S., Kamarul, I., Yazid, S., & Nurhamizah, S. (2014). Determination of recreational lake water quality status boundary: a case study of E. coli in Taiping Lake Garden, Perak, Malaysia. Australian Journal of Basic and Applied Sciences, 8(23), 113-119.</p><p>Naubi, I., Zardari, N. H., Shirazi, S. M., Ibrahim, N. F. B., & Baloo, L. (2016). Effectiveness of Water Quality Index for Monitoring Malaysian River Water Quality. Polish Journal of Environmental Studies, 25(1).</p><p>Nayan, N., Jahi, J. M., & Mohamed, A. L. (2012). Trend of River Water Quality and Pollution in Coastal Zone: A Case Study of Perak State Malaysia. World Applied Sciences Journal, 19(11), 1687-1698.</p><p>Nazari-Sharabian, M., Ahmad, S., & Karakouzian, M. (2018). Climate change and eutrophication: a short review. Engineering, Technology and Applied Science Research , 8(6), 3668.</p><p>NAHRIM. (2015). National Lake Water Quality Criteria and Standards. National Hydraulic Research Institute of Malaysia (NAHRIM), 125.</p><p>Newcombe, G., Ho, L., & Neto, J. C. (2021). Controlling cyanotoxin occurrence: Drinking-water treatment. In Toxic Cyanobacteria in Water (pp. 591-639). CRC Press.</p><p>Ngatia, L. W., Hsieh, Y. P., Nemours, D., Fu, R., & Taylor, R. W. (2017). Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption. Chemosphere, 180, 201-211.</p><p>Nharingo, T., & Moyo, M. (2016). Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review. Journal of environmental management, 166, 55-72.</p><p>Noori, R., Hooshyaripor, F., Javadi, S., Dodangeh, M., Tian, F., Adamowski, J. F. & Klve, B. (2020). PODMT3DMS-Tool: proper orthogonal decomposition linked to the MT3DMS model for nitrate simulation in aquifers. Hydrogeology Journal, 1-18.</p><p>Nowak, D. J., Coville, R., Endreny, T., Abdi, R., & Van Stan II, J. T. (2020). Valuing Urban Tree Impacts on Precipitation Partitioning. In Precipitation Partitioning by Vegetation (pp. 253- 268). Springer, Cham.</p><p>Nursuhayati, A. S., Yusoff, F. M., & Shariff, M. (2013). Spatial and temporal distribution of phytoplankton in perak estuary, Malaysia, during monsoon season. Journal of Fisheries and Aquatic Science, 8(4), 480.</p><p>Oneil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful algae, 14, 313-334.</p><p>Omar, M. A., Naqqiuddin, M. A., Shohaimi, S., Omar, H., & Ismail, A. (2016). Phytoplankton diversity in relation to different weather conditions in two urban made lakes. Sustainability, Agri, Food and Environmental Research, 4(1).</p><p>Orihel, D. M., Baulch, H. M., Casson, N. J., North, R. L., Parsons, C. T., Seckar, D. C., & Venkiteswaran, J. J. (2017). Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis. Canadian Journal of Fisheries and Aquatic Sciences, 74(12), 2005- 2029.</p><p>Orth, R. J., Dennison, W. C., Gurbisz, C., Hannam, M., Keisman, J., Landry, J. B., & Testa, J. (2019). Long-term Annual Aerial Surveys of Submersed Aquatic Vegetation (SAV) Support Science, Management, and Restoration. Estuaries and Coasts, 1-16.</p><p>Othman, R., Ali, Q. A. M., Muhamad, W. N. A. W., Yaman, M., & Baharuddin, Z. M. (2014). Eutrophication State Monitoring for Unhealthy Aquatic Ecosystem via Free-Floating Macrophytes Pattern and Behavioral. International Journal of Sustainable Energy and Environmental Research, 3(3), 171-177.</p><p>Okech, E. O., Kitaka, N., Oduor, S. O., & Verschuren, D. (2018). Trophic state and nutrient limitation in Lake Baringo, Kenya. African Journal of Aquatic Science, 43(2), 169-173.</p><p>Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial ecology, 65(4), 995-1010.</p><p>Paerl, H. W., Havens, K. E., Xu, H., Zhu, G., McCarthy, M. J., Newell, S. E., & Qin, B. (2019). Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: The evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia, 1-17.</p><p>Paerl, H. W., & Paul, V. J. (2011). Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46(5),1349 1363. Jain, C. (2015). Climate Change: A Global Issue. International Journal of Renewable Energy Commercialization, 1(2), 20-24.</p><p>Perga, M. E., Bruel, R., Rodriguez, L., Gunand, Y., & Bouffard, D. (2018). Storm impacts on alpine lakes: Antecedent weather conditions matter more than the event intensity. Global Change Biology, 24(10), 5004-5016.