Dynamics of positive quadratic stochastic operators on 2D simplex /

The Perron–Frobenius theorem states that a linear operator associated with a positive square stochastic matrix has a unique fixed point in the simplex and it is regular to that fixed point. Inspired by this classical result, in this thesis, we study a set of fixed points and the regularity of so-cal...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Nur Atikah binti Yusof
التنسيق: أطروحة
اللغة:English
منشور في: Kuantan, Pahang : Kulliyyah of Science, International Islamic University Malaysia, 2016
الموضوعات:
الوصول للمادة أونلاين:Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library.
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
LEADER 025620000a22002770004500
008 171215t2016 my a g m 000 0 eng d
040 |a UIAM  |b eng 
041 |a eng 
043 |a a-my--- 
050 |a QA274.2 
100 0 |a Nur Atikah binti Yusof 
245 1 |a Dynamics of positive quadratic stochastic operators on 2D simplex /  |c by Nur Atikah binti Yusof 
260 |a Kuantan, Pahang :  |b Kulliyyah of Science, International Islamic University Malaysia,  |c 2016 
300 |a x, 103 leaves :  |b ill. ;  |c 30cm. 
502 |a Thesis (MSCTS)--International Islamic University Malaysia, 2016. 
504 |a Includes bibliographical references (leaves 65-67). 
520 |a The Perron–Frobenius theorem states that a linear operator associated with a positive square stochastic matrix has a unique fixed point in the simplex and it is regular to that fixed point. Inspired by this classical result, in this thesis, we study a set of fixed points and the regularity of so-called positive quadratic stochastic operators (PQSO) associated with positive cubic stochastic matrices on 2D simplex. We show that, in general, the analogue of Perron–Frobenius theorem does not hold true for PQSO. Namely, it may have more than one fixed point in the simplex. Moreover, the uniqueness of fixed points does not imply its regularity. We study the structure of the fixed point set of PQSO on 2D simplex and provide a uniqueness criterion for fixed points of PQSO. Moreover, by introducing a new class of PQSO so-called r-majorizing PQSO, we also provide some sufficient conditions in which the positivity implies the uniqueness of its fixed points as well as its regularity. Some supporting examples are also presented. 
596 |a 1 6 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Department of Computational and Theoretical Sciences  |z IIUM 
710 2 |a International Islamic University Malaysia.  |b Department of Computational and Theoritical Sciences 
856 4 |u https://lib.iium.edu.my/mom/services/mom/document/getFile/UmGE2gYfPyIGG5tUxBbsHqOMDzKKXQWb20161111110616706  |z Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library. 
900 |a sbh-lfr 
999 |c 436767  |d 470356 
952 |0 0  |6 T QA 000274.2 N974D 2016  |7 0  |8 THESES  |9 761282  |a KIMC  |b KIMC  |c CLOSEACCES  |g 0.00  |o t QA 274.2 N974D 2016  |p 11100350501  |r 2019-09-04  |t 1  |v 0.00  |y THESIS 
952 |0 0  |6 TS CDF QA 274.2 N974D 2016  |7 0  |8 THESES  |9 854937  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o ts cdf QA 274.2 N974D 2016  |p 11100350502  |r 2018-03-08  |t 1  |v 0.00  |y THESISDIG