Nitrogen prediction model through new hybrid model using ant colony optimization and Elman neural network /

Saved in:
Bibliographic Details
Main Author: Kumar, Pavitra (Author)
Format: Thesis Book
Language:English
Published: 2021.
Subjects:
Online Access:http://studentsrepo.um.edu.my/14057/
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 01775nam a2200397 i 4500
001 u1150912
003 SIRSI
005 202112061033
008 211206s2021 my a m 000 0 eng
040 |a UMM  |d UMJ  |d AUM  |e rda 
090 |a TA145  |b UMP 2021 Kum 
097 |a TA145  |b UMP 2021 Kum 
100 1 |a Kumar, Pavitra,  |e author. 
245 1 0 |a Nitrogen prediction model through new hybrid model using ant colony optimization and Elman neural network /  |c Pavitra Kumar. 
264 1 |c 2021. 
300 |a xvi, 127 leaves :  |b illustrations ;  |c 30 cm 
336 |a text  |2 rdacontent 
336 |a still image  |2 rdacontent 
337 |a unmediated  |2 rdamedia 
337 |a computer  |2 rdamedia 
338 |a volume  |2 rdacarrier 
338 |a computer dics  |2 rdacarrier 
502 |b Ph.D.  |c Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti Malaya  |d 2021. 
504 |a Bibliography: leaves 115-122. 
530 |a Also issued in CD. 
650 0 |a Water  |x Nitrogen content  |x Measurement. 
650 0 |a Nitrates  |x Environmental aspects. 
650 0 |a Neural networks (Computer science) 
650 0 |a Mathematical optimization. 
710 |a Universiti Malaya.  |b Jabatan Kejuruteraan Awam,  |e degree granting institution. 
856 4 1 |u http://studentsrepo.um.edu.my/14057/ 
900 |a NNANS US 
596 |a 1 7 25 
999 |a TA145 UMP 2021 KUM  |w LC  |c 1  |i A517719245  |f 23/2/2022  |g 1  |l STACKS  |m P01UTAMA  |r Y  |s N  |t TESIS  |u 23/2/2022  |1 STEM  |o .PUBLIC. Embargoed until 22.07.2022. Released to stack 28-July-2022.  |o .STAFF.  
999 |a TA145 UMP 2021 KUM  |w LC  |c 1  |i A517733692  |f 3/8/2022  |g 1  |l STACKS  |m P07JURUTER  |r Y  |s Y  |t TESIS  |u 18/7/2022  |1 STEM  |o .PUBLIC.   |o .STAFF.  
999 |a TA145 UMP 2021 KUM  |w LC  |c 1  |i A517719259  |f 25/8/2022  |g 1  |l STACKS  |m P25UMARCHI  |r N  |s Y  |t CD  |u 25/8/2022  |1 STEM  |o .STAFF. MST-CD1025