</p><p>Prez-Ruzafa, A., Campillo, S., Fernndez-Palacios, J. M., Garca-Lacunza, A., Garca-Oliva, M., Ibaez, H., ... & Sala-Mirete, A. (2019). Long-Term dynamic in nutrients, chlorophyll a, and water quality parameters in a coastal lagoon during a process of eutrophication for decades, a sudden break and a relatively rapid recovery. Frontiers in Marine Science, 6, 26.</p><p>Persaud, A. D., Paterson, A. M., Dillon, P. J., Winter, J. G., Palmer, M., & Somers, K. M. (2015). Forecasting cyanobacteria dominance in Canadian temperate lakes. Journal of environmental management, 151, 343-352.</p><p>Pick, F. R. (2016). Blooming algae: a Canadian perspective on the rise of toxic cyanobacteria. Canadian Journal of Fisheries and Aquatic Sciences, 73(7), 1149-1158.</p><p>Pier, B., & Mateo, S. (2020). Continuous Water-Quality and Suspended-Sediment Transport Monitoring in the San Francisco Bay, California, Water Years 201617.</p><p>Pilon, C., Moore Jr, P. A., Pote, D. H., Martin, J. W., Owens, P. R., Ashworth, A. J., Miller, S. H., & DeLaune, P. B. (2019). Grazing management and buffer strip impact on nitrogen runoff from pastures fertilized with poultry litter. Journal of Environmental Quality, 48(2), 297-304.</p><p>Piniewski, M., Tattari, S., Koskiaho, J., Olsson, O., Djodjic, F., Gielczewski, M., ... & Okruszko, T. (2020). How effective are River Basin Management Plans in reaching the nutrient load reduction targets? Ambio, 1-17.</p><p>Pin, D. C. M., Guo, X., Wang, K., Chng, L. M., Wong, L. P., & Zhao, X. (2019, September). Assessment of water eutrophication in Kampar, Malaysia. In AIP Conference Proceedings (Vol. 2157, No. 1, p. 020022). AIP Publishing LLC. Talang, R. P. N., Sirivithayapakorn, S., & Polruang, S. (2020). Environmental impacts and cost- effectiveness of Thailands centralized municipal wastewater treatment plants with different nutrient removal processes. Journal of Cleaner Production, 256, 120433.</p><p>Preece, E. P., Hardy, F. J., Moore, B. C., & Bryan, M. (2017). A review of microcystin detections in estuarine and marine waters: environmental implications and human health risk. Harmful Algae, 61, 31-45.</p><p>Pham, T. L., & Utsumi, M. (2018). An overview of the accumulation of microcystins in aquatic ecosystems. Journal of environmental management, 213, 520-529.</p><p>Qi, L., Hu, C., Duan, H., Barnes, B. B., & Ma, R. (2014). An EOF-based algorithm to estimate chlorophyll a concentration in Taihu Lake from MODIS land-band measurements: Implications for near real-time applications and forecasting models. Remote Sensing, 6(11), 10694-10715.</p><p>Qin, B., Gao, G., Zhu, G., Zhang, Y., Song, Y., Tang, X., ... & Deng, J. (2013). Lake eutrophication and its ecosystem response. Chinese Science Bulletin, 58(9), 961-970.</p><p>Qiu, L., Zhang, M., Yu, X., & Zheng, P. (2018). A novel Fe (II)-Ca synergistic phosphorus removal process: process optimization and phosphorus recovery. Environmental Science and Pollution Research, 25(2), 1543-1550.</p><p>Qian, W., Gan, J., Liu, J., He, B., Lu, Z., Guo, X., Wang, D., Guo, L., Huang, T., & Dai, M. (2018). Current status of emerging hypoxia in a eutrophic estuary: the lower reach of the Pearl River Estuary, China. Estuarine, Coastal and Shelf Science, 205, 58-67.</p><p>Quinlan, R., Filazzola, A., Mahdiyan, O., Shuvo, A., Blagrave, K., Ewins, C., . .. & Sharma, S. (2021). Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnology and Oceanography, 66(2), 392-404.</p><p>Rahaman, Z. A., Che Rus, S. F., Omar, M. A., & Ismail, W. R. (2016). Rivers and Lakes as Natural Heritage: Water Quality Status in the Northern States of Peninsular Malaysia. The Asian Journal of Humanities, Vol. 23. (2016).</p><p>Rameshkumar, S., Radhakrishnan, K., Aanand, S., & Rajaram, R. (2019). Influence of physicochemical water quality on aquatic macrophyte diversity in seasonal wetlands. Applied Water Science, 9(1), 12.</p><p>Rathore, S. S., Chandravanshi, P., Chandravanshi, A., & Jaiswal, K. (2016). Eutrophication: impacts of excess nutrient inputs on aquatic ecosystem. IOSR Journal of Agriculture and Veterinary Science, 9(10), 89-96.