Deep learning-based colorectal cancer classification using augmented and normalised gut microbiome data /
Saved in:
Main Author: | |
---|---|
Format: | Thesis Book |
Language: | English |
Published: |
2022.
|
Subjects: | |
Online Access: | http://studentsrepo.um.edu.my/14415/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
LEADER | 01641nam a2200373 i 4500 | ||
---|---|---|---|
001 | u1154392 | ||
003 | SIRSI | ||
005 | 202203241511 | ||
008 | 220324s2022 my a m 000 0 eng | ||
040 | |a UMM |d AUM |e rda | ||
090 | |a QA76 |b UMP 2022 Mul | ||
100 | 1 | |a Mulenga, Mwenge, |e author. | |
245 | 1 | 0 | |a Deep learning-based colorectal cancer classification using augmented and normalised gut microbiome data / |c Mwenge Mulenga. |
264 | 1 | |c 2022. | |
300 | |a xxi, 276 leaves : |b illustrations (some colour) ; |c 30 cm | ||
336 | |a text |2 rdacontent | ||
336 | |a still image |2 rdacontent | ||
337 | |a unmediated |2 rdamedia | ||
337 | |a computer |2 rdamedia | ||
338 | |a volume |2 rdacarrier | ||
338 | |a computer disc |2 rdacarrier | ||
502 | |b Ph.D. |c Jabatan Kepintaran Buatan, Fakulti Sains Komputer dan Teknologi Maklumat, Universiti Malaya |d 2022. | ||
504 | |a Bibliography: leaves 254-274. | ||
530 | |a Also issued CD. | ||
650 | 0 | |a Deep learning (Machine learning) | |
650 | 0 | |a Machine learning. | |
650 | 0 | |a Gastrointestinal system |x Microbiology. | |
650 | 0 | |a Colon (Anatomy) |x Cancer |x Diagnosis. | |
710 | 2 | |a Universiti Malaya. |b Jabatan Kepintaran Buatan, |e degree granting institution. | |
856 | 4 | 1 | |u http://studentsrepo.um.edu.my/14415/ |
900 | |a NNANS US | ||
596 | |a 1 25 | ||
999 | |a QA76 UMP 2022 MUL |w LC |c 1 |i A517725387 |d 2/2/2023 |e 2/2/2023 |f 22/4/2022 |g 1 |l STACKS |m P01UTAMA |n 1 |r Y |s Y |t TESIS |u 24/3/2022 |1 STEM |o .PUBLIC. Embargoed until 31.12.2022 (Released to stack 3-Jan-2023) |o .STAFF. | ||
999 | |a QA76 UMP 2022 MUL |w LC |c 1 |i A517725395 |f 25/1/2023 |g 1 |l STACKS |m P25UMARCHI |r N |s Y |t CD |u 25/1/2023 |1 STEM |o .STAFF. MST-CD2020 |