Garch parameter estimation using least absolute median

The general autoregressive conditional heteroscedasticity, (GARCH) family has become more efficient in fitting financial data as it consists of the second order moment that measures the time-variant of the volatility data. However, GARCH may fail to fit some high frequency financial data with large...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Hanafi A. Rahim
التنسيق: أطروحة
اللغة:English
الموضوعات:
الوصول للمادة أونلاين:http://umt-ir.umt.edu.my:8080/jspui/bitstream/123456789/2410/1/QA%20276.8%20.H3%202012%20Abstract.pdf
http://umt-ir.umt.edu.my:8080/jspui/bitstream/123456789/2410/2/QA%20276.8%20.H3%202012%20FullText.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The general autoregressive conditional heteroscedasticity, (GARCH) family has become more efficient in fitting financial data as it consists of the second order moment that measures the time-variant of the volatility data. However, GARCH may fail to fit some high frequency financial data with large jumps called outliers. In this research, GARCH parameters were estimated using least absolute median (LAM).