</p><p>Ren, Y., Pei, H., Hu, W., Tian, C., Hao, D., Wei, J., & Feng, Y. (2014). Spatiotemporal distribut ion pattern of cyanobacteria community and its relationship with the environmental factors in Hongze Lake, China. Environmental monitoring and assessment, 186(10), 6919-6933.</p><p>Regier, P. J., Gonzlez-Pinzn, R., Van Horn, D. J., Reale, J. K., Nichols, J., & Khandewal, A. (2020). Water quality impacts of runoff from monsoon storms on arid-land rivers: Comparing urban and non-urban pulses in the Rio Grande. Science of The Total Environment, 138443.</p><p>Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. .& Smol, J. P. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849-873.</p><p>Rigosi, A., Carey, C. C., Ibelings, B. W., & Brookes, J. D. (2014). The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnology and Oceanography, 59(1), 99-114.</p><p>Rizhinashvili, A. (2017). Small and shallow previously unstudied lakes: land-use, overgrowth and eutrophication. Management of Environmental Quality: An International Journal.</p><p>Richardson, D. C., Melles, S. J., Pilla, R. M., Hetherington, A. L., Knoll, L. B., Williamson, C. E.,... & Wigdahl-Perry, C. R. (2017). Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across Northeastern North America (19752014). Water, 9(6), 442.</p><p>Richardson, J., Feuchtmayr, H., Miller, C., Hunter, P. D., Maberly, S. C., & Carvalho, L. (2019). Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Global Change Biology, 25(10), 3365-3380.</p><p>Rodgers, E. M. (2021). Adding climate change to the mix: responses of aquatic ectotherms to the combined effects of eutrophication and warming. Biology Letters, 17(10), 20210442.</p><p>Rucinski, D. K., Beletsky, D., DePinto, J. V., Schwab, D. J., & Scavia, D. (2010). A simple 1- dimensional, climate based dissolved oxygen model for the central basin of Lake Erie. Journal of Great Lakes Research, 36(3), 465-476.</p><p>Sakamoto, S., Lim, W. A., Lu, D., Dai, X., Orlova, T., & Iwataki, M. (2020). Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan, Korea and Russia. Harmful Algae, 101787.</p><p>Sajitha, V., & Vijayamma, S. A. (2016). Study of physico-chemical parameters and pond water quality assessment by using water quality index at Athiyannoor Panchayath, Kerala, India. Emergent Life Sciences Research, 2, 46-51.</p><p>Sarkar, S. K. (2018). Marine Algal Bloom: Characteristics, Causes and Climate Change Impacts.Springer.</p><p>Sayers, M. J., Grimm, A. G., Shuchman, R. A., Bosse, K. R., Fahnenstiel, G. L., Ruberg, S. A., & Leshkevich, G. A. (2019). Satellite monitoring of harmful algal blooms in the Western Basin of Lake Erie: A 20-year time-series. Journal of Great Lakes Research, 45(3), 508-521.</p><p>Scavia, D., Allan, J. D., Arend, K. K., Bartell, S., Beletsky, D., Bosch, N. S., ... & Dolan, D. M. (2014). Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. Journal of Great Lakes Research, 40(2), 226-246.</p><p>Scholz, M. (2016). Wetlands for water pollution control. Elsevier.</p><p>Scholz, S. N., Esterhuizen-Londt, M., & Pflugmacher, S. (2017). Rise of toxic cyanobacterial blooms in temperate freshwater lakes: causes, correlations and possible countermeasures. Toxicological & Environmental Chemistry, 99(4), 543-577.</p><p>Schuergers, N., Lenn, T., Kampmann, R., Meissner, M. V., Esteves, T., Temerinac-Ott, M., & Wilde, A. (2016). Cyanobacteria use micro-optics to sense light direction. Elife, 5, e12620.</p><p>Schulhof, M. A., Shurin, J. B., Declerck, S. A., & Van de Waal, D. B. (2019). Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size. Global change biology, 25(8), 2751-2762.</p><p>Schwefel, R., Mller, B., Boisgontier, H., & West, A. (2019). Global warming affects nutrient upwelling in deep lakes. Aquatic sciences, 81(3), 50.</p><p>Seow, T., Irvine, K. N., Beevi, I., & Premathillake, T. (2019). Field-based enquiry in geography: the influence of Singapore teachers subject identities on their practice. International Research in Geographical and Environmental Education , 1-15.</p><p>Seto, M., Takamura, N., & Iwasa, Y. (2013). Individual and combined suppressive effects of submerged and floating-leaved macrophytes on algal blooms. Journal of theoretical biology, 319, 122-133.</p><p>Shah, J. A., Pandit, A. K., & Shah, G. M. (2019). Physico-chemical limnology of a shallow lake in the floodplains of western Himalaya from last four decades: present status. Environmental Systems Research, 8(1), 9.</p><p>Shahabudin, M. M., & Musa, S. (2018). An Overview on Water Quality Trending for Lake Water Classification in Malaysia. International Journal of Engineering & Technology , 7(3.23), 5- 10.</p><p>Shan, K., Song, L., Chen, W., Li, L., Liu, L., Wu, Y., & Peng, L. (2019). Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes. Harmful algae, 84, 84-94.</p><p>Schindler, D.W. & Vallentyne, J.R. (2008). The Algal Bowl: Overfertilization of the World's Freshwater and Estuaries. Earthscan. Canada.</p><p>Sharip, Z., Saman, J. M., Noordin, N., Majizat, A., Suratman, S., & Shaaban, A. J. (2016). Assessing the spatial water quality dynamics in Putrajaya Lake: a modelling approach. Modeling Earth Systems and Environment, 2(1), 46.</p><p>Sharip, Z., Suratman, S., & Shaaban, A. J. (2016). A national research and development blueprint for sustainable lake basin management in Malaysia. Lakes & Reservoirs: Research & Management, 21(4), 269-283.</p><p>Sharip, Z., Zaki, A. T., Shapai, M. A., Suratman, S., & Shaaban, A. J. (2014). Lakes of Malaysia: Water quality, eutrophication and management. Lakes & Reservoirs: Research & Management, 19(2), 130-141</p><p>Shawul, A. A., & Chakma, S. (2020). Suitability of global precipitation estimates for hydrologic prediction in the main watersheds of Upper Awash basin. Environmental Earth Sciences, 79(2), 53.</p><p>Shen, X., Sun, T., Su, M., Dang, Z., & Yang, Z. (2019). Short-term response of aquatic ecosystem metabolism to turbidity disturbance in experimental estuarine wetlands. Ecological Engineering, 136, 55-61.</p><p>Sheng, H., Liu, H., Wang, C., Guo, H., Liu, Y., & Yang, Y. (2012). Analysis of cyanobacteria bloom in the Waihai part of Dianchi Lake, China. Ecological informatics, 10, 37-48.</p><p>Shimoda, Y., & Arhonditsis, G. B. (2016). Phytoplankton functional type modelling: running before we can walk? A critical evaluation of the current state of knowledge. Ecological Modelling, 320, 29-43.</p><p>Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L. R., & Van Nes E. H. (2008). On the Dominance of Filamentous Cyanobacteria in Shallow, Turbid Lakes. Ecology 78(1), 272282.</p><p>Simsek, H., Wadhawan, T., & Khan, E. (2013). Overlapping photodegradable and biodegradable organic nitrogen in wastewater effluents. Environmental science & technology, 47(13), 7163- 7170.</p><p>Sinang, S. C., Daud, N., Kamaruddin, N., & Poh, K. B. (2019). Potential growth inhibition of freshwater algae by herbaceous plant extracts. Acta Ecologica Sinica, 39(3), 229-23</p><p>Sinang, S. C., Poh, K. B., Shamsudin, S., & Sinden, A. (2015). Preliminary assessment of cyanobacteria diversity and toxic potential in ten freshwater lakes in Selangor, Malaysia. Bulletin of environmental contamination and toxicology, 95(4), 542-547.</p><p>Sinang, S. C., Reichwaldt, E. S., & Ghadouani, A. (2015). Local nutrient regimes determine site- specific environmental triggers of cyanobacterial and microcystin variability in urban lakes. Hydrology and Earth System Sciences, 19(5), 2179.</p><p>Sinclair, L., Osman, O. A., Bertilsson, S., & Eiler, A. (2015). Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PloS one, 10(2), e0116955.</p><p>Siuda, W., Grabowska, K., Kalinski, T., Kiersztyn, B., & Chrst, R. J. (2020). Trophic state, eutrophication, and the threats for water quality of the great Mazurian Lake System. In Polish River Basins and LakesPart I (pp. 231-260). Springer, Cham.</p><p>Silva, T. F., Vinon-Leite, B., Lemaire, B. J., Petrucci, G., Giani, A., Figueredo, C. C., & Nascimento, N. D. O. (2019). Impact of urban stormwater runoff on Cyanobacteria dynamics in a tropical urban lake. Water, 11(5), 946.</p><p>Smith, V. H., Wood, S. A., McBride, C. G., Atalah, J., Hamilton, D. P., & Abell, J. (2016). Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand. Inland Waters, 6(2), 273-283.</p><p>Smucker, N. J., Becker, M., Detenbeck, N. E., & Morrison, A. C. (2013). Using algal metrics and biomass to evaluate multiple ways of defining concentration-based nutrient criteria in streams and their ecological relevance. Ecological Indicators, 32, 51-61.</p><p>Soranno, P. A., Cheruvelil, K. S., Wagner, T., Webster, K. E., & Bremigan, M. T. (2015). Effects of land use on lake nutrients: the importance of scale, hydrologic connectivity, and region. PloS one, 10(8), e0135454.</p><p>Spyra, A. (2017). Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails. The Science of Nature, 104(9-10), 73.</p><p>Srifa, A., Phlips, E. J., Cichra, M. F., & Hendrickson, J. C. (2016). Phytoplankton dynamics in a subtropical lake dominated by cyanobacteria: cyanobacteria Like it Hotand sometimes dry. Aquatic Ecology, 50(2), 163-174.</p><p>Stauffer, B. A., Bowers, H. A., Buckley, E., Davis, T., Johengen, T. H., Kudela, R. M., ... & Tamburri, M. (2019). Considerations in harmful algal bloom research and monitoring: perspectives from a consensus-building workshop and technology testing. Frontiers in Marine Science, 6, 399.</p><p>Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2016). Development of river water quality indicesa review. Environmental monitoring and assessment, 188(1), 58.</p><p>Stone, J. (2011). The Chemistry of Chemical Oxygen Demand.</p><p>Su, J., Dai, M., He, B., Wang, L., Gan, J., Guo, X., & Yu, F. (2017). Tracing the origin of the oxygen- consuming organic matter in the hypoxic zone in a large eutrophic estuary: the lower reach of the Pearl River Estuary, China. Biogeosciences, 14(18), 4085-4099.</p><p>Su, J., Cai, W. J., Brodeur, J., Chen, B., Hussain, N., Yao, Y., & Ni, W. (2020). Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nature Geoscience, 1-7.</p><p>Sun, J., & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of plankton research, 25(11), 1331-1346.</p><p>Sun, X., Zhang, H., Zhong, M., Wang, Z., Liang, X., Huang, T., & Huang, H. (2019). Analyses on the temporal and spatial characteristics of water quality in a seagoing river using multivariate statistical techniques: A case study in the Duliujian River, China. International journal of environmental research and public health, 16(6), 1020.</p><p>Sulaiman, N. H., Khalit, S. I., Sharip, Z., Samsudin, M. S., & Azid, A. (2018). Seasonal variations of water quality and heavy metals in two ex-mining lake using chemometric assessment approach. Mal J Fund Appl Sci, 14(1), 67-72.</p><p>Svedn, J. B., Walve, J., Larsson, U., & Elmgren, R. (2016). The bloom of nitrogen-fixing cyanobacteria in the northern Baltic Proper stimulates summer production. Journal of Marine Systems, 163, 102-112.</p><p>Tang, Y., Zhang, M., Sun, G., & Pan, G. (2019). Impact of eutrophication on arsenic cycling in freshwaters. Water research, 150, 191-199.</p><p>Tan, B., Ng, C., Nshimyimana, J. P., Loh, L. L., Gin, K. Y. H., & Thompson, J. R. (2015). Next- generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Frontiers in microbiology, 6, 1027.</p><p>Taylor, J. M., Dawson, K. W., & Shimizu, G. K. (2013). A water-stable metalorganic framework with highly acidic pores for proton-conducting applications. Journal of the American Chemical Society, 135(4), 1193-1196.</p><p>Tammeorg, O., Horppila, J., Tammeorg, P., Haldna, M., & Niemist, J. (2016). Internal phosphorus loading across a cascade of three eutrophic basins: a synthesis of short-and long-term studies. Science of the Total Environment, 572, 943-954.</p><p>Teixeira, M. R., Camacho, F. P., Sousa, V. S., & Bergamasco, R. (2017). Green technologies for cyanobacteria and natural organic matter water treatment using natural based products. Journal of Cleaner Production, 162, 484-490.</p><p>Thomaz, A. T., Arcila, D., Ort, G., & Malabarba, L. R. (2015). Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): classification and the evolution of reproductive traits. BMC evolutionary biology, 15(1), 146.</p><p>Tian, H., Li, Q., & Dong, Y. (2020). Dissolved oxygen transfer from oscillatory flows to microbes in a permeable organic sediment bed. International Journal of Heat and Mass Transfer, 157, 119721.</p><p>Tomasetti, S. J., & Gobler, C. J. (2020). Dissolved oxygen and pH criteria leave fisheries at risk. Science, 368(6489), 372-373.</p><p>Tarkowska-Kukuryk, M., & Mieczan, T. (2017). Submerged macrophytes as bioindicators of environmental conditions in shallow lakes in eastern Poland. In Annales de Limnologie- International Journal of Limnology (Vol. 53, pp. 27-34). EDP Sciences.</p><p>Troitsky, B., Zhu, D. Z., Loewen, M., van Duin, B., & Mahmood, K. (2019). Nutrient processes and modeling in urban stormwater ponds and constructed wetlands. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 44(3), 230-247.</p><p>Tucker, C. S., & DAbramo, L. R. (2008). Managing high pH in freshwater ponds. Stoneville: Southern Regional Aquaculture Center.</p><p>Van Donk, E., Ianora, A., & Vos, M. (2011). Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia, 668(1), 3-19.</p><p>Van den Berg, M. S., Scheffer, M., Van Nes, E., & Coops, H. (1999). Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia, 408, 335-342.</p><p>Varol, M. (2019). Stream Inputs To Lake Hazar (Eastern Anatolia-Turkey). Environmental Engineering & Management Journal (EEMJ), 18(1).</p><p>Vergalli, J., Fayolle, S., Combes, A., Franquet, E., & Comte, K. (2020). Persistence of microcystin production by Planktothrix agardhii (Cyanobacteria) exposed to different salinities. Phycologia, 59(1), 24-34.</p><p>Verhamme, E. M., Redder, T. M., Schlea, D. A., Grush, J., Bratton, J. F., & DePinto, J. V. (2016). Development of the Western Lake Erie Ecosystem Model (WLEEM): Application to connect phosphorus loads to cyanobacteria biomass. Journal of Great Lakes Research, 42(6), 1193- 1205.</p><p>Vinon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: A review. Science of the total environment, 651, 2985-3001.</p><p>VishnuRadhan, R., Sagayadoss, J., Seelan, E., Vethamony, P., Shirodkar, P., Zainudin, Z., & Shirodkar, S. (2015). Southwest monsoon influences the water quality and waste assimilative capacity in the Mandovi estuary (Goa state, India). Chemistry and Ecology, 31(3), 217-234.</p><p>Visser, P. M., Verspagen, J. M., Sandrini, G., Stal, L. J., Matthijs, H. C., Davis, T. W., ... & Huisman, J. (2016). How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae, 54, 145-159.</p><p>Vilar, M. C. P., & Molica, R. J. R. (2020). Changes in pH and dissolved inorganic carbon in water affect the growth, saxitoxins production and toxicity of the cyanobacterium Raphidiopsis raciborskii ITEP-A1. Harmful Algae, 97, 101870.</p><p>Vogt, R. J., Sharma, S., & Leavitt, P. R. (2018). Direct and interactive effects of climate, meteorology, river hydrology, and lake characteristics on water quality in productive lakes of the Canadian Prairies. Canadian Journal of Fisheries and Aquatic Sciences, 75(1), 47-59.</p><p>Wadhawan, T., Simsek, H., Kasi, M., Knutson, K., Pr, B., McEvoy, J., & Khan, E. (2014). Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation. water research, 54, 318-326.</p><p>Wang, J., Fu, Z., Qiao, H., & Liu, F. (2019). Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Science of the Total Environment, 650, 1392- 1402.</p><p>Wang, M., Luan, G., & Lu, X. (2020). Engineering ethanol production in a marine cyanobacterium Synechococcus sp. PCC7002 through simultaneously removing glycogen synthesis genes and introducing ethanolgenic cassettes. Journal of biotechnology, 317, 1-4.</p><p>Ward, N. K., Steele, B. G., Weathers, K. C., Cottingham, K. L., Ewing, H. A., Hanson, P. C., & Carey, C. C. (2020). Differential responses of maximum versus median chlorophyll-a to air temperature and nutrient loads in an oligotrophic lake over 31 years. Water Resources Research, 56 no (7), 10.1029/2020WR027296.</p><p>Wang, X., Bai, J., Wang, J., Le, S., Wang, M., & Zhao, Y. (2019). Variations in cadmium accumulation and distribution among different oilseed rape cultivars in Chengdu Plain in China. Environmental Science and Pollution Research, 26(4), 3415-3427.</p><p>Walve, J., Sandberg, M., Elmgren, R., Lnnergren, C., & Larsson, U. (2021). Effects of Load Reductions on Phosphorus Concentrations in a Baltic EstuaryLong-Term Changes, Seasonal Variation, and Management Implications. Estuaries and Coasts, 44(1), 30-43.</p><p>Weinke, A. D., & Biddanda, B. A. (2019). Influence of episodic wind events on thermal stratification and bottom water hypoxia in a Great Lakes estuary. Journal of Great Lakes Research, 45(6), 1103-1112.</p><p>Weirich, C. A., & Miller, T. R. (2014). Freshwater harmful algal blooms: toxins and children' s health. Current problems in pediatric and adolescent health care, 44(1), 2-24.</p><p>Wen, D., Valencia, A., Lustosa, E., Ordonez, D., Shokri, M., Gao, Y., Rice, N., Kibler, K., Chang, N. B., & Wanielista, M. P. (2020). Evaluation of green sorption media blanket filters for nitrogen removal in a stormwater retention basin at varying groundwater conditions in a karst environment. Science of The Total Environment, 719, 134826.</p><p>Wang, B., Zheng, X., Zhang, H., Xiao, F., Gu, H., Zhang, K., He, Z., Liu, X., & Yan, Q. (2020). Bacterial community responses to tourism development in the Xixi National Wetland Park, China. Science of The Total Environment, 137570.</p><p>Worako, A. W. (2015). Physicochemical and biological water quality assessment of Lake Hawassa for multiple designated water uses. Journal of Urban and Environmental Engineering , 9(2), 146-157.</p><p>Woodhouse, J. N., Rapadas, M., & Neilan, B. A. (2014). Cyanotoxins. Cyanobacteria: An economic perspective, 257-268.</p><p>Woodhouse, J. N., Ziegler, J., Grossart, H. P., & Neilan, B. A. (2018). Cyanobacterial community composition and bacteriabacteria interactions promote the stable occurrence of particle - associated bacteria. Frontiers in Microbiology, 9, 777.</p><p>Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., OReilly, C. M., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388-403.</p><p>Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., OReilly, C. M., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388-403.</p><p>Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 6(5), e1373.</p><p>Wu, J., Yan, G., Zhou, G., & Xu, T. (2014). Model predictive control of biological nitrogen removal via partial nitrification at low carbon/nitrogen (C/N) ratio. Journal of Environmental Chemical Engineering, 2(4), 1899-1906.</p><p>Xia, Y., Zhang, M., Tsang, D. C., Geng, N., Lu, D., Zhu, L., & Ok, Y. S. (2020). Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: current practices and future prospects. Applied Biological Chemistry, 63(1), 1-13.</p><p>Xiao, M., Hamilton, D. P., OBrien, K. R., Adams, M. P., Willis, A., & Burford, M. A. (2020). Are laboratory growth rate experiments relevant to explaining bloom-forming cyanobacteria distributions at global scale? Harmful Algae, 92, 101732.</p><p>Xu, Z., Zhang, X., Xie, J., Yuan, G., Tang, X., Sun, X., & Yu, G. (2014). Total nitrogen concentrations in surface water of typical agro-and forest ecosystems in China, 2004- 2009. PloS one, 9(3), e92850.</p><p>Xu, Z., & Xu, Y. J. (2016). A deterministic model for predicting hourly dissolved oxygen change: development and application to a shallow eutrophic lake. Water, 8(2), 41.</p><p>Yan, Z., Han, W., Peuelas, J., Sardans, J., Elser, J. J., Du, E., ... & Fang, J. (2016). Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters, 19(10), 1237-1246.</p><p>Yan, D., Xu, H., Yang, M., Lan, J., Hou, W., Wang, F., ... & Goldsmith, Y. (2019). Responses of cyanobacteria to climate and human activities at Lake Chenghai over the past 100 years. Ecological indicators, 104, 755-763.</p><p>Yang, K., Yu, Z., Luo, Y., Yang, Y., Zhao, L., & Zhou, X. (2018). Spatial and temporal variations in the relationship between lake water surface temperatures and water quality-A case study of Dianchi Lake. Science of the total environment, 624, 859-871.</p><p>Yang, C., Yang, P., Geng, J., Yin, H., & Chen, K. (2020). Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. Environmental Pollution, 262, 114292.</p><p>Yang, Z., Zhang, M., Shi, X., Kong, F., Ma, R., & Yu, Y. (2016). Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu (China). Water Research, 103, 302-310.</p><p>Yalin, W., Tao, H., Changchun, H., Yinyin, S., Yang, L., Hao, Y., et al (2018). Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China. Chinese Geographical Science, 28(5), 851862.</p><p>Ye, H., Yuan, X., Han, L., Marip, J. B., & Qin, J. (2017). Risk assessment of nitrogen and phosphorus loss in a hilly-plain watershed based on the different hydrological period: a case study in Tiaoxi watershed. Sustainability, 9(8), 1493.</p><p>Ye, L., Wang, R., Ji, G., Wu, H., Qu, H., Wang, L., & Liu, J. (2021). From green tide to biochar: Thermal decomposition kinetics and TG-FTIR study of microalgae from Chaohu Lake. International Journal of Energy Research, 45(5), 8083-8090.</p><p>Yuan, L. L., & Jones, J. R. (2020). Modeling hypolimnetic dissolved oxygen depletion using monitoring data. Canadian Journal of Fisheries and Aquatic Sciences, 77(5), 814-823.</p><p>Zhang, Y., Song, C., Zhou, Z., Cao, X., & Zhou, Y. (2019). Coupling between Nitrification and Denitrification as well as Its Effect on Phosphorus Release in Sediments of Chinese Shallow Lakes. Water, 11.</p><p>Zanon, J. A., Favaretto, N., Goularte, G. D., Dieckow, J., & Barth, G. (2020). Manure application at long-term in no-till: Effects on runoff, sediment and nutrients losses in high rainfall events. Agricultural Water Management, 228, 105908.</p><p>Zamyadi, A., Romanis, C., Mills, T., Neilan, B., Choo, F., Coral, L. A., ... & Henderson, R. K. (2019). Diagnosing water treatment critical control points for cyanobacterial removal: Exploring benefits of combined microscopy, next-generation sequencing, and cell integrity methods. Water research, 152, 96-105.</p><p>Zhang, Y., Liang, J., Zeng, G., Tang, W., Lu, Y., Luo, Y., ... & Huang, W. (2020). How climate change and eutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: A review. Science of the Total Environment, 705, 135979.</p><p>Zhang, N., Han, X., & Wang, W. (2019). A Comprehensive Hydrodynamics-Salinity-pH Model for Analyzing the Effects of Freshwater Withdrawals in Calcasieu Lake and Surrounding Water Systems. Journal of Fluids Engineering, 141(5).</p><p>Zhang, T., Huang, M., & Wang, Z. (2020). Estimation of chlorophyll-a Concentration of lakes based on SVM algorithm and Landsat 8 OLI images. Environmental Science and Pollution Research, 27(13), 14977-14990.</p><p>Zheng, L., Wang, H. P., Huang, M. S., & Liu, Y. (2019). Relationships between temporal and spatial variations of water quality and water level changes in Poyang Lake based on 5 consecutive years monitoring. Appl. Ecol. Environ. Res, 17, 11687-11699.</p><p>Zhang, L., Zhang, S., Lv, X., Qiu, Z., Zhang, Z., & Yan, L. (2018). Dissolved organic matter release in overlying water and bacterial community shifts in biofilm during the decomposition of Myriophyllum verticillatum. Science of The Total Environment, 633, 929-937.</p><p>Zhao, Y., Liu, J., Uthaipan, K., Song, X., Xu, Y., He, B., & Dai, M. (2020). Dynamics of inorganic carbon and pH in a large subtropical continental shelf system: Interaction between eutrophication, hypoxia, and ocean acidification. Limnology and Oceanography, 65(6), 1359-1379.</p><p>Zhou, G., Zhao, X., Bi, Y., & Hu, Z. (2012). Effects of rainfall on spring phytoplankton community structure in Xiangxi Bay of the Three-Gorges Reservoir, China. Fresenius Environmental Bulletin, 21(11), 3533-3541.</p><p>Zhou, X., Wang, M., Liu, L., Chen, Z., Li, Y., & Zhang, J. (2015). Nitrogen dynamics variation in overlying water of Jinshan Lake, China. Journal of Chemistry, 2015.</p><p>Zhong, F., Wu, J., Dai, Y., Xiang, D., Deng, Z., & Cheng, S. (2019). Responses of water quality and phytoplankton assemblages to remediation projects in two hypereutrophic tributaries of Chaohu Lake. Journal of environmental management, 248, 109276.</p><p>Zohary, T., Flaim, G., & Sommer, U. (2021). Temperature and the size of freshwater phytoplankton. Hydrobiologia, 848(1), 143-155.</p><p>Zhu, M., Paerl, H. W., Zhu, G., Wu, T., Li, W., Shi, K., & Caruso, A. M. (2014). The role of tropical cyclones in stimulating cyanobacterial (Microcystis spp.) blooms in hypertrophic Lake Taihu, China. Harmful Algae, 39, 310-321.</p><p>Zhu, C. M., Zhang, J. Y., Guan, R., Hale, L., Chen, N., Li, M., & Chen, T. (2019). Alternate succession of aggregate-forming cyanobacterial genera correlated with their attached bacteria by co-pathways. Science of the Total Environment, 688, 867-879.</p><p></p><p></p>